Skip to main content
Genetics logoLink to Genetics
. 2003 Jul;164(3):1119–1128. doi: 10.1093/genetics/164.3.1119

Segregation and the evolution of sex under overdominant selection.

Elie S Dolgin 1, Sarah P Otto 1
PMCID: PMC1462619  PMID: 12871919

Abstract

The segregation of alleles disrupts genetic associations at overdominant loci, causing a sexual population to experience a lower mean fitness compared to an asexual population. To investigate whether circumstances promoting increased sex exist within a population with heterozygote advantage, a model is constructed that monitors the frequency of alleles at a modifier locus that changes the relative allocation to sexual and asexual reproduction. The frequency of these modifier alleles changes over time as a correlated response to the dynamics at a fitness locus under overdominant selection. Increased sex can be favored in partially sexual populations that inbreed to some extent. This surprising finding results from the fact that inbred populations have an excess of homozygous individuals, for whom sex is always favorable. The conditions promoting increased levels of sex depend on the selection pressure against the homozygotes, the extent of sex and inbreeding in the population, and the dominance of the invading modifier allele.

Full Text

The Full Text of this article is available as a PDF (140.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal A. F., Chasnov J. R. Recessive mutations and the maintenance of sex in structured populations. Genetics. 2001 Jun;158(2):913–917. doi: 10.1093/genetics/158.2.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altenberg L., Feldman M. W. Selection, generalized transmission and the evolution of modifier genes. I. The reduction principle. Genetics. 1987 Nov;117(3):559–572. doi: 10.1093/genetics/117.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Antezana M. A., Hudson R. R. Before crossing over: the advantages of eukaryotic sex in genomes lacking chiasmatic recombination. Genet Res. 1997 Aug;70(1):7–25. doi: 10.1017/s0016672397002875. [DOI] [PubMed] [Google Scholar]
  4. Barton N. H., Charlesworth B. Why sex and recombination? Science. 1998 Sep 25;281(5385):1986–1990. [PubMed] [Google Scholar]
  5. Charlesworth B., Charlesworth D. The genetic basis of inbreeding depression. Genet Res. 1999 Dec;74(3):329–340. doi: 10.1017/s0016672399004152. [DOI] [PubMed] [Google Scholar]
  6. Charlesworth D., Charlesworth B., Strobeck C. Selection for recombination in partially self-fertilizing populations. Genetics. 1979 Sep;93(1):237–244. doi: 10.1093/genetics/93.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chasnov J. R. Mutation-selection balance, dominance and the maintenance of sex. Genetics. 2000 Nov;156(3):1419–1425. doi: 10.1093/genetics/156.3.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deng H. W., Fu Y. X., Lynch M. Inferring the major genomic mode of dominance and overdominance. Genetica. 1998;102-103(1-6):559–567. [PubMed] [Google Scholar]
  9. HALDANE J. B. S. The association of characters as a result of inbreeding and linkage. Ann Eugen. 1949 Oct;15(1):15–23. doi: 10.1111/j.1469-1809.1949.tb02418.x. [DOI] [PubMed] [Google Scholar]
  10. Hill W. G., Robertson A. The effect of linkage on limits to artificial selection. Genet Res. 1966 Dec;8(3):269–294. [PubMed] [Google Scholar]
  11. Holsinger K. E., Feldman M. W. Linkage modification with mixed random mating and selfing: a numerical study. Genetics. 1983 Feb;103(2):323–333. doi: 10.1093/genetics/103.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Keightley P. D. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics. 1994 Dec;138(4):1315–1322. doi: 10.1093/genetics/138.4.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kirkpatrick M., Jenkins C. D. Genetic segregation and the maintenance of sexual reproduction. Nature. 1989 May 25;339(6222):300–301. doi: 10.1038/339300a0. [DOI] [PubMed] [Google Scholar]
  14. MUKAI T., CHIGUSA S., YOSHIKAWA I. THE GENETIC STRUCTURE OF NATURAL POPULATIONS OF DROSOPHILA MELANOGASTER. II. OVERDOMINANCE OF SPONTANEOUS MUTANT POLYGENES CONTROLLING VIABILITY IN HOMOZYGOUS GENETIC BACKGROUND. Genetics. 1964 Oct;50:711–715. doi: 10.1093/genetics/50.4.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mukai T. The genetic structure of natural populations of Drosophila melanogaster. VI. Further studies on the optimum heterozygosity hypothesis. Genetics. 1969 Feb;61(2):479–495. doi: 10.1093/genetics/61.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Otto Sarah P., Lenormand Thomas. Resolving the paradox of sex and recombination. Nat Rev Genet. 2002 Apr;3(4):252–261. doi: 10.1038/nrg761. [DOI] [PubMed] [Google Scholar]
  17. Roff Derek A. Inbreeding depression: tests of the overdominance and partial dominance hypotheses. Evolution. 2002 Apr;56(4):768–775. doi: 10.1111/j.0014-3820.2002.tb01387.x. [DOI] [PubMed] [Google Scholar]
  18. Uyenoyama M. K., Waller D. M. Coevolution of self-fertilization and inbreeding depression. II. Symmetric overdominance in viability. Theor Popul Biol. 1991 Aug;40(1):47–77. doi: 10.1016/0040-5809(91)90046-i. [DOI] [PubMed] [Google Scholar]
  19. Weir B. S., Cockerham C. C. Mixed self and random mating at two loci. Genet Res. 1973 Jun;21(3):247–262. doi: 10.1017/s0016672300013446. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES