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ABSTRACT
Mutation rate is an essential parameter in genetic research. Counting the number of mutant individuals

provides information for a direct estimate of mutation rate. However, mutant individuals in the same
family can share the same mutations due to premeiotic mutation events, so that the number of mutant
individuals can be significantly larger than the number of mutation events observed. Since mutation rate
is more closely related to the number of mutation events, whether one should count only independent
mutation events or the number of mutants remains controversial. We show in this article that counting
mutant individuals is a correct approach for estimating mutation rate, while counting only mutation events
will result in underestimation. We also derived the variance of the mutation-rate estimate, which allows
us to examine a number of important issues about the design of such experiments. The general strategy
of such an experiment should be to sample as many families as possible and not to sample much more
offspring per family than the reciprocal of the pairwise correlation coefficient within each family. To
obtain a reasonably accurate estimate of mutation rate, the number of sampled families needs to be in
the same or higher order of magnitude as the reciprocal of the mutation rate.

Asignificant fraction of the genetic research of the direct estimate of the rate of mutation. These experi-
ments may be time consuming, but the statistical methodlast century has been to illuminate various aspects

of mutation (De Vries 1901/1903; Luria and Delbrück used for estimating mutation rate is straightforward and
should not be controversial. It appeared indeed to be1943; McClintock 1950; Keightley and Eyre-Walker

1999). This is natural because mutations are the ultimate the case for early geneticists (Bridges 1919; Wright
and Eaton 1926; Fisher 1930; Dobzhansky andsource of genetic variation upon which natural selection

and other evolutionary forces can act (Kimura 1983; Wright 1941). However, the increasing number of ob-
servations that some mutant offspring share the sameLynch and Hill 1986; Johnson 1999). Early experi-
mutation has prompted many contemporary geneticistsments on mutation rate include those by Castle (1905,
to reconsider how mutation rate should be estimated1929), Muller (1920, 1928), and Morgan (1950). To
(Engels 1979; Russell and Russell 1996; Neel 1998;date, extensive mutation data, from either mutation
Thompson et al. 1998).experiments or surveys, are available for many species,

A clustered mutation means that two or more progenyparticularly fruit flies (Schalet 1960; Crow and Sim-
of a family inherit the same mutation (Purdom et al.mons 1983), mice (Favor and Neuhauser-Klaus 1994;
1968; Hartl and Green 1970; Favor and Neuhauser-Russell and Russell 1996), and humans (Neel and
Klaus 1994). Mutation clusters have been widely ob-Rothman 1978; Cooper and Krawczak 1993; Crow
served and are now considered as general rather than1993, 1999). Due to the importance of mutation rate,
as the exception (Hall 1988; Drost and Lee 1995;such experiments will be likely to continue in the future,
Mohrenweiser and Zingg 1995; Huai and Woodruffwith more and more details being revealed by the advent
1997; Paashuis-Lew and Heddle 1998; Lewis 1999;of new molecular techniques (Kondrashov and Crow
for reference, see Woodruff et al. 1996). The most1993; Fu 1994).
important issue created by mutation cluster is how toIn a typical mutation experiment, some aspects of the
count the mutations for the purpose of estimating muta-progeny of well-characterized parents are examined. A
tion rate. Several ways of counting have been proposed.mutant is identified if an offspring differs from its par-
One is to count each mutant offspring as one mutation,ents in a way that can be explained only by invoking a
disregarding whether or not the mutation is sharedmutation (Auerbach 1959; Drake 1991, 1993). When
(Haldane 1935; Spencer and Stern 1948; Auerbacha large number of offspring of mating pairs have been
1962; Muller et al. 1963; Combes et al. 1989; Huaiexamined, the proportion of mutant progeny yields a
1997). The second is to count each cluster as only one
mutation (Russell 1977; Shukla et al. 1979; Heddle
et al. 1996; Nishino et al. 1996). The third is to count
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but in many cases this third choice is made because
only the induced mutations in limited stages of the life
cycle are measured (Mason et al. 1987; Arrault et al.
2002). Various arguments have been put forward to
support one method or the other (Russell and Russell
1992, 1996; Huai and Woodruff 1998a,b; Heddle
1999), but no resolution has been obtained to date
(Thompson et al. 1998; Stuart and Glickman 2000).

