
Copyright  2003 by the Genetics Society of America

Deleterious Mutations and the Genetic Variance of Male
Fitness Components in Mimulus guttatus

John K. Kelly1

Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045

Manuscript received November 11, 2002
Accepted for publication March 10, 2003

ABSTRACT
Deleterious mutations are relevant to a broad range of questions in genetics and evolutionary biology.

I present an application of the “biometric method” for estimating mutational parameters for male fitness
characters of the yellow monkeyflower, Mimulus guttatus. The biometric method rests on two critical
assumptions. The first is that experimental inbreeding changes genotype frequencies without changing
allele frequencies; i.e., there is no genetic purging during the experiment. I satisfy this condition by
employing a breeding design in which the parents are randomly extracted, fully homozygous inbred lines.
The second is that all genetic variation is attributable to deleterious mutations maintained in mutation-
selection balance. I explicitly test this hypothesis using likelihood ratios. Of the three deleterious mutation
models tested, the first two are rejected for all characters. The failure of these models is due to an excess
of additive genetic variation relative to the expectation under mutation-selection balance. The third model
is not rejected for either of two log-transformed male fitness traits. However, this model imposes only
“weak conditions” and is not sufficiently detailed to provide estimates for mutational parameters. The
implication is that, if biometric methods are going to yield useful parameter estimates, they will need to
consider mutational models more complicated than those typically employed in experimental studies.

The long-debated question of whether or not genetic variation in fitness primarily reflects contribu-
tions of low-frequency deleterious alleles maintained by the balance between selection and mutation,
or has a substantial contribution from variants maintained at intermediate frequencies by selection,
is still unanswered.

Charlesworth and Hughes (2000)

DELETERIOUS mutations have been a focus of study depends not only on the rate that deleterious mutations
in both genetics and evolutionary biology for most occur, but also on the magnitude of their effects, on

of the history of each field (Crow 1993). Muller (1950) dominance relations, and on how deleterious alleles at
argued that modern medicine would allow deleterious different loci combine to influence the overall fitness
mutations to eventually accumulate to intolerable levels of an individual.
within the human species unless countered by “a rationally The primary mutational parameters are U, h, and s.
directed guidance of reproduction.” Muller’s claims initi- The genomic deleterious mutation rate, U, equals 2��i,
ated a prolonged debate with other geneticists, most nota- where �i is the deleterious mutation rate at the ith locus,
bly Theodosius Dobzhansky (see Crow 1987). Since the and the summation is taken over all loci affecting fitness.
Muller-Dobzhansky dispute, biologists have hypothe- The selection coefficient, s, is the proportional fitness
sized that harmful mutations may be critical to a wide reduction caused by the mutation when in homozygous
range of ecological and evolutionary phenomena. These form. The dominance coefficient, h, characterizes muta-
include the evolution of sex, mating systems, and mate tional effects in heterozygotes (see Table 1). A mutation
choice (Pamilo et al. 1987; Kondrashov 1988; Charles- with s � 0.05 and h � 0.2 reduces fitness by 1% in
worth et al. 1990b; Uyenoyama et al. 1992); the evolu- heterozygotes and 5% in homozygotes. As mutational
tion of recombination rates (Kondrashov 1984; Pals- effects are likely to vary among loci (and among differ-
son 2002); the persistence of small populations (Lande ent mutations at the same locus), estimates for s and h
1994; Lynch et al. 1995; Kondrashov 1995); and the may actually represent average values for mutational
maintenance of both molecular and quantitative trait effects. However, because the values of h and s for a
variation (Lewontin 1974; Turelli 1984; Charles- given allele are assumed to be constant, this is essentially
worth et al. 1993). The validity of these hypotheses a model of unconditionally deleterious mutations. Given

the range of applications outlined above, accurate esti-
mates for U, h, and s will shed light on a number of
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66045. E-mail: jkk@ku.edu At least three different approaches have been devel-
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oped to estimate the rate and effects of deleterious Biometric methods use patterns of phenotypic varia-
tion in fitness components to infer mutational parame-mutations: mutation-accumulation experiments, molec-

ular evolution surveys, and biometric analyses. These ters (Morton et al. 1956; Charlesworth et al. 1990a;
Deng and Lynch 1996). This approach is grounded inmethods, briefly summarized below, each have their re-

spective strengths and weaknesses. They are applicable to population genetic models of mutation-selection bal-
ance (e.g., Haldane 1927). Biometric quantities, suchdifferent sorts of data. The procedures also differ in the

specific parameters that are estimated and in their un- as the amount of genetic variation in fitness and the
magnitude of inbreeding depression, can be expressedderlying assumptions regarding genetics and evolution.

Mutation-accumulation experiments estimate muta- as functions of U, h, and s. Estimates of inbreeding de-
pression or the genetic variance can thus be used totional parameters from the observed genetic divergence

of initially identical lines (Muller 1928; Bateman 1959; estimate mutational parameters by inverting the popula-
tion genetic equations. For example, Deng and LynchMukai et al. 1972). These lines are maintained at small

population sizes and diverge due to the random accu- (1996) derive simple estimators for U, h, and s from the
means and genetic variances of inbred and outbredmulation of new mutations. Estimates for mutational

parameters can then be extracted from the rate and individuals within an experimental population.
Biometric methods are generally less labor intensiveoverall pattern of divergence through a variety of statisti-

cal procedures (Keightley 1994; Garcia-Dorado than mutation-accumulation experiments. More impor-
tantly, these experiments can potentially yield estima-1997; Lynch and Walsh 1998; Shaw et al. 2002, and

references therein). Mutation accumulation is the most tors that are relatively low in bias for a wide range of
mutational parameters (Deng 1998; Deng et al. 2002).direct of the estimation methods and these experiments

have provided most of our information regarding muta- However, like the two previous methods, biometric
methods are also encumbered with potentially limitingtional parameters (reviewed by Simmons and Crow

1977; Lynch and Walsh 1998, pp. 343–348). Unfor- assumptions. Two particularly important assumptions
are (1) that all genetic variation in fitness is maintainedtunately, mutation accumulations are highly labor

intensive. The parameter estimates are subject to large through mutation-selection balance and (2) that experi-
mental inbreeding changes genotype frequencies with-statistical uncertainty. Perhaps most importantly, muta-

tion-accumulation experiments may fail to detect muta- out changing allele frequencies. Assumption 1 will break
down if balancing selection of some form (e.g., hetero-tions with small effects on fitness (Keightley and Eyre-

Walker 1999; Lynch et al. 1999). As a consequence, U zygote advantage, frequency-dependent selection, spa-
tial and/or temporal variation in selection, genotype-may be substantially underestimated and s substantially

overestimated. by-environment variation, etc.) maintains a substantial
fraction of the genetic variance in fitness. If this is so,The molecular survey method is based on the rates

of synonymous and nonsynonymous gene sequence evo- biometric quantities may deviate substantially from their
expected values given U, h, and s. Assumption 2 breakslution within an evolutionary lineage (Kondrashov and

Crow 1993; Eyre-Walker and Keightley 1999). If syn- down if deleterious alleles are eliminated or “purged”
from the experimental population so that the frequen-onymous mutations can be treated as selectively neutral,

an estimate for U can be obtained from the deficiency of cies of deleterious mutations differ between inbred and
outbred individuals. This will bias parameter estimates.nonsynonymous substitutions (relative to synonymous

substitutions) within the genome as a whole. Molecular This article describes a biometric analysis of male
fitness measures in Mimulus guttatus, a wildflower com-surveys measure the time-integrated effects of selection

