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ABSTRACT
This article introduces a new general method for genealogical inference that samples independent

genealogical histories using importance sampling (IS) and then samples other parameters with Markov
chain Monte Carlo (MCMC). It is then possible to more easily utilize the advantages of importance sam-
pling in a fully Bayesian framework. The method is applied to the problem of estimating recent changes in
effective population size from temporally spaced gene frequency data. The method gives the posterior dis-
tribution of effective population size at the time of the oldest sample and at the time of the most recent
sample, assuming a model of exponential growth or decline during the interval. The effect of changes in
number of alleles, number of loci, and sample size on the accuracy of the method is described using test
simulations, and it is concluded that these have an approximately equivalent effect. The method is used
on three example data sets and problems in interpreting the posterior densities are highlighted and discussed.

THE effect of inbreeding on population fitness is cur- 1995; Wilson and Balding 1998; Storz and Beaumont
2002). A problem with this approach is that the valuerently the focus of many studies, both empirical (Sac-

cheri et al. 1998) and theoretical (Lynch et al. 1995; that is estimated may have little relationship to current
rates of inbreeding or any value of Ne that could beLande 1998). One motivation behind these studies is

the need to investigate the genetic component of the estimated from direct observation of the mating system
of the population. This is because, over the timescalethreat to endangered species arising from low popula-
in which the observed variability is generated by muta-tion size. The rate of inbreeding depends on Ne, which is
tion, the unknown details of population history, genegenerally much lower than the census size. If it can be
flow, and metapopulation structure will greatly influ-assumed that the ratio of effective to census size is approxi-
ence estimates of Ne, which is then probably best re-mately constant, the detection of historical changes in
garded as simply a scaling coefficient in a coalescentNe may indicate changes in census size. Similarly, if the
model (Donnelly and Tavaré 1995; Nordborg 1997;ratio of effective to census size can be estimated for one
Wakeley 1999; Wakeley and Aliacar 2001). Alterna-population it can then be used to estimate census sizes
tively, genotypic disequilibria in single samples can bein other populations for which only genetic information
used to estimate Ne. This can be achieved by measuringis available (Beaumont 2001).
departures from either Hardy-Weinberg equilibriumEstimation of Ne is problematic. There are three gen-
(Pudovkin et al. 1996; Luikart and Cornuet 1999) oreral approaches. One way is to estimate it nongenetically
linkage disequilibrium (Langley et al. 1978; Laurie-from the mating system (Caballero 1994). However,
Ahlberg and Weir 1979; Hill 1981). These have thethis is generally unsatisfactory because detailed life-his-
advantage that they measure Ne on a more recent time-tory information is required, as well as good estimates
scale, but have generally low power and are susceptibleof census size, which is often unavailable with sufficient
to the influence of many other phenomena.precision to make a good estimate of Ne (Frankham

The most widely used method to estimate Ne from ge-1995). Furthermore, cross-generational effects that are
netic samples is from the difference in gene frequencydifficult to measure, such as serial correlations in family
between serial samples taken from the same population.size, may cause a substantial reduction in Ne from that
This is the “temporal method,” first introduced by Krim-expected purely from consideration of the variance in
bas and Tsakas (1971). Their method-of-moments esti-reproductive success (Austerlitz and Heyer 1998). An
mator has been elaborated by Nei and Tajima (1981),alternative approach is to use information from single
Pollak (1983), and Waples (1989). More recently Wil-genetic samples. For example, using a mutation model,
liamson and Slatkin (1999), Anderson et al. (2000),Ne can be estimated from the variability in the sample
Wang (2001), and Berthier et al. (2002) have devel-(e.g., Griffiths and Tavaré 1994a,b,c; Kuhner et al.
oped likelihood-based estimators, which show modest to
rather more substantial improvements in accuracy over
the method-of-moments estimators. In addition, Wil-
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illustrating the flexibility of likelihood-based approaches. moment-based methods of estimation to the use of like-
lihood and Bayesian inference (Stephens 2001). Re-Williamson and Slatkin (1999) estimated likelihoods

from a Wright-Fisher model in which any number of flecting the youth of this field, the computational and
technical details of the different approaches to infer-serial samples could be analyzed. Their method is practi-

cable only for the biallelic case. More recently Ander- ence tend to dominate much of the research. There
are currently two interrelated computer-intensive meth-son et al. (2000) used importance sampling to improve

the speed of the approach, which makes it practicable ods to statistical inference—Markov chain Monte Carlo
(MCMC) and importance sampling (IS). MCMC is ato look at multiallelic data. Wang (2001) has suggested

a further improvement in computational speed by ap- method for generating autocorrelated random samples
from probability distributions. IS is generally used toproximating the probability of the data by the product

of the marginal probabilities for each allele, thus reduc- approximate likelihoods based on independent sam-
ples. In population genetics these have been combineding the problem to that studied by Williamson and Slat-

kin (1999), but solved substantially more efficiently. to give three main groups of methods, as distinguished
by Stephens and Donnelly (2000): those in which theThe method of Berthier et al. (2002) differs from the

other three methods in that likelihoods are estimated genealogical histories are independently sampled using
IS, with likelihoods for specific parameters then com-from a coalescent model in which two samples are ana-

lyzed. Since only two samples are analyzed in their puted from the sample of genealogical histories (Grif-
fiths and Tavaré 1994a; Anderson et al. 2000), whichmethod it is not possible to make inferences about

changes in population size. are referred to here loosely as “pure IS” methods; those
in which autocorrelated genealogical histories are sam-The above methods all assume that the sampling pe-

riod is sufficiently short that the effects of mutations pled using MCMC, with likelihoods for specific parame-
ters then computed from the sampled genealogical his-can be safely ignored. Recently a strand of research that

is independent of that initiated by Krimbas and Tsakas tories (Kuhner et al. 1995; Beerli and Felsenstein
2001); and those in which there is autocorrelated sam-(1971) was identified and has been motivated by the

need to study human immunodeficiency virus viral dy- pling of genealogical histories and demographic/muta-
tional parameters. The latter approach yields samplesnamics and evolution on the basis of sequence data

from serial samples (Rodrigo et al. 1999; Fu 2001; from the posterior distribution of parameter values and
leads naturally to Bayesian inference or the use of inte-Drummond et al. 2002). These methods use a coalescent

model with mutations, and that of Drummond et al. grated likelihood (e.g., Wilson and Balding 1998;
Beaumont 1999; Nielsen and Wakeley 2001; Drum-(2002) allows for full Bayesian estimation of mutational,

demographic, and genealogical parameters from se- mond et al. 2002). By contrast, the other two approaches,
which use importance sampling to approximate likeli-quence data.

This study assumes that the effects of mutations over hood surfaces, tend to lead to more classical likelihood-
based inference.the sampling period can be ignored and makes three

contributions. First, it is shown how the Monte Carlo In the MCMC methods that give autocorrelated sam-
ples of parameter values the necessary integration formethod of importance sampling can be used to update

sets of genealogies in a Markov chain Monte Carlo simu- Bayesian inference is intrinsic, and the only additional
computation, if required, is to estimate the posterior densi-lation to estimate posterior distributions of parameters

of interest. This method is very general and can be ties from the sampled points. By contrast, with importance
sampling methods that give approximations of likeli-applied to all models of genealogical inference and may

lead to increased efficiency in implementation and exe- hood surfaces directly, further complex procedures are
necessary for Bayesian inference. Given that it is generallycution. This computational method is applied to the

coalescent-based model of Berthier et al. (2002), de- easier to estimate densities (thereby enabling the choice
of classical likelihood-based estimation, integrated like-scribed above. Second, the model of Berthier et al.

(2002) is generalized to consider any number of samples lihoods, or fully Bayesian inference) than to manipulate
the approximated-likelihood surfaces, it would seemin a temporal sequence rather than just the two pre-

viously considered. Third, the method is further extended that methods that give autocorrelated samples of param-
eter values offer the greatest flexibility. However, theseto estimate parameters in a model of population growth

and decline, similar to that studied in Beaumont (1999). methods have currently two main drawbacks. They in-
volve making small modifications to the genealogical

IMPLEMENTATION OF MARKOV CHAIN history, and because of this (a) they are generally more
MONTE CARLO WITH INDEPENDENT difficult to program than pure IS methods, and (b) they

SAMPLING OF GENEALOGICAL HISTORIES
can move quite slowly through the space of possible
genealogical histories, making them potentially ineffi-Background and motivations: The potential for genetic

data to shed light on the evolutionary history of popula- cient. This article introduces a method for overcoming
these two disadvantages and applies it to a specific prob-tions has been well appreciated over the last decade,

and in the development of the statistical methodology lem, the estimation of effective population size, Ne, from
temporally spaced genetic samples.there has been a general interest in moving away from
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The general motivation behind these computer-
p(�|D) �

p(D|�)p(�)

� p(D|�)p(�)d�
.

