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ABSTRACT
The interplay between population structure and natural selection is an area of great interest. It is known

that certain types of population subdivision do not alter fixation probabilities of selected alleles under
genic, frequency-independent selection. In the presence of dominance for fitness or frequency-dependent
selection these same types of subdivision can have large effects on fixation probabilities. For example, the
barrier to fixation of a fitter allele due to underdominance is reduced by subdivision. Analytic results
presented here relate a subdivided population that conforms to a finite island model to an approximately
equivalent panmictic population. The size of this equivalent population is different from (larger than)
the actual size of the subdivided population. Selection parameters are also different in the hypothetical
equivalent population. As expected, the degree of dominance is lower in the equivalent population. The
results are not limited to dominance but cover any form of polynomial frequency dependence.

NATURAL populations are likely to be character- been the case of underdominance (heterozygote disad-
vantage), which can serve as a barrier to the fixation ofized by some kind of population structure. The

population-genetic and evolutionary consequences of a fitter genotype. Subdivision reduces this barrier, and
this effect has been interpreted as a simple case ofsuch structure have been investigated since the begin-

nings of population genetics (Wright 1931, 1939, Wright’s “shifting balance” theory (Lande 1985), a the-
ory that has been a topic of debate for many decades.1943). Much work has centered on the amount of poly-

morphism maintained in a subdivided population (Slat- Formally equivalent to dominance is a form of locally
frequency-dependent selection. For example, selectionkin 1977; Maruyama and Kimura 1980; Nagylaki

1998) and on the distribution of allele frequencies that favors an allele when it is locally common, but
disfavors it when it is rare, is similar to underdominance,(Maruyama, 1972a,b,c). A closely related topic is the

effective size of a subdivided population (Wright 1939; and underdominance may be considered a case of posi-
tive frequency dependence. Frequency dependenceMaruyama 1970a; Slatkin 1981, 1991; Takahata

1991; Nei and Takahata 1993; Santiago and Cabal- may have any form; it need not be restricted to the
linear case that is formally equivalent to dominance.lero 1995; Whitlock and Barton 1997; Wang and

Caballero 1999). Analytic results, including expressions for fixation
probabilities, have been obtained for selection withOne area of interest is the interaction of population

structure with selection. Maruyama (1970b, 1974) has dominance in the low-migration limit (Slatkin 1981;
shown that fixation probabilities are unaffected by pop- Lande 1985). Simulations have provided results for in-
ulation subdivision under simple genic selection and termediate cases, where the migration rate is neither
fairly general conditions of migration patterns. Under very low nor sufficiently high to make subdivision irrele-
a finite island model of subdivision with a large number vant (Slatkin 1981; Spirito et al. 1993). Here I present
of demes, the trajectory of allele frequency over time is analytic results that are not restricted to the weak-migra-
approximately the same as that in a panmictic popula- tion limit for a finite island model of subdivision. These
tion with a different size and different selection coeffi- results relate the subdivided population to a hypotheti-
cient (Cherry and Wakeley 2003). cal equivalent panmictic population that differs from

If the assumption of genic selection is relaxed, the the actual population in both its size and its selection
problem becomes more difficult. Subdivision affects parameters. The selection parameter h, which is a mea-
fixation probabilities when there is dominance for fit- sure of dominance for fitness (or degree of frequency
ness or when the relative fitnesses of genotypes depend dependence), is in effect moved toward 1⁄2 (additive
on their frequencies. An area of particular interest has fitness or no frequency dependence) by subdivision.

This result can be generalized to more complicated
forms of frequency dependence. The existence of an
equivalent panmictic population allows application of1Address for correspondence: 2307 Massachusetts Ave., Cambridge, MA

02140. E-mail: cherry@oeb.harvard.edu established diffusion results to the subdivided popula-
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tion. Such quantities of fixation probabilities and ex- need to consider the probability distribution of the al-
lele frequency in the ith deme, xi. If drift within a demepected times to fixation can be calculated.
is strong compared to selection, the population as a
whole in effect serves in the short term as a source