(as opposed to the direct effects of mutations on viability monly known as yellow monkeyflower. My purpose is to
address both of the potential pitfalls associated with theand fertility) and can thus potentially detect very weakly

selected mutations. A second advantage is that infer- biometric method. Mutational parameters are estimated
from a breeding experiment that uses randomly ex-ences are based on the actual historical results of natural

selection (genetic substitutions). In contrast, the other tracted, highly inbred lines as parents. This effectively
eliminates the problem of purging within the experiment.methods are based on measurements of fitness surro-

gates (e.g., viability, female fertility, male mating success, Allele frequencies should not differ (consistently) be-
tween outbred and inbred plants. Second, the experi-etc.) that are usually measured under controlled labora-

tory conditions. On the negative side, the molecular ment is designed so that the number of “empirical com-
parisons” is greater than the number of unknownsurvey analysis depends on several unrealistic assump-

tions. In particular, the method assumes that adaptive parameters. This provides the degrees of freedom neces-
sary to test the adequacy of a model prior to parameteramino acid substitutions do not occur and that all synon-

ymous changes are strictly neutral; i.e., there is no selec- estimation. Following the suggestion of Deng and Lynch
(1996, p. 358), I use likelihood ratios to test the assump-tion on codon usage (Akashi 1997). Eyre-Walker and

Keightley (1999) argue that deviations from these as- tion that all genetic variation is maintained through
mutation-selection balance.sumptions will lead to underestimates for U. As a conse-

quence, molecular surveys may provide a robust lower Biometric methods depend on specific features of the
experimental design such as the type and levels of in-bound for this quantity.
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breeding, the sorts of experimental crosses, etc. In the
following sections, I first describe the experimental de-
sign and define the biometric quantities that can be
estimated from this design. I then derive the expected
values for these quantities under various forms of the
deleterious mutation model (DMM). Next, I describe
the likelihood-based methods for parameter estimation.
A parametric bootstrapping procedure is developed,
both to assess the adequacy of the experimental design
and to perform hypothesis tests (obtain an appropriate
P value for the various likelihood ratios). Finally, the
statistical model is applied to phenotypic data from M.
guttatus. The characters are flower size and two male
fitness measures, pollen production and the pollen size
index (PSI). The PSI is strongly correlated with pollen
viability in M. guttatus (Kelly et al. 2002).

BIOMETRIC QUANTITIES AND THEIR
EXPECTED VALUES

Figure 1.—The relationships among individuals within anConsider a breeding design in which the parents are
extended family derived from a particular set of lines (L1, L2,randomly extracted, fully homozygous inbred lines. Such
and L3). Individual progeny, denoted by solid circles, are

lines can be formed in several different ways. For select contained within families. Dashed lines denote lines of descent
species, completely homozygous lines can be formed (a double line for selfed progeny). Of the three parental lines,

L1 is the sire for the outbred families, while L2 and L3 arein a single generation via chromosomal manipulations,
the dams.gametophytic self-fertilization, or double-haploid for-

mation. Repeated rounds of inbreeding provide a more
generally applicable, albeit slower, method of line for-

also self-fertilized to produce three inbred families. Themation. Successive generations of self-fertilization can
inbred families are unrelated to each other, but eachyield lines that are almost fully inbred in only five to
is related to one or both of the outbred families. Thissix generations. The parental lines used in this study
same mating scheme is applied to other sets of lineswere developed by John Willis through six successive
generating a large number of extended families.generations of self-fertilization (Willis 1999a,b).