In this article, we show for the first time that counting
each mutant as one mutation regardless of cluster is
the correct way to obtain an unbiased estimate of the
mutation rate. Of equal significance is the formula for
the sampling variance of the estimator, which does not
require knowing all family sizes. We also discuss two
important issues in designing a mutagenesis experi-
ment, the sampling strategy and sample size require-

Figure 1.—An example of mutations and their relationshipsment. Furthermore, we reanalyze several large data sets with hi and mj.and show that some of the results in mutation rate
estimates have an undesirably large variance.

The equivalence of this counting to that of EquationTHEORY
1 can be proved as follows. Let Xij be the index variable

Counting mutations: Suppose a total of m haploid that takes value 1 if the ith mutation is inherited by the
families are studied in an experiment. Let ni be the jth sequence and value 0 otherwise. Figure 1 (see Table
number of offspring examined in the ith family and n � 1 also) gives an example, from which we can easily see
n1 � . . . � nm be total sample size. Considering the lth the relationship between Xij and hi and mj as
family, an individual is a mutant if it differs from its
parent(s) by at least one mutation. It is important to hi � Xi1 � . . . � Xinl

(5)
realize that mutations in different mutant individuals

mj � X1j � . . . � XIj . (6)are not necessarily distinct. Let Kl be the total number
of mutations counted as follows: each mutation that is

It follows thatinherited by k individuals (more precisely k sequences)
is counted k times. That is, suppose that there are in total Kl � h1 � . . . � hII independent mutation events, and the ith mutation
is inherited by hi sequences. Then

� �
I

i�1
�
nl

j�1

xij

Kl � h1 � . . . � hI. (1)

� �
nl

j�1
�

I

i�1

xijNote that if there is only one mutant for each mutation
event, K is simply the number of mutant individuals.

The total number of mutations in the experiment is � m1 � m2 � . . . � mnl
.

defined as
(7)

One special case deserves mentioning. When only
K � K1 � . . . � Km . (2)

one sequence is examined per family, each mutation
event will be counted exactly once. Therefore, K inA mutation is said to be size i if there are i mutants

in the sample sharing that mutation. Let cl be the num- this situation is equal to the number of independent
ber of clusters of mutations of size l. Then it is easy to mutations in the experiment.
see that Representing K by Equation 4 provides a convenient

basis for studying its statistical properties, and we discussK � c1 � 2c2 � . . . � LcL , (3)
the mean and variance below.

where L is the maximum cluster size. The mean and variance of K: Let R represent the
Consider the lth family again. Although Equation 1 number of DNA replications between two successive

indicates that K is counted by considering each muta- generations and �i be the mutation rate for the ith cell
tion at a time, it can also be counted by considering replication. Let
one sequence at a time. Let mj be the number of muta-

�i � �1 � . . . � �i . (8)tions that occurred in individual (sequence) j. Then

Kl � m1 � m2 � . . . � mnl
. (4) Then � � �R is the mutation rate per generation per
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TABLE 1

An example of mutations and their relationships with
hi and mj as shown in Figure 1

Values of Xij

Sequences 1 2 3 mjMutation:

1 1 0 0 1
2 1 1 0 2
3 1 0 1 2

hi 3 1 1 Kl � 5

sequence (Figure 2). We assume that R is a fixed number, Figure 2.—Relationship between two sequences in a family.
which is appropriate for experiments in which individuals
sampled are of the same sex and about the same age.

We assume that the number of mutations at replica-
tion i follows the Poisson distribution with both mean fore, whether a single gene is considered or multiple
and variance of �i. Thus for any j sequence over R inde- genes are pooled, �̂ is an unbiased estimator of �.
pendent cell divisions, We now consider the variance of �̂. Consider first the

case in which nl � 1 for all i. As we mentioned earlier,E(mj) � Var(mj) � � , (9)
K is equivalent to the number of mutation events. Since
the mutations in different families are independent, wewhere E( ) and Var( ) stand for expectation and vari-
haveance, respectively. We also assume that mutations in

different families are independent.
Var(K) � �

l
Var(Kl) � n� . (13)Since

E(Kl) � �E(mj) (10) Therefore

� nl � , Var(�̂) � Var(k)/n2 � �/n . (14)

it follows that In general, we have

E(K) � �
l
E(Kl) Var(Ki) � �Var(mi) � �

i�j

Cov(mi , mj)

� ��
l
nl � n� � φ�

l
nl(nl � 1), (15)

� n� . (11) where
This equation suggests that an unbiased estimator of � is φ � Cov(mi , mj).

