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ABSTRACT

The probability of multilocus genotype counts conditional on allelic counts and on allelic independence
provides a test statistic for independence within and between loci. As the number of loci increases
and each sampled genotype becomes unique, the conditional probability becomes a function of total
heterozygosity. In that case, it does not address between-locus dependence directly but only indirectly
through detection of the Wahlund effect. Moreover, the test will reject the hypothesis of allelic indepen-
dence only for small values of heterozygosity. Low heterozygosity is expected for population subdivision
but not for population admixture. The test may therefore be inappropriate for admixed populations. If
individuals with parents in two different populations are always considered to belong to one of the
populations, then heterozygosity is increased in that population and the exact test should not be used
for sparse data sets from that population. If such a case is suspected, then alternative testing strategies

are suggested.

N forensic science multilocus genotype frequencies
are often estimated as products of allele frequencies.
Although this is expected to be appropriate for large
random-mating populations, especially for unlinked lodi,
itis customary to check for evidence of allelic dependen-
cies before invoking the product rule. Exact tests have
been shown to have satisfactory power, at least in com-
parison to alternative testing strategies (MAISTE and
WEIR 1995), and it was shown by ZAYKIN et al. (1995)
that power appears to increase with the number of loci
for populations with substructure. We show that a simi-
lar increase in power may not hold for admixed popula-
tions. This is a consequence of increased heterozygosity
as opposed to the decrease expected in populations
with substructure (WaLsH and BuckLETON 1988).

STATISTICAL TESTING PROCEDURES

Exact test: Suppose that the /th of L loci has alleles
Ay, where the range of 7is left arbitrary but is understood
to depend on the locus index, /. Then the product rule
expresses the frequency of the L-locus genotype, A; Ay
Ag;i Agj . . . A Ay, as the product of the frequencies of
all 2L constituent alleles, along with a factor of 2 for each
locus that is heterozygous. If this genotype is regarded
as being the gth of all possible I-locus genotypes, the
product-rule frequency is
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where the heterozygosity A, at the /th locus is equal to
one if A, A, are different alleles in the gth genotype
and is zero if they are the same. Summing over loci
gives h, = E,hg[ as the number of loci heterozygous in
the gth genotype. The population frequency of allele
A; is p;. Note that the same indices i, j are used for
different loci to simplify notation, but they are not im-
plied to be equal over loci. There is an implicit assump-
tion that ¢ = j at each locus to prevent heterozygotes
being counted twice.

With random sampling, the probability of a sample
of size n having n, copies of the gth genotype (n = X,
n,) is

TR

= n'g.

[l °

Under the hypothesis of complete allelic independence,
as expressed by the product rule in Equation 1, the
alleles sampled at each locus have independent multi-
nomial distributions. If the sample contains n; copies
of allele A/i7

Pr({n[{P})

2n!
[ 20"
it

(2n = Zn;). We assume that every locus is scored in
every individual.

The conditional probability P, of the genotype counts
given the allelic counts, if Equation 1 holds, is therefore

Pr({nﬁH{Pﬁ}) =
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The quantity & = Z,n,h, is the total number of heterozy-
gous loci in the sample and lies between 0 and nL. The
unknown allele probabilities have canceled out and, if
the hypothesis of independence is false, small values of
P, will be observed. To carry out an exact test all possible
arrays of genotype counts with the same allelic counts
as the observed data are examined. The significance
level for the test is the sum over all arrays of the values
of the conditional probability that are as small or smaller
than the value of P, for the data (Guo and THOMPSON
1992). In practice, this exact test is performed by repeat-
edly permuting the alleles at each locus separately to
form new multilocus genotypes and noting the propor-
tion of permuted data sets with a P, value as small or
smaller than that for the original data. Small values of
P, can result from values of 4 that are either smaller or
larger than that expected under allelic independence
(e.g., Table 3.1 of WEIR 1996), so the test is two sided
in terms of heterozygosity.