intensive methods is that from coalescent theory it is
straightforward to calculate the probability p(D, G |�) �
p(D|G)P(G |�) of any particular genealogical history, G, Inferences on particular parameters can be made from
that gives rise to some data D, as a function of parame- the marginal posterior distribution, where p(�|D) is in-
ters specifying the demographic history and mutation tegrated over all other parameters. If uniform improper
model, �. There are a number of different representa- priors are used p(�|D) � p(D|�) and the methods used
tions of the genealogical history (see Stephens and to obtain marginal posterior distributions will also give
Donnelly 2000), and in this article I consider it to be the integrated (relative) likelihood surface. Considera-
the timed sequence of coalescent and mutation events tions of how best to make inferences on single parame-
in the genealogical history of a sample, so that p(D|G) � ters in multiparameter models has led, for example,
1 if the genealogical history can give rise to the data Nielsen and Wakeley (2001) to advocate that there are
and 0 otherwise. Any particular data set can be obtained many advantages to using integrated likelihoods even
from very many different genealogical histories, and to when a frequentist approach is preferred.
calculate the likelihood we need to evaluate The only method currently used to perform fully

Bayesian analyses for population genetic inference has
p(D|�) � � p(D|G)p(G |�)dG, (1) been Metropolis-Hastings sampling of parameter values

(e.g., Wilson and Balding 1998; Beaumont 1999). Al-
where, following Stephens and Donnelly (2000), the though the potential to use purely importance-sampling
integral denotes a summation over all discrete states approaches for Bayesian analyses has been discussed
(e.g., pattern of coalescences and mutations) and inte- (e.g., Fearnhead and Donnelly 2001), no such analysis
gration over continuous states (e.g., duration of intervals of genetic data based on importance sampling has yet
between events). Estimation of p(D|�) directly is most been published, and there has been no proposal for how
conveniently made using importance sampling (Grif- this could easily be done for a complex multiparameter
fiths and Tavaré 1994a; Stephens and Donnelly model, such as a hierarchical Bayesian model (Storz
2000). In importance sampling, the equation is rewrit- and Beaumont 2002).
ten as To perform Metropolis-Hastings sampling it is not

necessary to evaluate p(D|�), and we can work with p(D,
G |�), which is easily calculated from coalescent theory.p(D|�) � � p(D|G)

p(G |�)
q(G |�)

q(G |�)dG,
Starting with any Gi such that P(D|Gi) � 1, modify Gi →
Gi�1 [where P(D|Gi�1) � 1] and �i → �i�1 such that itand this is estimated by sampling Gj from q(G |�) and
is straightforward to calculate the probability, p(Gi�1,evaluating
�i�1|Gi, �i), of obtaining Gi�1 and �i�1, conditional on
being at Gi, �i, and the reverse. Then accept Gi�1 andp̃(D|�) � 1/h �

h

j�1

p(D|Gj)p(Gj|�)/q(Gj|�). (2)
�i�1, with probability

Generally the sampling distribution is chosen such that
min �1,

p(D, Gi�1|�i�1)
p(D, Gi|�i)

�
p(Gi, �i|Gi�1, �i�1)
p(Gi�1, �i�1|Gi, �i)

�
p(�i�1)
p(�i)

�;P(D|Gj) � 1 for all Gj. In the ideal case that q(G |�) �
p(G |D, �), i.e., the posterior distribution of genealogical (3)
histories given the data and parameters, the variance in

otherwise Gi�1 � Gi, and �i�1 � �i. The first term in thethe estimate of p(D|�) is zero because each term in
product is the likelihood ratio, the second is the Has-(2) evaluates to the likelihood axiomatically. The ratio
tings term, and the third is the ratio of the priors. Thep(G |�)/q(G |�) is called the importance ratio, or im-
Hastings term is the ratio of the probability of reachingportance weight.
the current state from the proposed state to that of theHowever, the evaluation or estimation of p(D|�) is
reverse and ensures a uniform coverage of the parame-not necessarily an ideal goal for population genetic in-
ter space. This simulated Markov chain will then give aference. The problem is that � often has many compo-
(serially autocorrelated) sample from p(�, G |D). Sum-nents, and generally we wish to make inferences about
maries of the marginal posterior density for a particularone component (e.g., growth rate) independent of the
parameter or an estimate of the density itself can beothers. Furthermore, for most population genetic prob-
obtained from the simulated sequence of values realizedlems, the likelihood surfaces do not approximate that
for that parameter, ignoring the others. The key pointof a multivariate normal distribution, and therefore as-
here is that it is possible to perform the simulation usingymptotic theory and methods often do not apply. These
p(D, G |�), which is easy to calculate, by updating theproblems can be side-stepped by taking a Bayesian ap-
genealogical history G, and then the posterior distribu-proach to inference, which also has the advantage that
tion for the parameters of interest are obtained mar-background information can be incorporated into the
ginal to the genealogical histories. The price for thismodel (Wilson and Balding 1998). In this case we

estimate the posterior distribution convenience is that the search space of the MCMC simu-
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lation is greatly increased. If it were possible to evaluate cussed below) require independence of the estimates.
The reevaluation approach has been taken in all theEquation 1, then p(�|D) marginal to G could have been

obtained by running the simulation with p(D|�) and genealogical models that have used the method and
also by O’Neill et al. (2000). Updates are required onlyupdating �i → �i�1 alone—i.e., accepting �i�1 with prob-

ability for � and not for G as in the MCMC methods of Wilson
and Balding (1998) and Beaumont (1999). This gen-
eral method, where the MCMC uses an approximationmin �1,

p(D|�i�1)
p(D|�i)

�
p(�i|�i�1)
p(�i�1|�i)

�
p(�i�1)
p(�i)

�, (4)
to the likelihood, is abbreviated here as Monte Carlo
within Metropolis (MCWM), following the terminologyand thus only � would have to be explored by the
of O’Neill et al. (2000). A basic algorithm for MCWMMCMC simulation.
is as follows:Current methods that use independent sampling of ge-

nealogical histories within an MCMC framework: Hitherto 1. Choose initial parameter values �i with i � 0.
it has been easier to run the MCMC using p(G, D|�) 2. Sample h independent genealogical histories using
and hence autocorrelated sampling of genealogical his- importance-sampling function and calculate p̃(D|�i)
tories, but, as discussed above, there are programming from Equation 2.
problems and problems of efficiency with this approach. 3. Draw �i�1 � p(�i�1|�i).
Therefore it is tempting to consider the use of impor- 4. Sample h independent genealogical histories using
tance sampling to obtain an approximation, p̃(D|�), importance-sampling function and calculate p̃(D|�i�1)
which can then be implemented in an MCMC simula- from Equation 2.
tion to incorporate prior information, and obtain mar- 5. Accept �i�1 with probability
ginal posterior distributions or integrated likelihoods,
as discussed above. One advantage of importance sam- min �1,

p̃(D|�i�1)
p̃(D|�i)

�
p(�i|�i�1)
p(�i�1|�i)

�
p(�i�1)
p(�i)

�.pling is that it is often very straightforward to implement
in a computer program. Also, because the importance-

Otherwise �i�1 � �i.sampling function uses heuristics from coalescent the-
6. Set i � i � 1 and go to 2.ory to attempt to generate genealogies from their poste-

rior distribution, given the data, it is a potentially more Bias correction: Clearly, since R̂ is based on an approx-
efficient method for sampling genealogical histories in imation of the likelihood ratio the posterior distribution
comparison with MCMC. will also be approximate. Simulation tests performed in

This approach has been used in a series of articles O’Ryan et al. (1998) suggested that an IS size of 500
(O’Ryan et al. 1998; Ciofi et al. 1999; Chikhi et al. 2001; was sufficient to obtain accurate estimates of posterior
Berthier et al. 2002) to make inferences based on coa- distributions, and this number has been used for subse-
lescent models of drift without mutations (reviewed in quent articles.
Beaumont 2001). A related method has been used by O’Neill et al. (2000) have carried out an analogous
O’Neill et al. (2000) for an epidemiological model. procedure where the likelihoods are estimated by a
The likelihood ratio Monte Carlo (MC) method. They show that the method

should be exact, independent of the sampling variance,
R �

p(D|�i�1)
p(D|�i)

providing that

in Equation 4 is replaced by E[min(1, R̂)]
E[min(1, 1/R̂)]

� R,

R̂ �
p̃(D|�i�1)
p̃(D|�i)

, where R is the true likelihood ratio and R̂ is its estimate.
They suggest using the estimator R* � R̂ 2/Ẽ[R̂], where
Ẽ[R̂] is an estimate of the expected value of the ratio,estimated (in the genealogical analyses) using Equation