MODELS AND RESULTS
population for any subpopulation, with constant allele
frequency x . Under these conditions the distribution ofConsider a finite island model of population struc-

ture, in which a finite number of demes (“islands”) within-deme allele frequency is a beta distribution whose
probability density function isexchange migrants with one another. The population

consists of D demes, each containing N haploid or N/2
diploid individuals. Each generation involves migration, 1

B(a, b)
xa�1

i (1 � xi)b�1 ,
selection, and genetic drift. The order in which these
occur makes little difference when selection coefficients where a � 2Nmx, b � 2Nm(1 � x), and the beta func-
and migration rates are small compared to unity, so this tion B is defined by B(a, b) � �1

0xa�1(1 � x)b�1dx
order need not be specified. The migration rate (the (Wright 1931; Dobzhansky and Wright 1941). The
expected fraction of genes that come from outside the moments of this distribution follow from the recursion
deme in any generation) is given by m, and selection properties of the beta function, namely that B(a � 1,b) �
operates in a manner to be specified below. (a/(a � b))B(a,b). The first, second, and third moments

Three processes, selection, drift, and migration, alter of this distribution are a/(a � b), (a � 1)a/(a � b �
the frequency of an allele in a deme each generation. 1)(a � b), and (a � 2)(a � 1)a/(a � b � 2)(a � b �
Migration is symmetric in the island model, so it does 1)(a � b), respectively. These are all that we need to
not affect the overall allele frequency x (it does not know to treat the case of dominance or linear frequency
affect the mean, and its effect on the variance is negligi- dependence.
ble). The effects of selection and drift are approximately The beta-distribution approximation is valid when
additive. The mean change in x results from selection, selection is weak compared to drift in a subpopulation,
whereas the variance is the result of genetic drift. in the sense that |ŝ | � 1/N. This condition must hold

Dominance: Cherry and Wakeley (2003) analyzed for all allele frequencies. In the present case, ŝ(xi) �
the case of genic selection in an island model of subdivi- 2hs (1 � xi) � (2s � 2hs)xi takes on its most extreme
sion. This analysis can be extended to cases where there values at allele frequencies of zero or one. Thus the
is dominance for fitness, including over- and underdom- constraint on the strength of selection becomes
inance. These cases are equivalent, in terms of their

|2Nhs| � 1 (2)usual diffusion approximations, to a certain form of
frequency-dependent selection. Diffusion results for

and
dominance in a panmictic population are well estab-
lished. I show that, under certain conditions, the diffu- |2N(1 � h)s| � 1. (3)
sion for a subdivided population is equivalent to that

This condition allows selection to be strong comparedfor some panmictic population. As in the case of genic
to drift in the population as a whole and hence allowsselection, this equivalent panmictic population differs
selection to have a large effect on the fate of an allele.from the subdivided population not only in size, but

The stochastic change in allele frequency in a demealso in fitness parameters.
comes from the binomial sampling of alleles. Thus theSuppose that the fitnesses of genotypes aa, Aa, and
variance of the change in allele frequency in the ithAA are 1, 1 � 2hs, and 1 � 2s. The fitness difference
deme is �(1/N)xi(1 � xi). Using expressions for thebetween the two alleles is 2hs when paired with an a
first two moments of the beta distribution we can showallele and 2s � 2hs when paired with an A allele. Thus
that the variance of the change in population-wide fre-the mean selective difference between the two alleles ŝ,
quency x is given bywhich might be called the marginal selection coefficient

(by analogy to the marginal fitness), depends on the
V�x �

1
D 2 �

i
(1/N)xi(1 � xi) � 1

ND
Exi(1 � xi)allele frequency and is given by

ŝ(x) � 2hs(1 � x) � (2s � 2hs)x (1)
�

1
ND

2Nm
2Nm � 1

. (4)
in an unstructured population with nonassortative mat-
ing. This can be rewritten as ŝ(x) � 2hs � (2s � 4hs)x,

The variance definition of effective population size Newhich makes it clearer that ŝ(x) has the form k0 � k1x,
is given by V�x � (1/Ne)x(1 � x). Thus we havewith k0 � 2hs and k1 � 2s � 4hs.