As the number of alleles at a locus and the number
of loci increase, it becomes more and more likely that
each multilocus genotype in a sample will occur once
only. The product over g of the factorials n,! therefore
tends to one, and this is unlikely to be changed by
permuting alleles. Permutation leaves the allele counts
n; unchanged but can change the number of heterozy-
gotes in the sample at each locus. In other words, the
probability P. for an array of genotype counts becomes
proportional to 2". Evidently the exact test tends toward
a test for heterozygosity, but in the sense that only arrays
with small values of A can lead to rejection of the hypoth-
esis implied by Equation 1. The test is now a one-sided
test for total heterozygosity. The number of heterozy-
gotes, h, has additive contributions from each locus and
so has no between-locus component, although its distri-
bution and hence its variance are affected by between-
locus dependencies. It retains an indirect ability to de-
tect some between-locus dependencies by its ability to
detect the Wahlund effect as shown below.

Goodness-of-fit tests: The original aim of testing for
independence over all alleles with the exact test is lost
when sampled genotypes are unique as the conditional
probability does not involve any direct information on
the relationships between the loci observed in the data.
Would a goodness-of-fit test for independence over ge-
notypes do any better? When every genotype in a sample
is unique, n, = 1, such a chi-square goodness-of-fit statis-
tic becomes

<=36)-

where n, is the expected count for genotype g, under

the hypothesis of allelic independence, if it is present

in the sample. This statistic does not depend on the
sample heterozygosity and is expected to increase with
the number of loci if only because the n, values will
decrease as the number of loci increases. Of course
there is the usual problem of spurious significance val-
ues with chi-square tests as the expected counts become
small.

Heterozygosity test: We have shown that for sparse
data sets, with each sampled genotype being unique,
allelic independence between loci is not addressed by
the exact test. That test can be regarded instead as
supporting the hypothesis that the total heterozygosity
h has the value expected under independence rather
than the alternative that 4 is less than expected. We
write the test as 7). Alternatively, a one-sided test can
be made against the alternative that /4 is greater than
expected. When this distinction is needed the tests will
be denoted by T, and T, and they can be performed
by noting whether the observed A value lies in the lower
or upper tail of the distribution of values found by
permuting alleles at each locus.

At each individual locus, the hypothesis that heterozy-
gosity has the value expected under allelic indepen-
dence (Hardy-Weinberg equilibrium) can be also ad-
dressed by a comparison of observed and expected
heterozygosities, resulting in a chi-square statistic with
1 d.f. This test is two-sided as both large and small
values of heterozygosity can lead to rejection. Under the
hypothesis of independent loci the single-locus statistics
can be added together. Alternatively, allelic permuta-
tion can be carried out separately for each locus and
empirical significance levels generated for tests based
on h. In this case the empirical significance levels of
each of the tests would have to be adjusted because of
the multiple comparisons.

EVETT and WEIR (1998) noted that total heterozygos-
ity tests are not tests of the Hardy-Weinberg hypothesis.
It is possible that individual homozygote frequencies
could depart considerably from expectation in a way
that the sum of homozygote frequencies would still be
near its expected value. Alternatives such as the Wah-
lund effect would produce a situation where all the
homozygote proportions increase relative to expecta-
tion so that this type of effect should be detected by
this test.

Variance-of-heterozygosity test: Sums of single-locus
heterozygosities do not contain information about be-
tween-locus dependencies, but there is information in
the variance of the single-locus heterozygosities. BROWN
et al. (1980) and CHAKRABORTY (1984) pointed out that
the variance over genotypes of the number of heterozy-
gous loci has a value that depends on between-locus
associations. Those authors considered random-mating
populations where linkage disequilibrium is the only
dependency, and YANG (2000) extended this work to
allow for nonrandom mating populations and Hardy-
Weinberg disequilibrium. The variance-of-heterozygos-
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ity test can be used to test for the presence of linkage
disequilibrium among loci.

For a sample of n genotypes the variance-of-heterozy-
gosity test statistic, V; is given by

V: Egnghzf _ h2
nin—1)

n—1

The statistic V' is affected by both within-locus and all
pairwise between-locus associations. BROWN et al. (1980)
and YANG (2000) appealed to asymptotic normality to
generate a significance level, and Yang mentioned the
possiblity of performing allelic permutations at each
locus separately to generate the distribution of the test
statistic under the null hypothesis of complete allelic
independence. The testis conducted as a one-sided test.