The measurement of progeny from this design pro-Regardless of the method, genetic purging is likely
vides data sufficient to estimate the mean phenotype ofto accompany the formation of the inbred lines. Lines
both inbred and outbred plants as well as a number ofthat become homozygous for mutations that are lethal
(co)variance components. Let � denote the differenceor cause sterility in homozygous form will go extinct
in mean phenotype between inbred and outbred plants.and eliminate these alleles from the experimental popu-
Four different comparisons among relatives can belation. In contrast, deleterious mutations with smaller
quantified as covariances (Figure 1). CSS is the covari-effects should fix randomly within lines (Willis 1999a,b).
ance among plants within selfed families (selfed sib-As a consequence, a genetic analysis using these lines
lings). CFS is the covariance among plants within outbredas parents is informative only about the nonlethal and
families (full siblings). COS is the covariance between out-nonsterile fraction of mutations. Parameter estimates
bred plants and their inbred siblings (related throughare thus specific to this class of mutations, termed “detri-
a single parent). Finally, CHS is the covariance of plantsmentals” by Simmons and Crow (1977).
from different outbred families (half-siblings relatedA major advantage of using fully inbred lines as par-
through the sire line). These C terms are “observationalents in a biometric breeding design is that they are
variance components” in the terminology of Falconeralready fully purged. Subsequent inbreeding or out-
(1989). The observational components can be ex-crossing should result in predictable changes in homo-
pressed as a function of the “causal components” VA,zygosity without changes in allele frequency (apart from
CAD, VD, and VDI (see Cockerham and Weir 1984; Shawthe random changes due to finite sample sizes). Con-
et al. 1998; Kelly and Arathi 2003). I do not use thesesider the breeding design described by Figure 1. Each
relationships here. Instead, the observational compo-“extended family” is constituted from the progeny of
nents are expressed directly as functions of the muta-three randomly selected inbred lines (labeled L1, L2,
tional parameters (see Equations 1–7 below).and L3). One line (L1) is assigned as the “sire” and is

Estimates for � and the observational components aremated to the other two lines, the “dams.” The progeny of
used to assess the sufficiency of a particular deleteriousthese crosses comprise two distinct but related outbred

families (the families in Figure 1, bottom). Each line is mutation model to explain genetic variability. If demon-
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TABLE 1 tively. In this situation, trait values should be log-
transformed prior to analysis. As the appropriate scaleThe basic parameterization of a single locus in which the
is not obvious a priori, here I apply the methods to bothdeleterious allele (a) has population frequency q
log-transformed and untransformed data (see results
and discussion). Second, each component is linearFrequency in a Phenotypic effect

randomly mating on a fitness in qi because I have neglected terms of order qi
2 (see

Genotype population Fitness component appendix a). This approximation should be quite accu-
rate because deleterious alleles will not usually obtainAA p 2 1 0
high frequencies in a large population.Aa 2pq 1 � hs ��hs

aa q2 1 � s ��s The frequency of deleterious alleles at a given locus
(q) depends on the mutational parameters. I now as-See text for additional details.
sume that the natural population is large, randomly
mating, and in mutation-selection balance equilibrium.
I further assume that deleterious mutations have somestrated as sufficient, the same data can then be used to
phenotypic effect in heterozygotes (h � 0), an assump-estimate the mutational parameters of that model. For
tion supported by genetic data (Simmons and Crowboth purposes, it is necessary to express �, CSS, CFS, COS, 1977). As shown by Haldane (1927), the expected fre-and CHS as functions of the mutational parameters. This
quency qi of a partially recessive mutation is equal torequires a model for genotypic effects on both pheno-
�i/(hisi). Substitution of this expression into Equationstype and fitness. Table 1 summarizes the standard fitness
1 yields predictions for the biometric quantities in termsmodel for an individual locus: the deleterious allele (a)
of mutational parameters.exists at population frequency q. Following Charles-

The final step is to characterize the mutational spec-worth and Hughes (2000), I distinguish the evolution-
trum, the joint density function of �i, hi, and si acrossary fitness of a genotype (determined by h and s) from
loci. I consider three alternative models. In model I,its contribution to a measurable fitness component. The
mutational effects are fixed and do not vary across loci.quantity � “translates” between phenotype and fitness.
In model II, mutational effects vary according to anPredicted values for �, CSS, CFS, COS, and CHS can be
exponential distribution. Model III considers variableobtained by applying quantitative genetic models devel-
mutational effects without imposing distributional as-oped for inbreeding populations (Cockerham and
sumptions.Weir 1984; see also Harris 1964; Jacquard 1974). As

Model I: All new mutations have fixed effects �, h,these quantities depend on the contributions of many
and s. With constant mutational effects,loci, it is necessary to subscript the various quantities in

Table 1. As shown in appendix a,
� � U��1 �

1
2h�, (2a)

� � � �
i

�iqisi(1 � 2hi), (1a)

CSS �
U�2s
2h

, (2b)CSS � �
i

�2
i qis 2

i , (1b)