Now consider a subdivided population. We are inter-
Ne � DN/� 2Nm

2Nm � 1� � �1 �
1

2Nm�DN .ested in the mean and variance of the change in overall
allele frequency from one generation to the next, M�x

and V�x . Expressions for these as functions of x will allow This is a well-known expression for the effective size of
a subdivided population conforming to an island modeluse of diffusion approximations. To obtain these we
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(Wright 1943; Nei and Takahata 1993). It is identical The parameterization involving s and h cannot be ap-
plied to symmetric over- or underdominance: s wouldto the effective size obtained in the analogous context

for the case of genic selection (Cherry and Wakeley have to be zero for symmetry, while hs would have to
be nonzero for over- or underdominance. One parame-2003).

The mean change, on the other hand, is affected by terization that can represent the symmetric cases is that
involving k0 and k1. A more commonly used notationthe more complex selection scheme. For the ith deme,

the change in allele frequency xi due to selection is for dominance gives the fitnesses of aa, Aa, and AA as
1, 1 � s1, and 1 � s2. Let s1e and s2e be the effectiveapproximately ŝ(xi)xi(1 � xi) � (k0 � k1xi)xi(1 � xi).

We are interested in the mean of this quantity. Using values of s1 and s2. Using the fact that s1 � 2hs and s2 �
2s, we obtainthe approximation that the xi are beta distributed with

a � 2Nmx and b � 2Nm(1 � x), along with expressions
for the first three moments of a beta distribution, we s1e � � 2Nm

2Nm � 1� �� Nm
Nm � 1�s1 �

1
2�

1
Nm � 1�s2�

can show that the mean change in x is given by

s2e � � 2Nm
2Nm � 1�s2 .M�x � ��k0 �

k1/2
Nm � 1� � � Nm

Nm � 1�k1x� � 2Nm
2Nm � 1� x(1 � x) .

(5)
Note that s1e depends on s2 as well as s1.This expression has the form (k0e � k1ex)x(1 � x). To-

In the symmetric case s2 � 0. If we let s� � s1 thengether with the form of V�x (Equation 4), this shows
both homozygotes have fitness 1 and the heterozygotethat the diffusion for the subdivided population is equiv-
has fitness 1 � s�. If s �e is the effective value of s� underalent to that for a panmictic population with altered
subdivision, we haveparameters. The constants k0e and k1e are to be interpre-

ted as the effective values of k0 and k1, i.e., the values
s �e � � 2Nm

2Nm � 1� � Nm
Nm � 1�s� .that, in a hypothetical Wright-Fisher population with

size Ne, yield roughly the same trajectory of allele fre-
More complicated forms of selection: The analysisquency as does the actual subdivided population. From

given above applies when the frequency dependence ofEquation 5 it follows that
the selective difference between the alleles has the form
ŝ(x) � k0 � k1x. This case includes an arbitrary degreek0e � � 2Nm

2Nm � 1� �k0 �
k1/2

Nm � 1� of dominance when the relative fitnesses of the diploid
genotypes do not depend on their frequencies. This is

k1e � � 2Nm
2Nm � 1� � Nm

Nm � 1�k1 . (6) not the only possible form of frequency dependence;
ŝ(x) can in principle have any form whatsoever. Can we

Converting back to notation involving h and s and their obtain diffusion approximations for more complicated
analogs in the equivalent panmictic population he and forms of ŝ(x) when the population is subdivided, again
se, and recalling our expression for Ne, we obtain assuming that |Nŝ(x)| is always small compared to 1?

The results obtained above are consequences of the
forms of the first three moments of the beta distribution.Ne � �1 �

1
2Nm�DN

The useful properties of these moments extend to the
higher-order moments. These properties permit the

se � � 2Nm
2Nm � 1�s analysis of cases where the frequency dependence is

described by any polynomial, i.e., where ŝ(x) � P(x) �
k0 � k1x � k2x 2 � . . . � knxn. We see that the diffusionhe � h �

h � 1/2
Nm � 1

�
1
2

� � Nm
Nm � 1� �h �

1
2� . (7)

for a subdivided population with this form of selection
is equivalent to that for a panmictic population with a

As in the case of genic selection, subdivision increases different size and with ŝe(x) � Pe(x) � k0e � k1ex � k2ex 2