�̂ � K/n , (12) So φ is the covariance between mi and mj, that is, the
covariance of the numbers of mutations in any pair ofwhich is exactly the way the mutation rate has been
sequences from the same family. Thereforeestimated in some empirical studies (e.g., Haldane

1935; Spencer and Stern 1948; Auerbach 1962;
Var(K) � n� � ���

l
nl(nl � 1).

Muller et al. 1963; Woodruff and Thompson 1992;
Huai 1997; Drake et al. 1998; Thompson et al. 1998).

And thenCounting each cluster as one mutation or counting only
independent mutations will result in underestimation

Var(�̂) �
�

n
�

���lnl(nl � 1)
n2

, (16)of the true mutation rate; in some cases the underesti-
mation may well be a few fold (Paashuis-Lew and Hed-
dle 1998; Selby 1998a,b; Thompson et al. 1998; Heddle where � � φ/� is the correlation coefficient between

the numbers of mutations in two different sequences1999). Since the mutation rate � in this article is defined
as the sum of mutation rates over cell replications that from the same family.

Two special cases are illuminating. The first is thatare not necessarily equal, it does not matter if � repre-
sents the rate of a single gene or multiple genes. There- an equal number of offspring in each family are exam-
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ined, i.e., nl � c, l � 1, . . . , m. It follows from Equation it is thus the proportion of mutations that are shared
by two sequences from the same family.16 that

Let rl,ij be the number of shared mutations for se-
Kl � K/(mc)

quences i and j in the lth family. It thus follows that
and

E[rl,ij] �
�E(t)

�
. (27)

Var(�̂) �
1
m �1c � �

c � 1
c ��. (17)

The above equation suggests that an unbiased estima-
The second case is that all the offspring of each family tor of �E(t) is
are examined. Since offspring number of a family is
typically not a predetermined quantity, we have �̂E(t) �

2

�lnl(nl � 1) �
l

�
i�j

rl,ij , (28)

E(K) � ��E(nl) (18)

where nl(nl � 1)/2 is the number of pairs of sequencesVar(K) � ��E(nl) � φ�E[nl(nl � 1)]. (19)
for all the sample from the lth family. Suppose that

The most common practice is to assume that offspring there are in total L observed clusters and ci is the size
number of a family follows a Poisson distribution with of cluster i. The above estimator can then be written as
mean f. Then

�̂E(t) � �L
i�1ci(ci � 1)

�lnl(nl � 1)
. (29)E(K) � mE(Kl) � mf� (20)

Var(K) � mVar(Kl) � mf� � mφf 2. (21) Substituting this into Equation 16 yields an unbiased
estimate of the standard error of �̂ asSo we have

�̂ �
1
n �K � �

L

i�1

ci(ci � 1) . (30)Var(�̂) �
1
m �1f � ��� . (22)

Estimating the sampling variance: Since �̂ is an unbi- Since many experiments on mutation rate were done
ased estimator, the precision of estimation is thus deter- over the many decades, detailed cluster sizes may not
mined by its variance. To compute the variance of �̂, be available. So the above formula is difficult to apply
we need to know the value of the covariance between in many situations. However, boundaries of the standard
two mutations (see Figure 2). error of �̂ can be obtained on the basis of partial infor-

Suppose that sequence i and sequence j shared a mation as follows.
common ancestor t cell replications ago. Then we can If only the number S of singletons L and K is known,
express mi and mj as then the minimum value attainable by �ci(ci � 1) is (K �

S)(K � S � L)/L, corresponding to the situation inmi � rij � ri (23)
which all clusters are of equal size (K � S)/L. A lower-

mj � rij � rj , (24) bound of the standard error is thus given by

where rij represents the number of mutations in the
�min �

1
n �K �

(K � S)(K � S � L)
L

. (31)common ancestor (shared mutations), and ri and rj are
the numbers of mutations in sequences i and j, respec-