COS � �
i

�2
i qi his 2

i , (1c) COS �
U�2s

2
, (2c)

CFS � 2�
i

�2
i qi(hisi)2, (1d)

CFS � U�2hs , (2d)

CHS �
CFS

2
, (2e)CHS � �

i
�2

i qi(hisi) �
1
2
CFS, (1e)

where qi, �i, hi, and si are the allele frequency and effects where U � 2��i as defined previously.
The five estimable biometric quantities are functionsassociated with the ith locus (see also Charlesworth

and Hughes 2000). The summations are taken over of only three unknown quantities: U�, h, and s�. Because
both U and s are always included in a product with �,all loci harboring deleterious alleles. These equations

define the genetic covariances among relatives. Environ- neither parameter can be estimated individually (unless
a particular value for � is assumed). Only the compositemental factors may also affect the phenotypic resem-

blance of relatives. In this treatment, these effects are parameters, U� and s�, can be estimated. The fact that
the five measurable statistics are a function of only threecharacterized by other variables (see hypothesis test-

ing and parameter estimation). unknowns allows us to test the sufficiency of model I.
The model imposes the constraints that CFS � 2COS

2/CSSEquations 1 depend on two important assumptions.
The first is that the loci contribute additively to the pheno- and CHS � 1⁄2CFS.

Model II: New mutations vary in their effects ac-type. Oftentimes, it is assumed that the effects of delete-
rious mutations at different loci combine multiplica- cording to a simple probability model. Following Deng
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and Lynch (1996), model II posits an exponential den- magnitudes of the biometric quantities without an ex-
plicit model of mutational effects. As long as deleterioussity for s,
alleles are rare and hi � 0.5 at all loci, then Equations
1 imply that COS � 1⁄2CSS, CFS � COS, and CHS � 1⁄2CFS.f (s) �

1
s
Exp��s

s � , (3)
Model III is not sufficiently detailed to allow parameter
estimation. However, a model with these constraintswhere s is the average homozygous effect. Since muta-
can be tested against the unconstrained model. Thetions with larger effects tend to be more recessive
conditions associated with model III are “weak” because(Mackay et al. 1992; Caballero and Keightley 1994),
they may often hold even if a substantial portion of thethe dominance coefficient is a function of s,
variance in fitness is maintained by balancing selection.

h(s) � 1⁄2Exp(Ks), (4)

where (�1/s) � K � 0. Deng and Lynch (1996) suggest STUDY SPECIES AND METHODS
a value of K � �13 from a consideration of genetic

M. guttatus (2n � 28; Scrophulariaceae) is a smalldata. Here, it is a parameter to be estimated from the
wildflower, increasingly used as a model organism fordata.
genetic studies of floral variation and the evolution ofThe parameters of model II are U, K, s, and �. I
plant mating systems (Macnair and Cumbes 1989; Rit-assume that �i is the same across loci. The average domi-
land 1989; Carr and Fenster 1994; Fenster and Rit-nance of new mutations, h, is
land 1994; Robertson et al. 1994). It occurs through-
out western North America and local populations may

h �
1

2(1 � K s)
. (5) be either annual or perennial. The plants of this study

are derived from Iron Mountain, which is a large, annual
Integrating over the distributions of mutational effects (or winter annual) population located in the Cascade
(see appendix b), we obtain predicted values for the Mountains of central Oregon (see Willis 1996, 1999a,b).
biometric quantities: M. guttatus is a self-compatible, but the Iron Mountain

population is predominantly outcrossing (Willis 1993b).
� � U��1 �

1
1 � K s� (6a) John H. Willis initiated �1200 independent lines of

M. guttatus in August of 1995. Each line was founded
from the seed set of a separate field-collected plant fromCSS �

U�2s
(1 � K s)2

(6b)
Iron Mountain. Each line was subsequently maintained
in the greenhouse by single-seed descent (self-fertilization)
for six generations. Six successive generations of self-fertil-COS �

U�2s
2

(6c)
ization yield an inbreeding coefficient of �0.98 and I
treat the parents as fully inbred (f � 1) for the purpose