Ne by a certain factor and decreases se by this same � . . . � knexn. Simple dominance is a special case of
factor, so that Nese is unaffected by subdivision. The this, with the degree of the polynomials P and Pe equal
effect of subdivision on he is to move it toward 1⁄2 and to 1.
therefore to decrease the effective strength of domi- Recall that we are interested in the expected value
nance or frequency dependence, as expected from pre- of ŝ(x)x(1 � x) when x has a beta distribution with
vious work (Slatkin 1981; Lande 1985; Spirito et al. parameters a � 2Nmx and b � 2Nm(1 � x). For polyno-
1993). This is made clear by the relationship mial ŝ(x), ŝ(x)x(1 � x) is the sum of terms of the form

kixi�1(1 � x). For any beta distribution
he �

1
2

� � Nm
Nm � 1� �h �

1
2� .

E {x i�1(1 � x )} �
(a � i )(a � i � 1) . . . (a � 1)ab

(a � b � i � 1)(a � b � i ) . . . (a � b � 1)(a � b )
.

Alternative parameterizations: There are several natu-
ral parameterizations of the selection model used above. This follows from the recursion properties of the beta
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Figure 1.—Predicted and observed fixation
probabilities as functions of h and m. Predicted
values of fixation probabilities (curves), relative
to that for a neutral allele, are compared to values
estimated by simulations (points) for a range of
values of the dominance parameter h. In all cases
the number of demes (D) is 100, the deme size
(N) is 100, and s � 10�4. The allele was initially
present in a single copy. Results are presented for
three migration rates: m � 0.001 (solid triangles
and curve), m � 0.003 (open circles and curve),
and m � 0.01 (solid diamonds and curve).

function mentioned earlier. In the present case, a � be applied to a polynomial ŝ(x) of any degree or to a
Taylor series of an analytic function.b � 2Nm, so the denominator is independent of x. The

numerator expands to an expression of the form Q(x)
x(1 � x), where Q(x) is a polynomial of degree i in x.

COMPUTER SIMULATIONSIt follows that E {P(x)x(1 � x)} has the form Pe(x)x (1 �
x) for some polynomial Pe of the same degree as P. The To test the approximations used above, I have run
coefficients of this polynomial (k0e, k1e, k2e, . . . kne), which computer simulations and compared the results to theo-
depend on the coefficients of P and on N and m, may be retical predictions. In these simulations frequency-
obtained by some tedious but straightforward algebra. dependent selection acts on a haploid population. Most
Consider, for example, the case of quadratic frequency of the simulations are for cases of linear frequency de-
dependence, where ŝ(x) � P(x) � k0 � k1x � k2x 2. We pendence and can also be interpreted in terms of dip-
have loidy with dominance. I utilize the parameterization

involving s and h for these cases.
E {x 3(1 � x )} �

(a � 2)(a � 1)ab
(a � b � 3)(a � b � 2)(a � b � 1)(a � b ) In these simulations the state of the population is

represented by an array of D integers, each correspond-
�

(2Nmx � 2)(2Nmx � 1)2Nmx2Nm(1 � x)
(2Nm � 3)(2Nm � 2)(2Nm � 1)2Nm ing to a deme. Each integer indicates the number of

copies of allele A in the deme and hence ranges from
0 to N. Each generation the new value for each deme� � 2Nm

2Nm � 1�
(2Nm)2 x 2 � 6Nmx � 2

(2Nm � 3)(2Nm � 2)(2Nm � 1)
x(1 � x) .

is drawn from a binomial distribution. The index param-
eter n of this binomial (number of “trials”) is equal toThus the quadratic term of P contributes quadratic,
N. The probability parameter p (probability of “success”)linear, and constant terms to Pe, so the value of k2 affects
is determined by the current allele frequency in thenot only the value of k2e, but also the values of k1e and k0e. deme xi, the population-wide mean allele frequency x,Combining this result with those given for first-degree
the migration rate m, and the selection parameters sfrequency dependence we obtain
and h. Let p̃ � (1 � m)xi � mx. This would be the
expected allele frequency in the ith deme in the next

k0e � � 2Nm
2Nm � 1� �k0 �

k1/2
Nm � 1

�
k2

(2Nm � 3)(Nm � 1)� generation if there were no selection. The (marginal)
selection coefficient is given by ŝ(p̃). Therefore p � (1 �
ŝ)p̃/(1 � ŝp̃).k1e � � 2Nm