2. Note that in normal MCMC, if the denominator to correct for the bias in R̂. Details of how R* has been
estimated for the genealogical model considered herep(D|�i) in the likelihood ratio were known without error

there would be no need to reevaluate it each time that are given in the appendix. In the results below, simula-
tions carried out with this bias correction are referredR was evaluated. By contrast, with R̂ there is a choice

whether to make independent estimates of p̃(D|�i) to here as MCWM with bias correction and the earlier
method as MCWM without bias correction.when it is evaluated at each update of the MCMC (evalu-

ation of Equation 4) or to reuse the earlier estimate. Independence Metropolis-Hastings simulation: The
methods described above all use importance samplingIntuitively it seems reasonable, though more time con-

suming, to reevaluate it each time so that the estimates to approximate p(D|�) and, with or without bias correc-
tion, will lead the MCMC simulation to sample from an ap-of R̂ are independent of each other and so that unusu-

ally large ratios arising by chance do not lead to sticking proximate posterior distribution. I now show how a small
modification to the approach will guarantee that theof the simulated Markov chain. Furthermore, the results

in O’Neill et al. (2000) concerning bias correction (dis- MCMC will sample from the true posterior distribution.
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Consider now an importance sample of size 1 (i.e., large so that independent estimates of the likelihood
h � 1 in Equation 2 above). The importance weight, ratio R had negligible variance then convergence of the

MCMC would depend only on � and would generally
p(G, D|�)/q(G, D|�), be very good. Intuitively, therefore, we should get better

convergence if we take larger sample sizes, but then theis an (admittedly very poor) estimate of p(D|�) as de-
question arises whether the MCMC will converge to thescribed above, but is also the ratio of the probability of
required target density exactly—i.e., p(�, G |D).sampling the genealogy under the coalescent to the

As shown in the appendix the target density for theprobability of sampling the genealogy under the impor-
MCMC becomes rather more complicated when we con-tance-sampling function. Supposing this were used in
sider importance sample sizes greater than one. How-the Metropolis-Hastings simulation described by (3),
ever, it can be proved (see the appendix) that if Equa-the ratio of importance weights for the ith and i � 1th
tion 2 is used with values of h � 1 then the independenceMCMC update is
sampling procedure will always give the correct poste-
rior densities for the demographic and genealogicalp(D, Gi�1|�i�1)

p(D, Gi|�i)
�

q(D, Gi|�i)
q(D, Gi�1|�i�1)

,
parameters for any importance sample size. Although
the sample of h genealogical histories observed at anywhich, multiplied with the Hastings term for the param-
point in the simulated chain is not drawn from theeter updates, p(�i|�i�1)/p(�i�1|�i), will give (3) above.
posterior distribution, if we consider the sample of gene-Note that the Hastings term for updates to G is not
alogies simulated by the importance sampling proce-conditional on any particular value of G. Thus, at least
dure to be ordered and keep a track of, say, the genealo-for G, this method is an example of the well-studied
gies occupying the jth position throughout the MCMCindependence Metropolis-Hastings sampler (see, e.g.,
simulation, then these genealogies will (in the long run)Tierney 1996, pp. 69–70) and has been proposed as a
be sampled from the correct posterior distribution and,possible approach for genealogical inference by Ste-
jointly with the parameters, will be sampled from p(�,phens and Donnelly (2000). The MCMC is sampling
G |D). As described below, simulation tests suggest thatthe posterior distribution of genealogical histories, as
acceptance rates increase rapidly with larger importancewell as parameter values, and inference is performed in
sample sizes, and for adequate importance sample sizesmuch the same way as in Wilson and Balding (1998)
this procedure is, in general, more efficient than theand Beaumont (1999). If the importance sampling is
other methods. This method differs from the normalused in this way, then the MCMC will correctly sample
independence sampler because we are using a groupfrom the posterior distribution of parameters provided
of sampled genealogies rather than one and is calledthat the current genealogical history and associated like-
grouped independence Metropolis-Hastings (GIMH) tolihood are kept like any other parameter rather than
distinguish it from the normal independence Metropo-resampled at each evaluation of (3). The sampled genea-
lis-Hastings and from MCWM, which involves reevalua-logical history is treated as a parameter on an equal
tion of the likelihood. Since the grouped independencefooting with �, and although it would be possible to
Metropolis-Hastings sampler can be shown to convergeupdate the genealogical history independently of the
to the target densities exactly, whereas this is only ap-demographic parameters, they are all updated together
proximate in the case of MCWM, with or without biasin the following simulations. To reiterate, the difference
correction, the bulk of the analyses performed in thisbetween the independence Metropolis-Hastings sam-
article are carried out using this approach.pler and MCWM is that in MCWM the importance

A basic algorithm for GIMH (or the standard inde-weight is viewed as an estimate of p(D|�i) in (4) and,
pendence sampler when h � 1) is as follows:although it would never be advisable to use it with a

sample of size 1, is reevaluated with a new Gi at each 1. Choose initial parameter values �i with i � 0.
evaluation of (4), whereas with the independence Me- 2. Sample h independent genealogical histories using
tropolis-Hastings sampler the current Gi is retained at importance-sampling function and calculate p̃i(D|�i)each evaluation of (3). from Equation 2.

As is shown in the results, using a single genealogy 3. Draw �i�1 � p(�i�1|�i).
in the independence sampler leads to very poor conver- 4. Sample h independent genealogical histories using
gence of the MCMC, and, again this is a well-known importance-sampling function and calculate p̃i�1property of the independence Metropolis-Hastings sam-

(D|�i�1) from Equation 2.
pler when the sampling function is a poor approxima-

5. Accept �i�1 and p̃i�1(D|�i�1) with probability
tion of the target density (Tierney 1996). Essentially
the distribution of importance weights is very skewed

min �1,
p̃i�1(D|�i�1)

p̃i(D|�i)
�

p(�i|�i�1)
p(�i�1|�i)

�
p(�i�1)
p(�i)

�.so that the simulation will “stick” at the (very rarely
obtained) high importance weights and then wait a long

Otherwise �i�1 � �i and p̃i�1(D|�i�1) � p̃i(D|�i).time for Equation 3 to be satisfied. By contrast, at the
other extreme, if the importance sample size was very 6. Set i � i � 1 and go to 3.
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Figure 1.—Diagram illustrating the terminol-
ogy used in the text.

�x0, at the time each set of lineages is added a number ofIn this algorithm the importance sampling calculations
lineages are present with descendants in earlier samples,are explicitly indexed for clarity. The essential differ-
lower down the genealogy (i.e., lower down in Figureence from MCWM is that the iterations start at step 3
1). The allele frequency counts among these base lin-and genealogical histories are simulated only for the
eages are denoted here as the random variable � � (f0,trial values.
. . . , fd), where, to ease the notation below, f0 is defined
to be 0. The number of these lineages, also a random

INFERENCE IN THE TEMPORAL METHOD BASED variable, H � (h1, . . . , hd), depends on the number of
ON A COALESCENT MODEL WITH SAMPLES coalescences that occur in the intervals between sam-TAKEN AT MANY TIME POINTS

pling points. These are given by the sequence � � (c1,
The data are assumed to be sampled at different . . . , cd). Thus, at the ith sample point, the number of

times, given by the sequence � � (x0, x1, . . . , xd). Time lineages deriving from earlier samples is given by
is measured in units of generations, and the most recent
sample is given subscript 0, and x0 � 0. The population hi � �

i�1

j�0

nj � �
i

j�1

cj, i � 1.
is changing exponentially in size from a previously con-
stant ancestral size NA at time X to size N0 at time 0.

The notation used here is summarized in Figure 1.Time is taken to be increasing into the past, and terms
The likelihood, assuming a model of drift withoutsuch as “earlier” and “later” refer, respectively, to times

mutations, can be obtained as a straightforward exten-nearer or farther from the most recent sample (see
sion of the two-sample case in Berthier et al. (2002)Figure 1). Corresponding to each time point is a se-
and is given byquence of sample sizes (number of chromosomes) � �

(n0, n1, . . . , nd), where lineages are added to the geneal-
p(�/�, N0, NA, X) � �

�,�
�p(ad � fd)�

d�1

i�0

p(fi � ai|fi�1, ci�1)ogy. The sequence of frequency counts of the different
allelic types in each sample is given by � � (a0, a1, . . . ,

� p(ai�1, fi�1|ai�1 � fi�1) p �ci�1|
xi�1 � xi

2Ñi�1
��,ad), where the vectors are of length k, the total number

of different allelic types observed in the data. For times (5)
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p(ci,(xi�1 � xi)/2Ñ*i�1) can be used from Tavaré’s (1984)where
Equation 6.1 for each interval between samples, where

p(ad � fd) is the probability of sampling the gene fre- Ñ and Ñ* are calculated for each interval from (A3),
quencies in the lineages extant at the earliest sam- and Ñ* is used to generate the importance samples.
pling time(at the top of Figure 1); Alternatively, the simulated coalescence times can be

recorded, and an equivalent ratio can be calculatedp(fi � ai|fi�1, ci�1) is the probability of obtaining the
from their joint density under the coalescent comparedgene frequencies among the lineages extant at sample
to their joint density under the importance-samplingi given the base lineages at i � 1 and the number of
function. The advantage of the former is that it is mar-coalescences within the interval;
ginal to the coalescence times and should therefore
be more efficient; however, it is computationally timep(ai�1, fi�1|ai�1 � fi�1) is the hypergeometric sampling
consuming to calculate and numerically unstable, andprobability of obtaining the frequencies in the base
the latter is probably more practicable.lineages and the frequencies in the sample lineages,