Let cmin and cmax be the minimum and maximum clus-tively, since the separation from their common ancestor
ter sizes, respectively. Then we have 2 	 cmin 	 cmax 	(Figure 2). Conditional on the t value, rij , ri, and rj are
K � S � cmin(L � 1). The maximum value of �ci(ci � 1)independent Poisson variable with means equal to �t ,
corresponds to the situation in which there are as many� � �t , and � � �t , respectively. Therefore
clusters of cmin size as possible. An upper bound of the

E(mimj) � Et[E(r 2
ij � rij(ri � rj) � rirj)] standard error is therefore given by

� Et[�t � � 2
t � 2�t(� � �t) � (� � �t)2]

�max �
1
n

√K � cmin(L � b) � bcmax(cmax � 1) , (32)
� Et[�t � �2]

� �E(t) � �2 . (25) where b � (K � S � cminL)/(cmax � cmin).
We can also construct a confidence interval for esti-It follows that φ � E(mimj) � E(mi)E(mj) � �E(t). So φ is

mating �̂. Note that �̂ is the average of many variablesthe expected number of shared mutations between two
with the same mean and variance and 0 or small covari-sequences from the same family. Since the correlation
ance; therefore, by the central limit theorem of proba-coefficient � is defined as
bility, �̂ can be approximated by a normal distribution
with mean � and variance �2. The 95% confidence inter-� �

�E(t)

�
, (26)

val of �̂ is estimated as (�̂ � 1.96�̂, �̂ � 1.96�̂).
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TABLE 2

Examples of estimates of mutation rate and standard error

Species K S L n �̂ (10�4) �̂ (10�4)

Drosophila melanogaster
Sex-linked lethala 3,616 2,852 69 1,955,989 18.487 0.695
Autosomal lethalb 194 118 18 10,166 190.83 25.69
Visible in malesc 34 19 3 490,118 0.694 0.234
Visible in femalesc 17 4 2 340,306 0.500 0.283

Mice
SLT in malesd 558 69 8 1,487,177 3.752 1.885
SLT in femalese 8 1 2 211,052 0.379 0.292

a Details in tables of Mason et al. (1985) and Woodruff and Thompson (1992).
b Details in Schalet (1960), Shukla et al. (1979), Woodruff et al. (1996), and also in Table 3 of Thompson

et al. (1998).
c Schalet (1960) and Shukla et al. (1979); see also Table 3 of Thompson et al. (1998).
d Favor and Neuhauser-Klaus (1994), Russell and Russell (1996), Drost and Lee (1995, 1998), and

Selby (1998a,b).
e Russell (1964), Russell and Russell (1992), and Selby (1998a,b).

Even though the mutation rate estimates of male and assumption of Bernoulli (Poisson) distribution due to
premeiotic mutation events. Even though his formulasfemale mice have a not so small variance, we note that

the mean ratio of the mutation rate estimates of mouse appear to be more influential than Muller’s, especially
in Drosophila mutagenesis involving transposable ele-males over mouse females is 10 in Table 2, compared

to the value of 2 in Chang et al. (1994). The sample ments (Margulies et al. 1986; Ehling and Neuhauser-
Klaus 1988; Brown et al. 1989; Badge and Brookfieldsize for female mice in the specific locus test (SLT) is

far below that for male mice. Thus cluster mutations in 1998), most of his conclusions and parameter estima-
tions are not relevant to the premeiotic cluster muta-female mice may well be underestimated or not recov-

ered. More experiments are needed for a specific locus tions.
Sampling strategy: Since �̂ is an unbiased estimatortest of female mice.

of �, sampling strategy should aim at reducing the vari-
ance of the estimate. When to sample and how to sample
both play important roles in determining the variance.DISCUSSION
Before we examine these two issues in turn, we note