GENETIC MODELS

Structured populations: An idealized model of popu-
lation structure either has all current populations de-
scending from a reference population (FALCONER 1960)
in a star phylogeny or has a series of bifurcations of
populations over time so that there is a tree of popula-
tions. In either case, it may be supposed that a large
ideal population consists of a series of subpopulations
in which allelic frequencies are different because of
genetic drift. Consider such a population in which a
proportion o, of individuals belong to the kth subpopu-
lation. The frequency of allele Ais p;, in the kth subpop-
ulation and is p; = Ekakp,ik in the whole population.

Even if there is allelic independence within subpopu-
lations, the Wahlund effect causes a dependence to exist
at the population level whenever the allele frequencies
vary among subpopulations. One way to quantify this
effect is by the difference between actual and expected
heterozygosities in the whole population,

H—- H = —§[: E %ak(plik = i)’ (2)

when there is allelic independence within each popula-
tion. Note that H is the proportion of heterozygous
genotypes in the population, whereas previously % has
denoted a count. The difference H — H, is negative
and increases in absolute value as the variance in allele
frequencies increases. In the idealized population, this
increases over time due to drift. For the null hypothesis
that the heterozygosity is equal to the value expected
under allelic independence, power will therefore in-
crease both with time and with the number of loci, and
this was the situation investigated by ZAYKIN et al. (1995).
The alternative hypothesis is that there is less heterozy-
gosity than expected.

The Wahlund effect also produces between-locus de-
pendencies. Linkage disequilibrium in the whole popu-
lation, or the difference between the joint frequency of
pairs of alleles at different loci and the product of their
separate frequencies, is given by

Pr(AAr) — pupr; = %ak(m = ) (prj, — prj)

when there is linkage equilibrium within the subpopula-
tions (ProuT 1973). This quantity can be positive or
negative.

If the whole population now mates at random, allele
frequencies remain at p;. Single-locus genotype frequen-
cies become products of these allele frequencies. The
population heterozygosity equals the value expected
under within-locus allelic independence, so goodness-
of-fit tests for heterozygosity, or exact tests for allelic
association in sparse data sets, are not expected to give
significant results. Linkage disequilibria will decay at a
rate depending on the recombination fractions between
loci and can be detected by tests at each pair of loci or
by the test of BROWN et al. (1980) over all loci.

Admixed populations: A model for human popula-
tions that may be more appropriate for recent history
has previously distinct populations admixing. Such ad-
mixture also creates dependencies among allele fre-
quencies, but in a way different from that of the Wah-
lund effect. The population structure model assumed
that subpopulations remained distinct and provides re-
lationships between genotype and allele frequencies in
the whole population. The admixture model assumes
the modification of some subpopulations by the influx
of alleles from other subpopulations.

A simple example supposes the parental generation
to be composed of two random-mating populations,
indexed by k = 1, 2, in which the frequencies of alleles
Ajatlocus lare p;. In the next generation, a proportion
my, of the individuals in the admixed population have
both parents in population k, and a proportion 2my
have one parent in each of populations k and %'. The
offspring genotype proportions in the admixed popula-
tion are, therefore,

Pr(A;Ap)., = mllﬁ%’, + le‘zi)hll)li2 + 7”22/121

Pr(AhAlj)a = 27”11[715,1)1], + lez([’u,l’[h + I)ljlph‘g) + QWzZﬁle)zji_,, i 7 j,
and the allele frequencies are
b, = (myy + mm)ﬁzq + (g + %2)?52-

It is convenient to introduce the quantities m;, k£ = 1,
2 as the probabilities of a random allele in the admixed
population having come from parental population k, so
m = my + mp and e = myp + mew. We can define
an assortative-mating parameter M, which measures the
tendency for within-population mating,

my = "‘T% + "ﬂ'l’TTgM
leg = 2'1T1’T|'2 - QTrqugM
Mo9 = TI'% + ’1T11T2M,

so that min(—mm/my, —mo/m) = M = 1. The expected
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TABLE 1

Powers of exact, heterozygosity, and variance of heterozygosity tests for data simulated to show
the effects of population substructure