In the results described in the next sections Equationgiven the frequencies of the combined lineages; and
6 has been used on its own to estimate likelihoods and

p(ci�1|(xi�1 � xi)/(2Ñi�1)) is the probability of obtaining also incorporated into the MCWM procedure with and
c coalescences in the sampling interval, over which without bias correction and into the GIMH) sampler.
the harmonic mean effective size is Ñ In general when MCWM and GIMH are used in the

analyses rectangular priors are assumed for each param-
(see the appendix for further details). The sum is over eter, as in Beaumont (1999). In all of the analyses, X
all possible numbers of coalescences between sampling is assumed to be equal to xd and not separately estimated.
intervals and all possible frequency counts among the In the MCMC, the initial values of the parameters are
base lineages at each interval. In the case of many un- taken uniformly randomly from the priors. They are
linked loci, the likelihoods can be estimated for each updated from a lognormal distribution with the medianlocus separately and then multiplied together. Although

centered on the current value of the parameter andin principle the possibilities can be straightforwardly
standard deviation (on a log scale) of 0.5, unless other-enumerated, allowing Equation 5 to be solved, in prac-
wise stated. In all the MCMC analyses the parameterstice there are far too many possibilities to make this
are updated simultaneously (with the genealogies, asuseful. Instead, the importance sampling approach of
discussed above). Comparisons among the various ap-Griffiths and Tavaré (1994a) is applied to this prob-
proaches are made to demonstrate the superiority oflem, as in Berthier et al. (2002).
GIMH, and then this method is used for further investi-In this approach S independent sequences of coales-
gations of the accuracy and coverage properties of thecences of lineages are explicitly sampled by simulation
method using simulated data sets. Finally GIMH is ap-(see the appendix for details), and we obtain
plied to three published data sets to illustrate its utility.

p̃(�/�, N0, NA, X) �
1
S �

S
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(6) SIMULATION TESTS

Thus for the 	th simulated sequence p(fi � ai|fi�1, ci�1) � Comparison of MCWM and GIMH with pure IS esti-
p(ci�1|(xi�1 � xi)/(2Ñi�1)) in (5) is replaced by �c 	

i
e�0 mation: To compare the accuracy of the three different

w	
i(e�1), which is the ratio of the probability of obtaining MCMC approaches a data set was simulated from the

the sampled sequence of lineages under the coalescent model from a diploid population with effective size Ne �
model, independent of the data, to the probability of 51.2. The population did not change in size over the
obtaining it from the importance-sampling function. sampling period, and six samples each of size 20 chro-

The c	
i coalescences are simulated using the coales- mosomes were taken at generations 0, 4, 8, 12, 16, and

cent model (see the appendix for details of how this 20. The data set consisted of 10 loci each with five alleles
was done for a population of varying size). The distribu- in the population (although, due to sampling, some
tion of the number of coalescences between data-sam- data sets had fewer than five alleles). The population
pling intervals is identical under the coalescent model frequencies were simulated from a uniform Dirichlet
and the importance-sampling function, and hence this distribution, according to the assumption of the model.
term cancels out. This form of sampling is used for all The data set was then analyzed by four different ap-
the analyses described below. However, if importance proaches (in all models, Ne � N0 � NA):
weights are to be evaluated at parameter values other

i. The likelihoods for a grid of 81 values of Ne fromthan those used to generate the samples, the terms in
20 to 80 were evaluated using (6). The likelihoods(6) need to be multiplied by a weight reflecting the
were evaluated at each point independently, usingdifferent probability of obtaining the simulated number
an IS size of 40,000. The standard errors were esti-of coalescences under the coalescent compared to that
mated using (A2). The approximate likelihood sur-under the importance-sampling function. This can be

done in two ways. The weight p(ci,(xi�1 � xi)/2Ñi�1)/ face was normalized to have unit volume, and the
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Figure 2.—Comparison of the posterior
distributions obtained using MCWM with-
out bias correction, MCWM with bias cor-
rection, GIMH, and pure importance sam-
pling.

standard errors were scaled accordingly. The stan- from the pure IS method, despite the variability in the
estimates of the likelihood (for an IS size of 500 thedard deviation was estimated from this distribution.
standard errors are expected to be around nine timesii. Nine different simulations using MCWM without
larger than those shown in Figure 2). The distributionbias correction were carried out in which the IS sizes
for GIMH with an IS size of just 10 per MCMC updateused in the evaluation of (4) were 5000, 1000, 500,
(evaluation of Equation 4) is very close to that of the100, 50, 10, 5, 2, and 1. The simulations were run
pure IS method.for 20,000 updates, which appeared to give good

Figure 3 shows how the width of the estimated poste-convergence (as judged by eye from the output
rior distribution varies with the IS size.traces), and densities and standard deviations of the

The standard deviation estimated from the pure ISposterior distribution were estimated from the val-
method is 10.4. It can be seen that for MCWM with andues of Ne generated by the simulation.
without bias correction there is a strong relationshipiii. Eight simulations using bias-corrected MCWM were
between the width of the distribution and the IS size.carried out as for MCWM. Simulations using an IS
Bias correction does appear to ameliorate the problemsize of one were not performed because SE[p̃(D/
to some extent, but still leads to inaccurate estimation�)] cannot be estimated.
of the posterior distribution when the IS size is small.iv. Nine simulations were carried out using GIMH as
For MCWM without bias correction, an IS size of �500 isfor MCWM. However, with GIMH the rate of conver-
the minimum required for accurate estimation, whereasgence is heavily dependent on the IS size used.
�100 are needed with bias correction. The rate of con-In particular, with an IS size of one the MCMC
vergence of the two MCWM methods appears to beprocedure tends to mix very poorly because the
independent of IS size.simulated chain will stick at chance high values of

GIMH is unaffected by the IS size, as expected fromp̃(D/�). The length of simulation, the thinning in-
the result in the appendix. This is not a free lunch,terval (the number of MCMC iterations between
however. The tradeoff is that the amount of mixing issuccessive recordings of parameter values), and the
severely reduced when the IS size is low, and the lengthstandard deviation of the trial parameter updates
of time required to achieve convergence is correspond-were varied between simulations to achieve satisfac-
ingly increased. For example, with an IS size of 1 thetory convergence, judged by eye from output traces.
result shown in Figure 3 was obtained by pooling to-

Estimated densities using the four approaches are gether results from seven independent simulations of
shown in Figure 2. It can be seen that the standard 108 MCMC updates, thinned every 10,000 updates. Even
errors for the IS method are still large, even with 40,000 in this case, there is still appreciable variability in the
points. However, the posterior distributions estimated results between the independent simulations. The result
by MCWM with and without bias correction are very for an IS size of 10 was obtained from a single simulation

of 107 MCMC updates thinned every 200 updates. Insimilar to each other and to the distribution estimated
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Figure 3.—The relationship between the
IS size and the standard deviation of the
posterior distribution for MCWM with and
without bias correction and GIMH. The
standard deviation estimated from pure IS
is shown as a dotted line.

this case convergence appears very good, with a very 20. The samples were taken at six times, � � (0, 2, 4,
6, 8, 10). The population frequencies were simulateduniform trace for Ne, and the resulting density is plotted

in Figure 2. from a uniform Dirichlet distribution, as before. The
aim of the analysis was to compare the effect of theThese points are further illustrated in Figure 4, where

the proportion of trial updates that are accepted in the parameters on the deviation of the joint posterior mode
of NA and N0 from the value used in the simulations andMCMC, divided by IS size, is plotted against IS size. The

acceptance rate varied rapidly from 0.0011 with an IS also to illustrate typical posterior distributions obtained
with different data sets. Ideally, of course, an analysissize of 1 to 0.15 with an IS size of 10 and then more

slowly to 0.85 with an IS size of 5000. It can be seen in of the accuracy of estimators should use a larger number
of replicates, but the time taken to run the MCMCFigure 4 that the scaled acceptance rate has an optimum

at an IS size of �10. precludes this. Five replicates are, however, sufficient
to illustrate the general trend toward consistency in theIn these simulations the standard deviation of the

distribution of parameter updates was kept at 0.1 for estimator, as the amount of information in the data
increases. This number was chosen because pairs of setsall IS sizes, and therefore the scaled acceptance rate is

a measure of efficiency—for a given number of accepted of five replicates could be run in parallel on a 10-node
cluster of 700-Mhz Pentium 3 processors running undertrial updates, the total required number of IS evalua-

tions is at a minimum if an IS size of 10 is used. This Linux. MCMC parameters are as described above for
all simulations other than those with SSAL � 8000. Inoptimum will vary for different data sets and sizes of the

trial parameter updates, and for the remaining analyses this case an IS size of 500 was used and the standard
deviation (on a log scale) of the lognormal used fordescribed in this article, which mostly used a standard

deviation of 0.5 for the trial parameters, unless otherwise updating the demographic parameters was 0.1 rather
than 0.5. The simulations took �4 hr for SSAL � 800stated, GIMH was used with an IS size of 100 and 105

MCMC updates, thinned every 10 updates to give 10,000 and �6 days for SSAL � 8000 (which has an IS size five
times larger).points.