Relation to others’ work: Muller (1952, 1962) pre- that the best possible strategy is to examine as many
sented an estimator of the standard error of �̂ as �̂ � families as possible but only one sequence per family.
q(1/n)√�L

i�1ci(ci � 1) (q � 1 � �̂, and singletons are This sampling strategy will minimize the sampling vari-
considered as special cases of cluster mutations), which ance for a fixed total number of individuals examined
is close to but tends to underestimate �̂ compared with (compare Equation 13 with Equation 16). Apparently
Equation 30 of this article. The derivation of this for- this strategy is neither practical in most situations for
mula was never given, but Muller appeared to have multicellular organisms nor possible in somatic or bacte-
obtained this formula with the assumption that the pre- ria mutagenesis (Luria and Delbrück 1943; Heddle
meiotic mutations are not common; his brief explana- 1999; H. Huai and Y.-X. Fu, unpublished results). There
tion of the formulas suggested that it may be the result are good reasons for choosing large family sizes in cer-
of a compound or generalized Poisson process, which tain situations. For example, it is important to know
is the sum of independent Poisson variables. the value of � for the purpose of understanding the

Engels (1979) also gave formulas for both mean and clustering phenomenon of mutations, and � can be
variance of mutation rates when cluster mutations are estimated better with larger family sizes. Another reason
present. He focused mainly on a clustering model vio- favoring larger family size is that there may be a nearly
lating homogeneity of mutation probabilities among fixed amount of effort or expense for each family
different parents. Engels visualized a conceptual two- screened regardless of its size.
step experiment. The first step consists of choosing from It is clear from the variance equation (16) that the
a pool of possible mutation rates for all different par- best sampling time is the one that minimizes the correla-
ents. The second step is the independent Bernoulli sam- tion coefficient � between any pair of progeny within a
pling within each family. So Engels did not address family. Apparently, this indicates that the best time to

sample is right before somatic and germ-line differentia-the more fundamental clustering model that violated
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TABLE 3

The variation coefficient � (� � �̂/�̂) when all the m families are of the same size f and when � � 0.10

Family size (f )

m 
 u 1 5 10 50 100 1,000 10,000

0.01 10.000 5.292 4.359 3.435 3.302 3.176 3.164
0.1 3.162 1.673 1.378 1.086 1.044 1.004 1.000
1 1.000 0.529 0.436 0.344 0.330 0.318 0.316
3 0.577 0.306 0.252 0.198 0.191 0.183 0.183
10 0.316 0.167 0.138 0.109 0.104 0.100 0.100

tion in multicellular species when germ cell number is f (or cmax) � ��1 , the further increase of mean family
size does not help to reduce the variance much (seesmall. Also note that males, especially older males in

many species, usually have much more germ cell divi- Table 3 and Figure 3). Therefore a reasonable strategy
is to examine as many progeny per family as possiblesions than females have; hence it may be possible that

the correlation coefficients � are much lower in males, but not much more than ��1 .
Because of the important role of � in the estimate ofespecially in older males.

Given that the sampling time is determined, that is, mutation rate and genetic counseling (Hartl 1971;
Wijsman 1991; Young 1991), it is useful to obtain an� is fixed, how many individuals to sample from each

family depends on the value of �. To demonstrate, con- estimate of � from experimental data (Van Essen et
al. 1992; Cooper and Krawczak 1993; Bridges 1994;sider the case where nl � cmax � f, l � 1, . . . , m or that

family size follows Poisson distribution. We note from Zlotogora 1998). From Equation 29, we can estimate
�̂E(t) byboth Equations 17 and 22 that the variance of the esti-

mate of mutation rate is approaching
�̂E(t) � �L

i�1ci(ci � 1)
(m � 1)�2

f � n(f � 1)
, (34)1

m
�̂E(t) (33)

where f is the mean family size and �2
f is the sampling

variance of the family size, i.e.,with an increasing and large enough family size. Once

Figure 3.—The total sampled family
number is fixed at m � 1.00/�, and all
the m families are of the same size f. The
controlled family sizes vary from 1.0 to 100
to show their effects on the variation coeffi-
cient of mutation rate estimation.
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a useful experiment for estimating mutation rate should
�2

f �
1

m � 1 �
i
(ni � f )2 (35) examine at least as many families as the reciprocal of

the mutation rate (Table 3, Figures 3 and 4). This con-
clusion will reintroduce the problem of how to avoid� 1

m �
i
n2

i � f 2 . (36)
preexisting mutations if the sampled family number is
at least as large as the reciprocal of the mutation rate.