5 alleles per locus

10 alleles per locus

No. Heterozygosity Var. hetero. Heterozygosity Var. hetero.
0 loci Exact P. Ty \%4 Exact P. T, \%
0.00 1 0.04 0.04 0.05 0.05 0.05 0.06
2 0.04 0.06 0.04 0.06 0.05 0.05
3 0.04 0.05 0.04 0.06 0.06 0.04
4 0.04 0.05 0.05 0.04 0.04 0.05
10 0.06 0.06 0.06 0.05 0.05 0.05
0.01 1 0.06 0.08 0.05 0.07 0.10 0.06
2 0.07 0.09 0.06 0.14 0.14 0.07
3 0.10 0.10 0.06 0.19 0.19 0.06
4 0.12 0.12 0.06 0.20 0.20 0.08
10 0.19 0.19 0.08 0.30 0.30 0.08
0.03 1 0.09 0.11 0.06 0.12 0.26 0.11
2 0.21 0.25 0.06 0.42 0.42 0.13
3 0.33 0.35 0.08 0.55 0.55 0.14
4 0.39 0.39 0.09 0.67 0.67 0.14
10 0.57 0.57 0.09 0.94 0.94 0.15
0.05 1 0.15 0.31 0.09 0.30 0.58 0.16
2 0.30 0.49 0.12 0.80 0.80 0.20
3 0.65 0.66 0.15 0.91 0.92 0.22
4 0.78 0.77 0.16 0.96 0.96 0.24
10 0.98 0.98 0.20 1.00 1.00 0.28
0.10 1 0.49 0.76 0.13 0.77 0.89 0.38
2 0.85 0.93 0.20 1.00 0.99 0.41
3 0.99 0.99 0.25 1.00 1.00 0.44
4 1.00 0.99 0.29 1.00 1.00 0.49
10 1.00 1.00 0.42 1.00 1.00 0.56

Var. hetero., variance in heterozygosity.

frequency of A; Aj; heterozygotes at locus [/ in the ad-
mixed population is given by

Pr(AliAlj)e = 2“%[911,[71;'1 + 2“1“2([3151?!/2 + ;bg,-lj?ﬁ?) + Qﬂ:ﬁp/iypljy'

Thus the difference between actual and expected het-
erozygosities at locus [ is

H— H.= —Mmmy X (pi, — pu)* (3)
i

Equation 3 shows that a preference for within-popula-
tion matings, M > 0, will result in fewer heterozygotes
than expected. The exact test for allelic independence,
acting as a one-sided test for heterozygosity, should
therefore detect such assortative mating. However, if
M < 0 the exact test will not perform well.

Population dominance: A quite different situation
arises when there is some “dominance” in population
assignment. If individuals with either one or two parents
in population k are assigned to that population, then
there will be an excess of heterozygotes in that popula-
tion. For the admixed population considered in the last
section, suppose that individuals with both parents from
population 1 are considered to belong to population 1
but individuals with at least one parent in population

2 are considered to belong to population 2. This may
be the situation in New Zealand where population 1
represents Caucasians and population 2 represents
Maoris.

Among the population 2 members of the admixed
population, homozygote and allele frequencies for A,
at locus [ are

¥ — 2m12;blill7/i2 + %217%2

Pr(A;A;)

2myy + My

mgpy, + (g + mag) Py,
2myy + My .

li

This leads to the following expression for the difference

between actual and expected heterozygosities within the

population 2 component of the admixed population:
9

9
H* — H¥ = (7) E(ﬁhl - 1711-2)2'

l—m“

(4)

This expression is always positive, so there are more
heterozygotes than expected and the exact test will not
be appropriate for multilocus data although it will still
be satisfactory for each locus separately. The population
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1 component of the admixed population is wholly de-
scended from population 1 and has no departures from
allelic independence if none were within that population.

NUMERICAL RESULTS

Structured populations: Simulations of the drift pro-
cess were performed for 10 populations of size N =
1000 and for L = 1, 2, 3, 4, and 10 loci each with 5 or
10 equiprobable alleles per locus. The power of the
exact test was found for samples of n = 200 individuals
from the whole population after ¢ = 0, 20, 60, 103, and
213 generations—corresponding to population struc-
ture parameter, 6 = 1 — (1 — 1/2N)’, with values of
0.00, 0.01, 0.03, 0.05, and 0.10. The power was also
found for test 7, on the basis of values of the total
heterozygosity h. For each set of simulated data, the
exact and heterozygosity tests led to rejection if the P.
or h values were among the smallest 5% of the values
found from 2500 sets of data formed by permuting al-
leles separately at each locus. Powers were calculated as

the proportions of rejections from 500 simulated data
sets. The standard errors for the estimated powers can
be calculated assuming sampling from the binomial dis-
tribution. Since 500 replications were used, the standard
errors for the estimated powers are <0.0224. The results
are shown in Table 1.