Effect of sample size and numbers of alleles and loci Examples of the joint posterior distributions for NA

and N0 are shown in Figure 5. The posterior distributionson the estimation of NA and N0: To illustrate the effect
of varying aspects of the sample, five independent simu- are illustrated using highest posterior density (HPD)

limits (as in Beaumont 1999). These are obtained fromlations were performed for each combination of param-
eters in Table 1. As shown in the table the parameters the simulations of growing and declining populations

with SSAL � 800 and SSAL � 8000 (see Table 1). Inwere also summarized by a composite parameter SSAL �
(sample size) � (k � 1) � (number of loci), where k each case, of the five replicate simulations, that where

the mode for NA and N0 is the median distance awayis the number of alleles. Samples were simulated from
populations that grew from NA � 20 to N0 � 200 and from the true value was chosen to be illustrated. It can

be seen that there is a tendency for the larger populationalso populations that contracted from NA � 200 to N0 �
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Figure 4.—The proportion of trial updates in
the MCMC that are accepted, divided by IS size,
is plotted against IS size.

size to be most poorly estimated, with substantial skew the SSAL value given in Table 1. Although there is
substantial variability a general trend toward a reductionin the posterior density. In addition, there is a tendency
of the relative error with increasing SSAL can be seen.(observed generally, as well as in the simulations that
Given the variability of the results, the logarithm of theare illustrated) for the current population size to be
relative errors was analyzed using a linear model. In thewell estimated by the joint mode (25 modes higher than
model growth/decline was specified as a factor and thetrue value and 35 lower out of 60 simulations) and the
covariates (log transformed) were number of loci, num-ancestral population size to be generally overestimated
ber of independent alleles at each locus (k � 1), andby the modes (44 modes higher and 16 lower).
sample size. The coefficients and standard errors wereUsing the mode from the joint posterior distribution
4.96 (1.30), �0.629 (0.217), �0.517 (0.325), �0.794as an estimator for NA and N0, the square root of the
(0.314), and �0.686 (0.164) for the intercept, effect of
growth, number of loci, k � 1, and sample size, respec-

relative square error [defined as ( NA

�

� NA)2/N 2
A �

tively. The effect of growth/decline was significant at
( N0

�

� N0)2/N 2
0], referred to here as the “relative error,”

was calculated for each simulation and is shown plotted
against SSAL in Figure 6, a and b. Each point in the P � 0.005, and the effect of the three covariates was
figure is the relative error for a data set plotted against significant at P � 0.0001. The residuals from this model

were roughly normal with no obvious heteroscedasticity,
although the limit on the relative errors arising from

TABLE 1 the rectangular priors has some effect on the residuals.
A model with the coefficients for the three covariatesCombinations of numbers of loci, numbers of alleles
forced to be �1 did not fit significantly less well thanat each locus, and sample size used
a model where the three covariates were free to vary
(P � 0.21). This simple model gives the equations Rela-SSAL No. loci No. alleles per locus Sample size
tive Error � 2128/SSAL for a declining population and

800 10 5 20 Relative Error � 1135/SSAL for a growing population.
4000 10 5 100

The fitted values from this model are shown in Figure1600 10 9 20
6. Thus the main conclusions of this analysis are: (a)8000 10 9 100
there is, at least at the level of precision in this simulation1600 20 5 20
study, an equivalence between the number of indepen-4000 25 9 20
dent alleles, number of loci, and sample size; and (b)

The sample size is the number of chromosomes taken at for the same value of SSAL the relative error is almost
each of six time points. The composite parameter SSAL � twice as large in a declining population in comparison(sample size) � (no. of alleles per locus � 1) � (no. of loci).

with a growing population.This set of combinations was used for populations that grew
The Bayes factor favoring a model of populationfrom NA � 20 to N0 � 200 and contracted from NA � 200 to

N0 � 20. Further details are in the text. growth vs. decline was calculated for each MCMC simu-
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Figure 5.—Posterior distribution of NA

and N0 for four different simulated data
sets. The contour levels correspond to the
90, 50, and 10% HPD limits. The line where
NA � N0 is shown. The values of NA and N0

used in the simulation are shown as a cross.
(a) SSAL � 800, NA � 20, N0 � 200; (b)
SSAL� 8000, NA � 20, N0 � 200; (c) SSAL �
800, NA � 200, N0 � 20; (d) SSAL � 8000,
NA � 200, N0 � 20.

lation as the proportion of MCMC iterations where N0 � toward small P values with increasing SSAL, which would
be expected if there was an error in the estimationNA divided by the proportion of iterations where N0 

procedure. The estimated critical P values for the ex-NA (each model has equal prior probability). The Bayes
amples in Figure 5, a–d, are, respectively, 0.57, 0.29,factor gives the relative likelihood of one model over
0.11, and 0.44. Thus, overall, the method appears tothe other (Gelman et al. 1995). The logarithm of the
estimate changes in effective population size satisfacto-Bayes factor is plotted against SSAL in Figure 7, a and
rily, but it is preferable to present results for the fullb. Each point in the figure is the logarithm of the Bayes
posterior distribution rather than rely on the mode asfactor for a data set plotted against the SSAL value
a point estimate.given in Table 1. Although some of the simulations with

SSAL � 1600 have |log(Bayes factor)| 
 2 (i.e., would
be judged to be nonsignificant by conventional criteria),

ANALYSIS OF EXAMPLE DATA SETSthe great majority of results very strongly support the
model under which they were generated. It should be To illustrate the behavior of the method on real data
noted that the Bayes factor is sensitive to the priors sets, three examples have been chosen: data from a
chosen, and this is discussed in more detail in the con- population of Drosophila subobscura surveyed by Begon
text of the example data sets analyzed below. et al. (1980), data from a population of northern pike

The bias in the joint estimation of NA and N0 apparent (Esox lucius) surveyed by Miller and Kapuscinski (1997),
in Figure 5 does not appear to be caused by any system- and data from the Mauritius kestrel surveyed by Groom-
atic error in the estimation procedure, as judged by an bridge et al. (2000).
examination of the coverage properties of the posterior Drosophila: The data were sampled from a popula-
distributions. The critical HPD P values corresponding tion on Mount Parnes, 40 km north of Athens. The flies
to the true NA and N0 were estimated for each data set were genotyped for nine allozyme loci. The study site
and plotted against the SSAL values given in Table 1 occupied �20,000 m2 of fir woodland at an elevation
and Figure 8, a and b. If the posterior distribution was of 900 m. Begon et al. (1980) estimated the total suitable
the same as the repeated sampling distribution the HPD habitat to extend at least 107 m2. Thus the population
P values should be uniformly distributed, irrespective is clearly open, vitiating one of the assumptions of the
of treatment. This will be true asymptotically when the temporal method. Samples were taken in September
posterior distribution approximates a multivariate nor- 1975 (190 individuals), September 1976 (250 individu-
mal. It can be seen that the estimated critical P values als), and May 1977 (335 individuals). Begon et al. (1980)
are broadly uniformly distributed, which is what would estimated these corresponded to sampling intervals of
be expected under asymptotic theory. A Kolmogorov- nine and two generations, respectively. Using mark-
Smirnoff one-sample test on the 60 P values shows no release-recapture methods they estimated the census

size in their study area to be �150,000 individuals. Thesedeparture from a uniform (P � 0.93). There is no trend
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Figure 6.—A plot of the relative
error in estimation of ancestral
and current population size
against SSAL, which is a summary
of the number of loci, number of
alleles, and sample size. Simula-
tions with different configurations
in Table 1 but the same SSAL have
been shifted slightly so that those
with a higher number of loci are
on the right. The fitted line is ob-
tained using the model described
in the text. (a) Growing popula-
tion; (b) declining population.

data have also been analyzed by Anderson et al. (2000), 5000), are substantially wider than the posterior distri-
bution obtained. The trace for Ne is illustrated in Figurewho noted that the frequencies at one locus (Pgm) ap-

peared to be misreported in Begon et al. (1980), and 10 (with the initial 100 points discarded). The time
taken to obtain 10,000 points on a 500-Mhz Pentiumused only eight loci. For comparison, these same eight

loci are analyzed here (input file kindly provided by was 27 hr, although it can be seen from Figure 10 that
good estimates of the posterior distribution can be ob-Eric Anderson). The number of alleles at each locus

varied from three to six. A rectangular prior of (0, 5000) tained with substantially fewer points.
The mode of the posterior distribution is 449 withwas chosen for both NA and N0. The joint posterior

distribution for NA and N0 is shown in Figure 9. support limits of 253–925 (in this case the support limit
corresponds to the 0.922 HPD limit), which is very simi-In addition, a separate analysis was carried out with