So � can be estimated by
Can we find a way that de novo cluster mutations can

be discriminated confidently from preexisting muta-
� �

�E(t)

� tions? It is relatively easy to eliminate the preexisting
mutations that are from grandparents’ heterozygosity
(Yang et al. 2001), but if one of the grandparents is�

n�L
i�1ci(ci � 1)

K[(m � 1)�2
f � n(f � 1)]

(37)
genetic mosaic for a new mutation, then we need careful
analysis of its timing and effects (H. Huai and Y.-X. Fu,
unpublished results).� �L

i�1ci(ci � 1)
K(�2

f /f � f )
. (38)

Estimating � from the number of mutation events:
Let I be the number of mutation events in an experi-K is the total number of mutants recovered in the ex-
ment that examined s offspring. As we have shown, whenperiment, counting all members of any clusters.
one sequence is examined per family, I is the same asSample size requirement: Besides sampling strategy
K so using I/s yields an unbiased estimate of �. Whento reduce variance in the estimate, it is important to
multiple offspring from a family are examined, I candetermine the sample size required in achieving a given
be �K; the magnitude of difference depends on the

precision in estimation. It is obvious that the standard
number of offspring examined as well as on �̂E(t).error of an estimate should not be larger than the esti- Since K/n is an unbiased estimate of �, it follows that

mate itself. For a good estimate, the standard error I/n is an underestimate of mutation rate. It is tempting
should probably be an order of magnitude smaller than to suggest an estimate as
the estimate.

Kl � I/n�, (41)For simplicity, consider the case that an equal number
of progeny is examined for each family. Suppose we where n� is a constant satisfying m 	 n� � n. However,
want to ensure that the standard error is as small as �. it is not obvious what value n� should be. Hence count-
Then family number m and family size f(cmax) need to ing each mutant as one mutation regardless of the clus-
satisfy ter’s origin is the more straightforward way to obtain

an unbiased estimate of the mutation rate. Nevertheless,1
m �1f � �

f � 1
f �� � 2�2 (39) it should be worth exploring efficient ways to use the

frequencies of various mutation events.
Alternative ways to combine information: We noteor

that Kl/nl is an unbiased estimate of �. So

m � �2��1 �1f � �
f � 1

f � . (40) �̂� � �
i

�iKl/nl (42)

is an unbiased estimator, where �i � 0 and �i�i � 1.We can see from Table 3 and Figure 3 that it is obvious
Becausethat once the uniformly sampled family size f is above

the reciprocal of �, further increases of f will not help Var(�̂�) � �
i
(�2

i /nl)(� � �E(t)(nl � 1)), (43)
reduce the standard error of mutation rate estimation
very much. In these cases there is an optimum family

to obtain a best linear estimate of �, � needs to satisfysize (a little bit ���1) at which the experiment is most
efficient. So it is not always true that the larger the 2�i

ni(� � �E(t)(ni � 1))
�

2�m

nm(� � �E(t)(nm � 1))
, (44)sample size, the more precise the experiment.

On the other hand, given that the total sample size
where i � 1, . . . , m � 1. That is,is fixed (shown in Figure 4), the best sampling strategy

is to examine as many families as possible where the �i

�m

�
ni(� � �E(t)(ni � 1))
nm(� � �E(t)(nm � 1))

. (45)family size f is fixed at one, where each sample is inde-
pendent from others. If this is not feasible, try to fix

Sothe family size as low as possible when there is no need
for estimation of �.

�i � ��i
ni

1 � �(ni � 1)�
�1

ni

1 � �(ni � 1)
. (46)Also family size f can affect the number of families

that need to be studied, but the most important factor
is the mutation rate itself. In general, we conclude that It follows that when � is close to zero the best way to
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Figure 4.—The total sample size fixed at
m 
 f � 100/�, and all the m families are
of the same size f. The designed family sizes
vary from 1.0 to 1000 to visualize their ef-
fects on the variation coefficient of muta-
tion rate estimation.
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