Abstract
Population-wide associations between loci due to linkage disequilibrium can be used to map quantitative trait loci (QTL) with high resolution. However, spurious associations between markers and QTL can also arise as a consequence of population stratification. Statistical methods that cannot differentiate between loci associations due to linkage disequilibria from those caused in other ways can render false-positive results. The transmission-disequilibrium test (TDT) is a robust test for detecting QTL. The TDT exploits within-family associations that are not affected by population stratification. However, some TDTs are formulated in a rigid form, with reduced potential applications. In this study we generalize TDT using mixed linear models to allow greater statistical flexibility. Allelic effects are estimated with two independent parameters: one exploiting the robust within-family information and the other the potentially biased between-family information. A significant difference between these two parameters can be used as evidence for spurious association. This methodology was then used to test the effects of the fourth melanocortin receptor (MC4R) on production traits in the pig. The new analyses supported the previously reported results; i.e., the studied polymorphism is either causal or in very strong linkage disequilibrium with the causal mutation, and provided no evidence for spurious association.
Full Text
The Full Text of this article is available as a PDF (159.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bink M. C., Te Pas M. F., Harders F. L., Janss L. L. A transmission/disequilibrium test approach to screen for quantitative trait loci in two selected lines of large white pigs. Genet Res. 2000 Feb;75(1):115–121. doi: 10.1017/s0016672399004061. [DOI] [PubMed] [Google Scholar]
- Deng H. W., Chen W. M., Recker R. R. Population admixture: detection by Hardy-Weinberg test and its quantitative effects on linkage-disequilibrium methods for localizing genes underlying complex traits. Genetics. 2001 Feb;157(2):885–897. doi: 10.1093/genetics/157.2.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gantz I., Miwa H., Konda Y., Shimoto Y., Tashiro T., Watson S. J., DelValle J., Yamada T. Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J Biol Chem. 1993 Jul 15;268(20):15174–15179. [PubMed] [Google Scholar]
- Guo S. W., Thompson E. A. A Monte Carlo method for combined segregation and linkage analysis. Am J Hum Genet. 1992 Nov;51(5):1111–1126. [PMC free article] [PubMed] [Google Scholar]
- Hernández-Sánchez Jules, Waddington Dave, Wiener Pamela, Haley Chris S., Williams John L. Genome-wide search for markers associated with bovine spongiform encephalopathy. Mamm Genome. 2002 Mar;13(3):164–168. doi: 10.1007/BF02684022. [DOI] [PubMed] [Google Scholar]
- Hinney A., Schmidt A., Nottebom K., Heibült O., Becker I., Ziegler A., Gerber G., Sina M., Görg T., Mayer H. Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J Clin Endocrinol Metab. 1999 Apr;84(4):1483–1486. doi: 10.1210/jcem.84.4.5728. [DOI] [PubMed] [Google Scholar]
- Horvath S., Laird N. M. A discordant-sibship test for disequilibrium and linkage: no need for parental data. Am J Hum Genet. 1998 Dec;63(6):1886–1897. doi: 10.1086/302137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kenward M. G., Roger J. H. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics. 1997 Sep;53(3):983–997. [PubMed] [Google Scholar]
- Kim K. S., Larsen N. J., Rothschild M. F. Rapid communication: linkage and physical mapping of the porcine melanocortin-4 receptor (MC4R) gene. J Anim Sci. 2000 Mar;78(3):791–792. doi: 10.2527/2000.783791x. [DOI] [PubMed] [Google Scholar]
- Kim K. S., Larsen N., Short T., Plastow G., Rothschild M. F. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mamm Genome. 2000 Feb;11(2):131–135. doi: 10.1007/s003350010025. [DOI] [PubMed] [Google Scholar]
- Koegler F. H., Grove K. L., Schiffmacher A., Smith M. S., Cameron J. L. Central melanocortin receptors mediate changes in food intake in the rhesus macaque. Endocrinology. 2001 Jun;142(6):2586–2592. doi: 10.1210/endo.142.6.8198. [DOI] [PubMed] [Google Scholar]
- Lewontin R. C. On measures of gametic disequilibrium. Genetics. 1988 Nov;120(3):849–852. doi: 10.1093/genetics/120.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li W. D., Joo E. J., Furlong E. B., Galvin M., Abel K., Bell C. J., Price R. A. Melanocortin 3 receptor (MC3R) gene variants in extremely obese women. Int J Obes Relat Metab Disord. 2000 Feb;24(2):206–210. doi: 10.1038/sj.ijo.0801114. [DOI] [PubMed] [Google Scholar]
- Lunetta K. L., Faraone S. V., Biederman J., Laird N. M. Family-based tests of association and linkage that use unaffected sibs, covariates, and interactions. Am J Hum Genet. 2000 Feb;66(2):605–614. doi: 10.1086/302782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin E. R., Monks S. A., Warren L. L., Kaplan N. L. A test for linkage and association in general pedigrees: the pedigree disequilibrium test. Am J Hum Genet. 2000 May 23;67(1):146–154. doi: 10.1086/302957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rabinowitz D. A transmission disequilibrium test for quantitative trait loci. Hum Hered. 1997 Nov-Dec;47(6):342–350. doi: 10.1159/000154433. [DOI] [PubMed] [Google Scholar]
- Schaid D. J., Rowland C. M. Quantitative trait transmission disequilibrium test: allowance for missing parents. Genet Epidemiol. 1999;17 (Suppl 1):S307–S312. doi: 10.1002/gepi.1370170752. [DOI] [PubMed] [Google Scholar]
- Spielman R. S., Ewens W. J. A sibship test for linkage in the presence of association: the sib transmission/disequilibrium test. Am J Hum Genet. 1998 Feb;62(2):450–458. doi: 10.1086/301714. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spielman R. S., McGinnis R. E., Ewens W. J. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet. 1993 Mar;52(3):506–516. [PMC free article] [PubMed] [Google Scholar]
- Tachibana T., Sugahara K., Ohgushi A., Ando R., Kawakami S., Yoshimatsu T., Furuse M. Intracerebroventricular injection of agouti-related protein attenuates the anorexigenic effect of alpha-melanocyte stimulating hormone in neonatal chicks. Neurosci Lett. 2001 Jun 8;305(2):131–134. doi: 10.1016/s0304-3940(01)01827-4. [DOI] [PubMed] [Google Scholar]
- Vaisse C., Clement K., Guy-Grand B., Froguel P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet. 1998 Oct;20(2):113–114. doi: 10.1038/2407. [DOI] [PubMed] [Google Scholar]
- Yeo G. S., Farooqi I. S., Aminian S., Halsall D. J., Stanhope R. G., O'Rahilly S. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet. 1998 Oct;20(2):111–112. doi: 10.1038/2404. [DOI] [PubMed] [Google Scholar]
- Zhao H., Zhang S., Merikangas K. R., Trixler M., Wildenauer D. B., Sun F., Kidd K. K. Transmission/disequilibrium tests using multiple tightly linked markers. Am J Hum Genet. 2000 Aug 31;67(4):936–946. doi: 10.1086/303073. [DOI] [PMC free article] [PubMed] [Google Scholar]