2Nm � 1� � Nm
Nm � 1� �k1 �

3Nm
2Nm � 3

k2�
Predictions of fixation probabilities follow from com-

bination of the theory presented here with classical
k2e � � 2Nm

2Nm � 3� � Nm
Nm � 1� � 2Nm

2Nm � 1�k2 (8) diffusion results. Kimura (1957, Equation 5.4) gave
an expression for fixation probability in a panmictic
Wright-Fisher population with an arbitrary form of fre-(compare with Equation 6). The same principle could
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TABLE 2TABLE 1

Predicted and observed fixation probabilities for Fixation probabilities for various numbers of demes
N � D � 100 and s � 3 � 10�4 or s � 10�3

Relative fixation
probabilityRelative fixation probability

D s m h Predicted Observeds m h Predicted Observed

30 3.3 � 10�4 0.001 �4 1.78 1.63 � 0.023 � 10�4 0.001 �4 3.24 3.03 � 0.03
�3 1.89 1.80 � 0.02�3 3.76 3.50 � 0.03
�2 2.00 1.90 � 0.02�2 4.34 4.13 � 0.03
�1 2.12 2.08 � 0.02�1 4.97 4.76 � 0.05

0 2.25 2.23 � 0.030 5.65 5.59 � 0.07
1 2.38 2.37 � 0.031 6.39 6.26 � 0.08
2 2.52 2.61 � 0.032 7.17 7.34 � 0.09
3 2.66 2.76 � 0.033 7.99 8.30 � 0.09

0.01 �4 0.46 0.45 � 0.010.01 �4 0.05 0.05 � 0.001
�3 0.68 0.67 � 0.01�3 0.18 0.18 � 0.003
�2 0.99 0.92 � 0.02�2 0.60 0.59 � 0.01
�1 1.41 1.36 � 0.02�1 1.73 1.69 � 0.02

0 1.97 1.94 � 0.020 4.19 4.10 � 0.03
1 2.70 2.70 � 0.031 8.20 8.16 � 0.09
2 3.60 3.62 � 0.032 13.37 13.51 � 0.12
3 4.68 4.84 � 0.043 19.09 19.59 � 0.14

10 10�3 0.001 �4 1.78 1.35 � 0.0110�3 0.001 �4 7.10 6.26 � 0.08
�3 1.89 1.54 � 0.01�3 9.53 8.24 � 0.09
�2 2.00 1.74 � 0.01�2 12.26 10.79 � 0.10
�1 2.12 1.91 � 0.01�1 15.22 14.14 � 0.12

0 2.25 2.18 � 0.010 18.36 17.64 � 0.13
1 2.38 2.45 � 0.021 21.63 21.92 � 0.15
2 2.51 2.74 � 0.023 28.39 33.20 � 0.18
3 2.66 3.07 � 0.020.01 �2 0.04 0.05 � 0.002

0.01 �4 0.46 0.42 � 0.01�1 1.49 1.51 � 0.04
�3 0.68 0.64 � 0.010 11.55 11.14 � 0.33
�2 0.99 0.92 � 0.011 29.26 29.45 � 0.54
�1 1.41 1.35 � 0.012 48.61 51.50 � 0.23

0 1.97 1.95 � 0.013 68.27 75.40 � 1.22
1 2.69 2.76 � 0.02

Theoretical predictions are compared to the results of com- 2 3.59 3.81 � 0.02
puter simulations. Fixation probabilities are expressed relative 3 4.67 5.13 � 0.02
to that for a neutral allele (1/ND).