The power for both tests increases with 0, with the
number of loci, and with the number of alleles per locus,
as found previously by ZAYKIN et al. (1995). However, as
might be expected, the power was somewhat greater for
the heterozygosity test as the data became sparser.

The relationship between the two tests is shown graph-
ically in Figure 1, as plots of In(F,) against 4. For sparse
data, the relationship between these two statistics becomes
linear, reflecting the dependence of P. only on - among
permuted data sets. Even for three loci and samples of
size 200, the data are sufficiently sparse that the exact test
does not detect between-locus dependencies.

Admixed populations: Two of the simulated popula-
tions described in the previous section were allowed to
contribute equally to an admixed population, my; =
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TABLE 2

Powers of exact, heterozygosity, and variance of heterozygosity tests for data simulated to show the effects
of population admixture with random mating and population dominance

Admixture: random mating

Admixture: population dominance

Exact: Heterozygosity Var. hetero.: Exact: Heterozygosity Var. hetero.:
No. I — I —
0 loci P, Ty T Vv P, T, T Vv
0.00 1 0.04 0.04 0.05 0.04 0.04 0.05 0.03 0.03
2 0.05 0.03 0.04 0.04 0.07 0.07 0.04 0.04
3 0.04 0.04 0.04 0.04 0.06 0.07 0.04 0.04
4 0.04 0.04 0.03 0.06 0.06 0.06 0.03 0.05
10 0.07 0.07 0.03 0.04 0.07 0.07 0.05 0.06
0.01 1 0.05 0.03 0.05 0.05 0.05 0.03 0.04 0.02
2 0.04 0.04 0.05 0.04 0.03 0.03 0.05 0.05
3 0.04 0.04 0.03 0.06 0.03 0.03 0.05 0.05
4 0.04 0.04 0.04 0.06 0.03 0.03 0.07 0.06
10 0.04 0.04 0.04 0.06 0.02 0.02 0.08 0.06
0.03 1 0.05 0.04 0.05 0.05 0.05 0.02 0.07 0.05
2 0.06 0.04 0.06 0.06 0.02 0.02 0.11 0.05
3 0.03 0.03 0.04 0.05 0.01 0.01 0.11 0.06
4 0.05 0.05 0.03 0.05 0.01 0.01 0.11 0.08
10 0.05 0.05 0.05 0.06 0.00 0.00 0.19 0.06
0.05 1 0.05 0.05 0.04 0.04 0.05 0.02 0.08 0.09
2 0.06 0.05 0.04 0.06 0.01 0.01 0.13 0.10
3 0.04 0.04 0.03 0.07 0.01 0.01 0.15 0.10
4 0.04 0.04 0.04 0.06 0.00 0.00 0.21 0.09
10 0.05 0.05 0.05 0.08 0.00 0.00 0.43 0.08
0.10 1 0.04 0.02 0.04 0.05 0.15 0.00 0.18 0.11
2 0.09 0.04 0.05 0.07 0.01 0.00 0.27 0.15
3 0.04 0.04 0.04 0.08 0.00 0.00 0.40 0.17
4 0.05 0.05 0.05 0.09 0.00 0.00 0.49 0.14
10 0.06 0.06 0.05 0.29 0.00 0.00 0.81 0.08

my = mey = 0.25. One generation of random mating
was simulated and the exact test, the total heterozygosity
tests, and the variance of heterozygosity test were per-
formed using a sample of n = 200 genotypes. The pow-
ers were calculated as in the previous section and results
are shown in Table 2. The simulations were repeated
using samples of size 500 and the results for 6 = 0.10
are shown in Table 3.

As expected, the heterozygosity test has power equal
to the significance level since all single-locus heterozygo-
sities are equal to their expected values. There is linkage
disequilibrium, however, so the variance of heterozygos-
ity has power that increases with 6. The power does
increase with 0 for the exact test similar to the variance
of heterozygosity test until the number of loci becomes
so large (greater than two) that data sparseness reduces
the test to one of heterozygosity.