Ne � NA � N0 to compare with the results obtained lar to the result of Anderson et al. (2000). Interestingly,
as noted by Anderson et al. this result is very differentby Anderson et al. (2000), who obtained a maximum-

likelihood estimate for Ne of 500 with support limits from that obtained by Pollak (1983), who obtained
estimates of 253 (�115) for the first interval and 244(log-likelihood 2 units less than the maximum) of 250–

975. The posterior distribution obtained with the (�123) for the second and an overall estimate of 251
(�115) for both intervals. The reason for the discrep-method described here should be directly comparable

with the likelihood curve estimated by Anderson et al. ancy between the results from the two likelihood-based
approaches and that from the moment-based approach(2000) because the limits of the rectangular priors, (0,
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Figure 7.—A plot of the log-
arithm of the Bayes factor in sup-
porting a model of population
growth against SSAL. Other de-
tails are as in Figure 6.

of Pollak (1983) is unclear (see Anderson et al. 2000 and N0 will tend to increase the Bayes factor, and nar-
rowing them will decrease it. In general the tendencyfor discussion), although it is possible that omitting Pgm

has some effect on the results. for the posterior distributions to reach an asymptote
for large NA or N0 will cause sample size to affect theThe results for the varying population model are more

in line with those of Begon et al. (1980), who used the inferences. Considering three samples, as here, if, for
example, the most recent sample is smaller than theoriginal method of Krimbas and Tsakas (1971), and

estimated Ne at 268 (�73) for the first interval and ∞ oldest sample there will be greater uncertainty in N0

and the posterior distributions may be more likely tofor the second. In Figure 9 it can be seen that there is
very little evidence of a change in population size. The asymptote, and therefore there will be a tendency to

suggest population growth, even if there is none. Injoint mode is at NA � 337 and N0 � 890. The line of
equal population sizes is well within the 90% HPD limits. fact, for the fly data, it is the oldest sample that is the

smallest, and therefore this argument does not explainThe Bayes factor in favor of growth is 5.4. The marginal
modes and HPD limits are 196 (57–913) for NA and 726 the broad posterior distribution for N0.

Northern pike: Fish scale samples taken in 1961, 1977,(112–4138) for N0. As noted above, the Bayes factor
is sensitive to the priors chosen. Thus, for example, and 1993 from Lake Escanaba, Wisconsin, were chosen

from a collection of scales kept by the Wisconsin Depart-widening the rectangular bounds equally for both NA
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Figure 8.—A plot of the critical HPD
P value of the true NA and N0 against
SSAL. Other details are as in Figure 6.

ment of Natural Resources and were genotyped at seven is at NA � 34.6, N0 � 151. The line of equal population
size is well within the 90% HPD limits. The Bayes factormicrosatellite loci. Five of these loci were biallelic and

the remaining two were triallelic. The allele frequency in favor of growth is 8.86. The modes and 90% HPD
limits for the marginals are 20.0 (2.44–104) and 126counts used in the following analysis were obtained from

the relative frequencies in Table 3 of Miller and Kapus- (8.88–766) for NA and N0, respectively. Thus, in conclu-
sion, it is unlikely that the population is shrinking (al-cinski (1997). There is good evidence that the popula-

tion is closed and the last restocking of the lake was in though this depends on the priors chosen), but there
is only very weak evidence of growth. The result here1941. The generation time was estimated by Miller

and Kapuscinski (1997) to be 4 years. The same data is similar to that obtained by Williamson and Slatkin
(1999) on the modified data, who estimated NA � 25were analyzed by Williamson and Slatkin (1999). In

their analysis, which was restricted to biallelic loci, the and N0 � 107. When interpreting the results it should
be noted that the Bayes factor is comparing the posteriorfrequencies from two allelic classes at the two triallelic

loci were combined. probabilities of growth vs. decline whereas the HPD
analysis is asking whether a point on the line of equalThe largest estimate of census size over the period

1961–1963 was 2300 individuals, and, assuming a ratio population sizes is a reasonable draw from the posterior
distribution. This latter question is more closely relatedof effective to census size of 
0.5, it seems reasonable

to assume a rectangular prior of 0–1000 for both NA to estimating a Bayes factor for growth vs. zero growth
and involves comparing models of different dimensions.and N0. The results of the analysis of the gene frequency

data are presented in Figure 11. It can be seen that Although the implementation of reversible-jump MCMC
(Green 1995) is relatively straightforward for this simplethere is good information on the ancestral effective

population size and it is unlikely to be � �150. There case, it is likely to increase convergence time and awaits
further investigation.is less information on the current population size, which

could be as high as 1000 or close to 0. The joint mode Mauritius kestrel: The sample analyzed here consisted
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Figure 9.—Posterior distribution of N0 and
NA for the fly data of Begon et al. (1980). The
contour levels are at the 0.1, 0.5, and 0.9 HPD
limits, as in Figure 5.

of a number of individuals genotyped for 12 microsatel- by Jim Groombridge. The population has undergone a
dramatic decline over the 20th century and is believedlite loci, of which 7 were polymorphic. In this data set

75 individuals sampled in 1993 and (depending on the to have been reduced to a single breeding pair in 1974.
It now numbers some 200 pairs. Although this complexloci) up to 26 museum skins dating from 1829 to 1960

were genotyped. These data are described in Groom- demography is not captured by the simple exponential
model considered here, since there are no samples be-bridge et al. (2000) and the data were kindly given to me

Figure 10.—Trace of the realized values
of Ne during an MCMC run with the fly data
of Begon et al. (1980). The initial 100 points
have been discarded.



1154 M. A. Beaumont

Figure 11.—Posterior distribution of N0 and
NA for the northern pike data. The contour
levels are at the 0.1, 0.5, and 0.9 HPD limits,
as in Figure 5.

tween 1960 and 1993, the estimates of current effective onset of population decline beginning in 1829 rather
than in the 20th century, which will also lead to overesti-population size will essentially reflect the effective size

over this period, and this will be dominated by the 1974 mation of N0.
bottleneck. For the analysis I assumed a generation time
of 4 years and rectangular priors of 0–1000 for NA and N0.
The posterior distribution is shown in Figure 12. There DISCUSSION
is very strong evidence of population decline, and NA is

Estimation of change in population size: This articleunlikely to be 
 �300 individuals and N0 is unlikely to
demonstrates that it is relatively straightforward to esti-be � �10 individuals. The joint mode from the density
mate change in population size using genetic samplesestimation is NA � 957, N0 � 4.16. The modes and 90%
taken over a time period, as also demonstrated by Wil-HPD limits for the marginals are 987 (390–1000) and
liamson and Slatkin (1999) and Wang (2001). Clearly4.26 (2.17–9.78) for NA and N0, respectively. The Bayes
a large sampling effort is needed to obtain accuratefactor in favor of decline is �9900. Nichols et al. (2001),
estimates. Although limitations on computer time pre-analyzing the same data by different methods, suggested
clude a thorough examination, this study suggests thatthat they were incompatible with the known demo-
there is an approximate equivalence of sample size,graphic history, with too much genetic variation still
number of loci, and number of alleles toward the totalpresent. They proposed that this could be explained if
sampling effort. The equivalence of number of loci andthe assumption of panmixia was invalid and that popula-
number of independent alleles on the variability oftion structure would lead to the retention of more ge-
F-statistics was first noted by Lewontin and Krakauernetic variation than expected. It is not clear whether
(1973) and has been investigated using simulations bythe results here contradict this conclusion. The value
Waples (1989), who found that it is in general a veryof N0 should reflect the 1974 bottleneck, because the
good approximation provided alleles are not close topopulation subsequently grew after this period (i.e.,
fixation (this issue is also discussed in some detail inwithout mutation, the estimate of N0 can be only the
Wang 2001). The effect of sample size is not well estab-same as or lower than that if the sample had been taken
lished. For two samples, on the basis of an approxima-immediately after the bottleneck). The 90% HPD limits
tion obtained by Pollak (1983), Waples suggests thatexclude 2 individuals for N0 and hence suggest that there
when x1ñ/Ne � √2, where ñ is the harmonic mean ofwas more than one breeding pair in 1974. However, (a)
n0 and n1, there is a general equivalence among numberthe exclusion is statistically borderline; (b) the demo-
of independent alleles at a locus, number of loci, samplegraphic model is fitted over the whole data set, and thus
size, and time between samples on the variance of esti-a poor fit in one part may influence the estimate of N0;
mates of Ne. For values 
 √2, change in sample size and(c) new mutations may lead to a tendency to overesti-

mate population sizes; and (d) the model assumes an time between samples has the greater effect, and for
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Figure 12.—Posterior distribution of N0 and
NA for the Mauritius kestrel data.