Values of s were chosen such that Nese � NDs � 1. The
deme size (N) is 100 in all cases.

quency dependence. Replacement of the parameters in
this expression with the effective values derived here trajectory of allele frequency as well as the probability
(Equations 7 and 8), and numerical evaluation of the of ultimate fixation.
resulting expression, yields the desired numerical pre- Table 1 presents results for larger values of s. For s �
dictions. Analogous use of results of Kimura and Ohta 3 � 10�4, the predictions are still close to the observed
(1969, Equation 12) yields predictions of mean times values, differing by at most 7.4%. For s � 10�3, some of
to fixation. the predictions differ significantly from the simulation

Figure 1 compares theoretical predictions of fixation results for the smaller migration rate, especially at the
probabilities to the results of simulations for N � 100, extremes of over- and underdominance. This is to be
D � 100, s � 10�4, and various values of m and h. The expected because the weak selection assumption (Equa-
predictions are all very close to the observed values: all tions 2 and 3) is not met: for h � �4, 2N(1 � h)s �
predictions are within 3.6% of the simulation results, �1, and for h � 3, 2Nhs � 0.6, neither of which is
and a majority are within 1%. The plot illustrates that very small in magnitude compared to 1. Even at these
the theory captures the effects of both the degree of extremes, however, the predictions come within 16%
dominance and the migration rate on the probability of the observed values. For the less extreme values of h
of fixation. Furthermore, all the observed mean fixation the theoretical predictions are quite good.
times are within a few percent of the theoretical predic- Table 2 shows some results for different numbers of
tions (maximum deviation 2.5%; data not shown), indi- demes (D). With 30 demes, the predictions are again

quite good: all of them are within 10% of the simulationcating that the diffusion is a good description of the
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Figure 2.—Fixation probabilities as func-
tions of initial allele frequency. Theoretical
curves for various values of h and m are com-
pared to simulation results (points), with N �
100, D � 100, and s � 10�4. (a) h � 3 and
m � 0.01 (open squares and curve), or h � 3
and m � 0.003 (solid triangles and curve), or
h � �4 and m � 0.003 (open circles and
curve), or h � �4 and m � 0.01 (solid dia-
monds and curve). (b) h � �15 and m � 0.001
(solid triangles and curve), m � 0.003 (open
circles and curve), or m � 0.01 (solid diamonds
and curve).

results. With as few as 10 demes the assumption of a ties of loss also agree within 3%. Figure 2b shows results
for a case of strong underdominance (h � �15). Resultslarge number of demes is seriously violated. Although

many of the predictions are close to the observations, for such extreme underdominance were not given for
an allele starting at a single copy because some fixationsome differ from them by as much as 32%.

In the simulation results presented so far the allele probabilities would be so low that they would be difficult
to estimate by simulation. For higher initial allele fre-was initially present in a single copy. Figure 2 shows

results for a range of initial allele frequencies. Figure quencies the fixation probability is much larger and can
be measured more easily. Figure 2b illustrates that the2a shows results for overdominance (h � 3) and under-

dominance (h � �4) with different migration rates. All theory correctly predicts the reduced probability of fix-
ation of a rare allele at high migration rates and theof the points (simulation results) fall along the theoreti-

cal curves. All of the predicted fixation probabilities are increased fixation probabilities at lower m. The pre-
dicted fixation probabilities are all within 6% of thewithin 3% of the simulation estimates, and the probabili-
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Figure 3.—Fixation probabilities for quadratic
frequency dependence. Theoretical predictions
(curves) are compared to simulation results
(points) over a range of values of selection param-
eters. In all cases k0 � 0, k2 � 0.002 � k1, N �
100, D � 100, and the allele was initially present
in a single copy. Results are presented for three
migration rates: m � 0.001 (solid triangles and
curve), m � 0.003 (open circles and curve), and
m � 0.01 (solid diamonds and curve).

estimates from simulation. Furthermore, all of the pre- drift in the population as a whole, so that selection may
dicted probabilities of loss are within 5% of the simula- have a large effect on the fate of an allele without the
tion results. assumptions being violated.