Admixed populations with population dominance
were also simulated by setting my; = 0 and myy = myy
0.33. The exact test, the total heterozygosity tests, and
the variance of heterozygosity test were performed using
samples of size 200. The powers calculated from 500
replications are shown in Table 3.

There is a discontinuity in the results of the exact test

for admixture under random mating between one and
two loci shown in Table 3. For a randomly mating ad-
mixed population there will be little or no within-locus
association, but substantial between-locus association.
Thus the exact test for a single locus has power 0.05.
However, the exact test can detect between-locus associ-
ation for two or more loci if the sample size is sufficiently
large. A sample size of n = 500 will detect the between-
locus association for two loci with a power of 0.35. As
the number of loci increases for a fixed sample size
the genotype array becomes increasingly sparse and the
power is seen to drop back to 0.05.

The powers of the heterozygosity test 77, are less than
the significance level while the powers of the T tests
increase with 0, since the heterozygosity tests are one-
sided. The exact test is similar to the heterozygosity test
T except for one-locus tests. This is because when only
one locus was used in the test, the genotype arrays were
not sparse and the exact test is in effect a two-sided test.

The variance-of-heterozygosity test statistic is affected
by both within- and between-locus associations. In the
case of population dominance, within-locus and be-
tween-locus associations have opposite effects on V.
When the number of loci used is small, V is affected
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TABLE 3

Powers of exact, heterozygosity, and variance of heterozygosity tests for data simulated to show
the effects of population admixture with random mating and population dominance with
genetic distance between parental populations (0) of 0.1

Admixture: random mating

Admixture: population dominance

Exact: Heterozygosity Var. hetero.: Exact: Heterozygosity Var. hetero.:
No. —— —
n loci P, Ty T 14 P, Ty T Vv
200 1 0.04 0.02 0.04 0.05 0.15 0.00 0.18 0.11
2 0.09 0.04 0.05 0.07 0.01 0.00 0.27 0.15
3 0.04 0.04 0.04 0.08 0.00 0.00 0.40 0.17
4 0.05 0.05 0.05 0.09 0.00 0.00 0.49 0.14
10 0.06 0.06 0.05 0.29 0.00 0.00 0.81 0.08
500 1 0.06 0.07 0.04 0.05 0.51 0.00 0.38 0.30
2 0.04 0.05 0.04 0.06 0.03 0.00 0.57 0.33
3 0.09 0.07 0.06 0.09 0.00 0.00 0.69 0.30
4 0.07 0.07 0.05 0.14 0.00 0.00 0.81 0.22
10 0.05 0.05 0.06 0.58 0.00 0.00 0.98 0.10

mostly by the within-locus association. As the number
of loci increases, the number of pairwise between-locus
associations increases and these balance out the effects
of within-locus associations. As a result, the empirical
power first increases and then decreases as the number
of loci increases.

DISCUSSION

Care is needed in applying tests for allelic indepen-
dence to check on the validity of the product rule in
Equation 1. For small numbers of loci, when multilocus
genotypes can occur several times in a sample, the exact
test is good for associations both within and between
loci.

As the number of loci increases, however, the exact
test becomes a test of total heterozygosity, but it offers
no information on between-locus associations. The nu-
merical work of ZAYKIN et al. (1995) for association
generated by population structure showed increased
power for increased numbers of loci, but this reflected
only the decreased heterozygosity. The increase in be-
tween-locus association did not affect the exact test when
each sampled genotype was unique.

For populations undergoing random mating follow-
ing amalgamation of a set of divergent subpopulations,
i.e., admixture, there is little point in performing a test
for overall heterozygosity or in performing the exact
test for sparse data sets. There are no within-locus associ-
ations, and the between-locus associations will not con-
tribute to these test statistics. This random-mating situa-
tion is the one envisaged by BROwWN et al. (1980), so

their among-locus variance of heterozygosity appears to
be an appropriate test statistic. Any test that detects less
heterozygosity than expected will not be appropriate
with population dominance and increases in heterozy-
gosity.

Very helpful comments were made by the reviewers. This work was
supported in part by a New Zealand Institute of Environmental and

Scientific Research grant to B. Law and U.S. National Institutes of
Health grant GM 45344 to North Carolina State University.
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