servative to use the HPD limits to exclude the possibilityvalues � √2 change in the total number of independent
of NA � N0 and reserve the use of the Bayes factoralleles, (k � 1) � (number of loci), has the greater
when it is important (e.g., for management purposes) toeffect. Obviously these results relate to the precision of
distinguish between the possibility of growth or decline.moment-based estimates of Ne, and how well these re-
Other approaches would be to use reversible-jumpsults extend to the accuracy (as measured by the relative
MCMC to compare different models or to directly esti-error) of likelihood-based estimates of changes in popu-
mate P(data) using the likelihood estimates from thelation size with time is unclear. An obvious variable that
MCMC run and use this to compare between models.needs further investigation is the number and place-
This latter approach, while straightforward to perform,ment of sampling times.
can be problematic because of the low accuracy in esti-The lack of precision in the estimation of ancestral
mation of P(data) (Pritchard et al. 2000).and current population sizes can lead to problems when

The compression of complex changes in populationinterpreting the results. It will often be the case that
size into a simple model of exponential change in popu-the likelihoods for either the current or the ancestral
lation size between the initial and final sampling periodspopulation sizes will asymptote for large values. In these
may not give an accurate reflection of the complexcases, as demonstrated in the three examples, there is
demographic changes that might be involved. In thisuncertainty in determining whether the population is
study, the assumption was made that xd � X. It is straight-actually changing in size because of the strong sensitivity
forward, using the MCMC approach to also include Xon the prior assumptions. In the case of the Mauritius
into the model at little extra computational cost. Inkestrel, even though the likelihood appears to reach an
general, the joint posterior distribution is complex, andasymptote for NA, it is reasonable to interpret the results
the marginal posterior estimates of NA and N0 tend toas showing strong evidence of population decline for
be broader. This model awaits further investigation. Anany reasonable prior. This is because there is little over-
alternative to fitting a smooth demographic model is tolap between the marginal posterior distributions for NA

look at the joint distribution of Ne’s estimated for eachand N0. For the other two cases, inferences are much
sampling interval (as in Wang 2001). Again, thereless clear. The Bayes factor approach and the use of the

HPD limits are both sensitive to the prior. For skewed should be little computational cost to doing so, but this
has not yet been studied. However, if there are manyposterior distributions the lower HPD limits are gener-

ally constrained by the mode and will therefore be less intervals, such an approach is unlikely to give a clear
indication of the underlying broad changes in popula-sensitive to the prior, but with rectangular priors there

is the problem of the HPD limits becoming undefined tion size.
An assumption of the method is that no selection iswhen the likelihood surface becomes flat. Despite this

problem (which can be avoided by using other prior operating. The use of temporal gene frequency data to
detect selection by identifying discrepant loci was firstdistributions), it is probably preferable and more con-
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suggested by Lewontin and Krakauer (1973). This estimate for Ne and confidence limits, with the Begon
et al. (1980) Drosophila data (either for the entire pe-can be achieved by a relatively straightforward extension

of the current model to use a hierarchical Bayesian riod or jointly for both periods) in a few seconds on a
standard PC (J. Wang, personal communication). Al-approach as in Storz and Beaumont (2002). Here,

each demographic parameter is allowed to vary between though Wang (2001) demonstrated only relatively small
discrepancies between the pseudo-likelihood method andloci, and it is possible to test whether the posterior

distribution of the variance includes zero with reason- the full-likelihood method in the three-allele case, it
would clearly be useful to compare the different ap-able probability. This method of analysis is useful be-

cause it (a) effectively downweights discrepant loci and proaches when there are larger numbers of alleles.
The current method makes the twin assumptions oftherefore gives more robust estimates and (b) allows

discrepant loci to be identified. no mutation and no migration. The effect of migration
has been recently analyzed by Wang and WhitlockComparison with other temporal methods: The stud-

ies of Williamson and Slatkin (1999), Anderson et al. (2003), who have extended the method of Wang (2001)
to jointly infer immigration rate and Ne from temporal(2000), and Wang (2001) have estimated likelihoods

from a Wright-Fisher model, and one question is whe- data. For populations at immigration-drift equilibrium,
the effect of immigration, if not included in the model,ther the coalescent approach used here will give similar

answers. This issue is also discussed in Berthier et al. is to produce underestimates in Ne for short intervals
between samples and overestimates in Ne for longer(2002). Obviously, since the coalescent gives the lim-

iting distribution of genealogies for the Wright-Fisher intervals. The degree of underestimation for short sam-
pling intervals is, however, slight when the populationsmodel, providing the population size is sufficiently large

relative to the sample size there should be little differ- are at equilibrium. The overestimation of Ne for larger
sampling intervals also occurs with the method that in-ence between the two approaches. In the case of the

data of Begon et al. very similar answers were obtained cludes immigration and appears unavoidable—essen-
tially, in the limit of a long interval, one is estimatingusing the coalesent method to those obtained by Ander-

son et al. (2000). Using data simulated from a Wright- the metapopulation Ne.
This study follows a long line of articles from KrimbasFisher model Berthier et al. (2002) demonstrate that

the median of point estimates obtained by the coales- and Tsakas (1971), which estimate Ne from changes in
gene frequencies, ignoring mutation. The utility ofcent are generally very close to the true values for Ne �

�20. Of course, many species will not conform to a these purely drift-based approaches lies in their relative
simplicity of implementation and reasonable computa-Wright-Fisher model anyway and therefore the question

of which approach is more applicable may be difficult tional speed in comparison with models that include
mutation. A further benefit is that they allow the sameto judge.

The efficiency of the coalescent approach scales with model to be applied to different classes of marker. When
used with markers that have a low mutation rate, suchthe number of coalescences within the time interval,

which will depend on sample size and X/Ne. Unlike the as single-nucleotide polymorphisms, these drift-based
models may be particularly useful in the analysis of hu-Wright-Fisher methods it does not scale with X and Ne

independently (although this difference should disap- man demographic history. The effect of ignoring muta-
tion on population size estimates, and, in particular, topear when X and Ne are large) and scales only weakly

with the number of alleles or number of samples. Use of what extent it will lead to apparent changes in popula-
tion size, awaits further investigation. This assumptionMCMC means that more complex demographic models

can be handled with little extra computational burden. is probably reasonable for studies conducted on an “eco-
logical” timescale, even for microsatellite markers, whichPotentially, the scaling of length of computation of

Wright-Fisher methods with Ne is roughly quadratic for tend to have a high mutation rate. However, with the
increasing ability to extract DNA from ancient samples,the biallelic case, and this increases very dramatically

with increasing number of alleles. Generally, in terms it is clearly desirable to take mutation into account. The
method described by Drummond et al. (2002), whichof computational speed, it would appear that the coales-

cent method compares favorably with that of Anderson is suitable for sequence data, is an important step in
this direction. All of the drift-based models could beet al. (2000) or Williamson and Slatkin (1999). How-

ever, a weakness of the coalescent approach is its reli- incorporated in some general genealogical MCMC
scheme, which would then naturally provide the priorance (as also in Anderson et al. 2000) on Monte Carlo

methods. By approximating the likelihood by the prod- for the baseline gene frequencies from the mutation
model. For microsatellites, one route to incorporatinguct of biallelic likelihoods and by using a number of

computational approximations and improvements to the effects of mutations is to extend the MCMC model
of Beaumont (1999) to allow for samples to be takenthe method of Williamson and Slatkin (1999), Wang’s

(2001) method appears to be substantially faster than at different times. However, given the disadvantages of
the MCMC approach it might be better to simply extendeither the coalescent method here or the other Wright-

Fisher methods. For example, the method of Wang the GIMH method described in the current study to
incorporate mutations.(2001) can be used to calculate a maximum-likelihood
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Computational methods: The study described here each time the parameters are updated. A potentially
large improvement would be to update the demo-uses a mixture of importance sampling and MCMC to
graphic parameters independently of the genealogicalobtain posterior distributions for demographic parame-
history. This would require modification of the impor-ters, and it follows the basic methodology of O’Ryan
tance weights as discussed after the presentation ofet al. (1998), Ciofi et al. (1999), Chikhi et al. (2001), and
Equation 6, either using Tavaré’s (1984) Equation 6.1Berthier et al. (2002), with one significant modification.
for each interval between samples or using the densitiesA minor additional modification is that, rather than
for the time intervals. Overall, however, even withoutintegrating out the unknown population gene frequen-
these potential improvements, the GIMH method offerscies x using MCMC, as done in the earlier studies, the
a straightforward way to carry out a Bayesian analysisintegration is performed analytically using the multi-
with a genealogical model, on the basis of independentnomial Dirichlet. Trial simulations suggest that this
sampling of genealogies.leads to a small improvement in efficiency.