The theory presented here covers any frequency de- Computer simulations confirm that the theory closely
pendence described by a polynomial. In the simulations predicts fixation probabilities so long as the parameters
discussed above this was a first-degree polynomial. Fig- meet the stated conditions, namely that D is large and
ure 3 compares predictions and results for cases of qua- |Nŝ(x)| � 1 for all x between zero and one. As expected,
dratic frequency dependence. The agreement of the when the parameter values violate these conditions the
predictions with the results is excellent: all of the predic- predictions are less reliable. Nonetheless, when the con-
tions are within a few percent of the simulation results ditions are moderately violated, for example, when selec-
(the largest difference is 3.5%). tion and within-deme drift are of comparable strength,

the predictions are still quite good.
A special case covered by the theoretical results is that

DISCUSSION of dominance for fitness in the absence of other sources
of frequency dependence. It was shown that subdivisionThe theory presented here relates a subdivided popu-
in effect decreases the degree of dominance, as mea-lation with frequency-dependent selection (including
sured by the deviation of the dominance parameter hthe case of dominance) to an equivalent panmictic pop-
from 1⁄2, by a factor that depends only on the deme sizeulation characterized by different parameters. Subdivi-
N and the migration rate m. Specifically, subdivisionsion alters both the size of the equivalent panmictic
changes the effective deviation of h from 1⁄2, he � 1⁄2, bypopulation (the effective population size Ne) and the
a factor of Nm/(Nm � 1). The direction of this effecteffective values of all of the parameters describing selec-
is in accord with the well-established fact that subdivisiontion. In the case of dominance, the dominance parame-
decreases the effect of dominance on fixation probabili-ter h is in effect moved toward 1⁄2 by subdivision; i.e.,
ties (Wright 1940, 1941; Slatkin 1981). It should befitness is made effectively closer to additive. For fre-
noted that this effect is not simply a matter of a reduc-quency dependence described by any polynomial in
tion in the fraction of heterozygotes. If this were theallele frequency, the effective values of all of the polyno-
sole source of the effect, one would expect a factor ofmial coefficients are altered by subdivision.
1 � Fst � 2Nm/(2Nm � 1) reduction in the effect ofThe theoretical treatment assumed that selection was
dominance. If the same degree of inbreeding wereweak in one sense, but allowed that it was strong in
achieved by, for example, brother-sister mating, whileanother sense. The requirement is that selection is weak
selection operated globally, then 1 � F would indeedcompared to drift in a subpopulation, i.e., that the prod-
be the factor by which the effect of dominance wasuct of deme size (N) and (marginal) selection coeffi-
modified. The model analyzed here differs from thatcient is always small in magnitude compared to unity.

This allows selection to be quite strong with respect to case in that competition is local to each subpopulation.
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graphically structured finite population. I. Distribution of neutralThe diffusion approximation derived here for a finite
genes and of genes with small effect. Ann. Hum. Genet. 35:

island model completely describes the trajectory of al- 411–423.
Maruyama, T., 1972b Distribution of gene frequencies in a geo-lele frequency over time in the presence of dominance

graphically structured population. III. Distribution of deleteriousor frequency-dependent selection. The results followed
genes and genetic correlation between different localities. Ann.

from the moments of the distribution of within-deme Hum. Genet. 36: 99–108.
Maruyama, T., 1972c Distribution of gene frequencies in a geo-allele frequencies. This is a beta distribution for the

graphically structured population. II. Distribution of deleteriousisland model. Under other models of subdivision this
genes and of lethal genes. Ann. Hum. Genet. 35: 425–432.

distribution may have a different form, but the moments Maruyama, T., 1974 A simple proof that certain quantities are inde-
pendent of the geographical structure of population. Theor.of the distribution nonetheless characterize the popula-
Popul. Biol. 5: 148–154.tion. These moments could be derived theoretically or

Maruyama, T., and M. Kimura, 1980 Genetic variability and effec-
measured empirically. So long as Fst is independent of tive population size when local extinction and recolonization

of subpopulations are frequent. Proc. Natl. Acad. Sci. USA 77:allele frequency and ordinary genetic drift is the only
6710–6714.stochastic force operating, these moments can be used

Nagylaki, T., 1998 The expected number of heterozygous sites in
to relate the subdivided population to an equivalent a subdivided population. Genetics 149: 1599–1604.

Nei, M., and N. Takahata, 1993 Effective population size, geneticpanmictic population even in the presence of fre-
diversity, and coalescence time in subdivided populations. J. Mol.quency-dependent selection. Evol. 37: 240–244.
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