The most important modification arises from the I am grateful to David Balding, Claire Calmet, Lounès Chikhi,
Jean-Marie Cornuet, Kevin Dawson, Richard Nichols, Geoff Nicholls,demonstration that GIMH can be used with IS sizes
Jinliang Wang, and two anonymous reviewers for their helpful com-greater than one. This study suggests that GIMH should
ments on previous versions of the manuscript. This work was sup-always be used in preference to MCWM, with or without
ported in part by Natural Environment Research Council grant NER/bias correction. A particular problem with the latter two
B/S/2000/00669 awarded to Ken Norris, M.A.B., and Mike Bruford.

approaches is that there is no intrinsic way of determin-
ing (other than by trial simulations) whether the num-
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Demographic model: A model of exponential growth
� p̃ 2

j (D|�) SE2

(1 . . . j�1)
[p̃(D|�)] is assumed, where

p̃
(1 . . . j)

(D|�) � p̃j(D|�) p̃
(1 . . . j�1)

(D|�), (A2) Nx � N0e�bx,

x is the time measured in units of generations backwardwhere j � 1 . . . , k and SE[p̃(D|�)] � SE(1 . . . k)[p̃(D|�)].
from the current time, b is the growth rate, and N0 isProof that the “grouped”-independence Metropolis-
the current population size. We assume throughout theHastings sampler gives the correct marginal density for
article that the organisms are diploid. At time X indemographic parameters: The aim here is to show that
the past the population is assumed to have been at animplementation of GIMH samples demographic param-
ancestral size NA. From this it is possible to reparameter-eters, �, from the correct posterior density for any n �
ize to give1 sampled genealogical histories. To ease the notation

I assume uniform improper priors on � and thus I wish Nx � N0r�x/X,
to estimate the posterior distribution p(�|D), which is
proportional to the likelihood P(D|�) � 	 p(D, G|�)dG, where r � N0/NA. In the case N0 � NA, the effective
where the integration is over all genealogical histories population is referred to as Ne. The harmonic mean
G that could have given rise to the data. Also, differing population size over the interval [xi�1, xi] is given by
slightly from the notation in Equation 3, prime (�) is
used to denote trial updates. Ñi �

xi � xi�1

	xixi�1
(1/N0r�y/X)dy

�
(xi � xi�1)N0log(r)r�(xi�1)/X

X(r (xi�xi�1)/X � 1)
,

In the case of GIMH, the Metropolis-Hastings ratio is

(A3)�h
j�1 (p(D, G�j |��)/q(D, G�j |��))

�h
j�1 (p(D, Gj|�)/q(D, Gj|�))

p(�|��)
p(��|�)

,
and when xi�1 � 0, and xi � X,

which can be simply rewritten as
Ñ �

N0log(r)
r � 1

.
�j (p(D, G�j |��)�i�j q(D, G�i |��))

�j (p(D, Gj|�)�i�j q(D, Gi|�))
�i q(D, Gi|�)

�i q(D, G�i |��)
p(�|��)
p(��|�)

.

Derivation of the likelihood: The derivation of the
If we regard the sampling procedure as ordered (i.e., likelihood (5) follows that in Berthier et al. (2002) and
the sampled genealogies occupy “slots” j � 1 . . . , h), is expanded to consider more than one interval between
then the two right-hand terms are the correct Hastings samples.
terms for the sampling process. Given that this is the The probability of obtaining ci coalescences in any
case, it then follows that the target marginal density interval [xi�1, xi], p(ci|(xi � xi�1)/2Ñi), is given by Tavaré
must be given by the numerator and denominator of (1984, Equation 6.1). Although this was derived on the
the left-hand term. Looking at individual terms in the assumption of a stable population of size N, it is also
sum, for any jth position the density is proportional to applicable to populations whose size is changing be-

cause the distribution of waiting times for coalescence
in this case is the same as that for a stable population� . . . � p(D, Gj|�)�

i�j
q(D, Gi|�)dG1 . . . dGh,

once each infinitesimal of time is expressed as the recip-
rocal of the population size at that point (Griffithswhere the integration is over all genealogical histories
and Tavaré 1994b; Marjoram and Donnelly 1997),in slots 1 . . . , h. This evaluates to
and hence we need only replace N by Ñi from (A3) in
the previous section.p(D|�)� . . . ��

i�j
q(D, Gi|�)dG1 . . . dGh (excluding dGj),

Given fi�1, the probability of obtaining the allele fre-
quency count among both the base lineages and the

which is sample at the ith sample point (without regard to how
they are partitioned) is given by

P(D|�) since � q(D, G|�)dG � 1, by construction.

Since this proportionality is true for all terms, it will p(f i � ai|f i�1, ci�1) �
� k

j�1 �f ij � aij � 1
f (i�1)j � 1 �

�hi � ni � 1
hi�1 � 1 �

, 0 � i � d � 1
also be true for the sum. The key point is that if we
concentrate on the jth slot, marginal to what is happen-
ing in the other slots, the MCMC is sampling from the

(A4)

joint distribution p(�, G |D), and this follows because
(Slatkin 1996; Nielsen et al. 1998; O’Ryan et al. 1998;the importance sampling function integrates to 1 over
Saccheri et al. 1999).all genealogical histories, irrespective of �. This result

Given both sets of lineages at the ith sample point, theis quite general and GIMH could be used to perform
probability of partitioning the frequency count betweengenealogical MCMC with an independence sampler on
the base lineages and the sample is given by the hyper-the full range of problems for which MCMC and impor-

tance sampling have previously been applied. geometric distribution
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standard Monte Carlo coalescent simulations, given in
p(ai, fi|ai � fi) �

ni!hi!
(ni � hi)!�

k

j�1

(aij � fij)!
aij! fij!

, 0 
 i � d. the next section, and the genealogical history is sampled
backward from the data using the method of Griffiths(A5)

and Tavaré. The jth allelic class is chosen with proba-At the final sample point, d, the sample and base
bilitylineages are taken to be a multinomial random draw

from the population gene frequency distribution x. In
q(gi(e�1)|gie) �

giej � 1
sie � mi

,general, however, x is unknown, and it is preferable to
assume that the sample has a marginal distribution over

where mi (�k) is the number of allelic classes in whichall possible values of x, assuming a Dirichlet prior. This
at least one representative is in fi � ai. Individual termsis given by the multinomial Dirichlet (obtained by inte-
of the importance ratio are thengrating the product of the multinomial and the Dirichlet

prior over x),
wi(e�1) �

p(gie|gi(e�1))
q(gi(e�1)|gie)

�
sie � mi

sie � 1
p(ad � fd) �

�(nd � hd)�(bk)
�(nd � hd � bk) �

k

j�1

�(adj � fdj � b)
�(adj � fdj � 1)�(b)

,
(O’Ryan et al. 1998). Note that the importance ratio
can be zero if genealogical histories are sampled with

(A6) fewer lineages than alleles in the data.
The number of coalescent events occurring before thewhere b is taken here to be 1 [equivalent to assuming
ith data sample, ci, are sampled by simulating coales-a Dirichlet prior of D(1, . . . , 1)]. In earlier articles using
cence times using the model described in Beaumontthis methodology (O’Ryan et al. 1998; Ciofi et al. 1999;
(1999). The details are given in the next section. Thus,Chikhi et al. 2001; Berthier et al. 2002), the multinom-
when the time of a coalescent event is generated thatial was used and then the integration was performed by
succeeds a sampling time, xi, the time is set to xi, theMetropolis-Hastings simulation.
number of coalescent events between xi�1 and xi is re-Importance sampling: Extending the approach of
corded as ci, the data lineages ai are added to the currentBerthier et al. (2002) to multiple samples, Equation
lineages fi, and the partitioning probability (A5) is calcu-A4, above, can be rewritten as
lated. At the final data sample, the probability of the
allele frequency count ai � fi is given by (A6).

p(f i � ai|f i�1) � �
gi

�p(f i � ai|gi0) �
ci�1�1

e�0
p(gie|gi(e�1))�, Simulation of coalescent times: The method for simu-

lating coalescent times described here is similar to that
of Marjoram and Donnelly (1997). Define tf � X/where gie gives the allele frequency count among lin-
(2N0), ti � xi/(2N0), and r � N0/NA. The uniform ran-eages at the eth coalescent event after the ith sample
dom variable U is simulated from (0, 1). Define t � �point, and gi(ci�1) � fi�1. The term p(fi � ai|gi0) � 1 when
�2 log(U)/(nl(nl � 1)). To avoid the singularity at r �fi � ai � gi0, and is 0 otherwise. Looking forward in
1, if |r � 1| 
 10�5, ti�1 
 t� � ti. Otherwise, if ti � tftime, whenever a coalescent event occurs a lineage is
and t � � (r � r ti/tf)tf/log(r),chosen at random and duplicated. Thus if the lineage

ti�1 � log(t �log(r)/tf � r ti/tf)tf/log(r).is in the jth allelic class

If ti � tf and t � � (r � r ti/tf)tf/log(r),
p(gie|gi(e�1)) �

gi(e�1)j

si(e�1)

�
giej � 1
sie�1

,
ti�1 � (t� � (r � r ti/tf)tf/log(r))/r � tf.

where si(e�1) � � k
l�1gi(e�1)l . Otherwise

ti�1 � t �/r � ti.To estimate the likelihood, the ci are sampled using