CFS �
U�2s

2(1 � K s)2
(6d) of calculating covariances among relatives. As expected,

these lines are almost completely homozygous at highly
polymorphic microsatellite loci with different lines fixedCHS �

CFS

2
. (6e)

for different alleles (Willis 1999a).
Three hundred of these sixth-generation lines were

Again, our five observable quantities are functions of used to found 100 extended families following the ex-
three unknowns. These three estimable quantities are perimental design of Figure 1. A single plant from the
composite functions of the parameters U�, K s, and s�. sire line was grown to maturity, self-fertilized, and used
Model II constrains the value of CFS, as a pollen source for a single plant from each of the

dam lines. Each of the dams was also self-fertilized. A
CFS �

h*CSS

4 � 4 √2h* � 2h*
, (7) maximum of eight pots were seeded per family (40 per

extended family) on March 9, 2001 in the University of
Kansas greenhouses. At 2 weeks after seeding, all potswhere h* � COS/CSS.

Model III (weak conditions): Model II represents only were thinned to a single plant (randomly selected) and
were subsequently fertilized once per week. A series ofone way in which mutational effects may vary across loci

(or between different mutations at the same locus). A morphological measurements were taken on the first
flower produced by each plant (see Kelly and Arathirange of alternative models could be considered. For

example, Caballero and Keightley (1994) consider 2003) and the anthers were collected into a microcentri-
fuge tube. Flowering was monitored daily until 60 daysa model that allows variable dominance of mutations,

even if they have the same value for s. Other generaliza- postseeding, by which time the great majority of plants
had flowered. In total, 2345 plants were measured (1113tions are also possible (Zhang et al. 2002 and references

therein). Given the range of possibilities, it is fortunate outbred and 1232 inbred). The distribution of plants
across families was not balanced and many extendedthat we can make a few statements about the relative
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Figure 2.—The distributions of male
fitness components (untransformed)
among outbred and inbred plants, respec-
tively.

families were completely missing one or more of their signs better than least-squares or “ANOVA-style” meth-
ods do (Searle et al. 1992).component families. This is relevant to the analysis.

Maximum likelihood accommodates unbalanced de- Pollen number and the PSI were estimated for each



1077Deleterious Mutations in M. guttatus

Figure 2.—Continued.

sample using a Coulter counter model Z1 dual (Coulter, the mutational models (I, II, and III) that produce the
highest likelihood for the data. These values are theMiami). The microcentrifuge tubes were left open for

1 week after pollen collection to allow the anthers to maximum-likelihood estimates (MLEs) for the parame-
ters of that model. The sufficiency of that model is testeddry and release their pollen. Each sample was then di-

luted into 20 ml of electrolyte solution and run through by comparing the maximum-likelihood value for the
model with the maximum likelihood of the “uncon-the Coulter counter. The machine counts the number

of particles between two size thresholds (10 and 25 �m) strained model.” The latter is based on direct estimates
for the biometric quantities without the particular re-and the number of particles that are larger than the

upper threshold (�25 �m). The PSI is the proportion strictions imposed by the various mutational models
(see section on constraints below).of grains in the upper size category. The size thresholds

were set on the basis of results from a previous study The resemblance of relatives may depend on environ-
mental factors as well as genetic factors. These factorsshowing a strong positive correlation between PSI and

pollen viability as measured through standard staining must be accounted for in order to infer genetic parame-
ters from phenotypic covariances. Maternal effects aretechniques (Kelly et al. 2002).

The distributions of pollen number and PSI within a potentially important source of resemblance among
relatives. The variance of maternal effects, VM, can beboth inbred and outbred plants are given in Figure 2.

A genetic analysis of the floral morphology is presented estimated from this design because the comparison be-
tween inbred and outbred sibs (estimating COS) involveselsewhere (Kelly and Arathi 2003). One floral trait,

corolla width, is included here as a comparison to the both male and female parents (Figure 1). Also, the
magnitude of environmental deviations may be greatermale fitness measures (outbred plants, mean � 19.13

mm, SD � 2.65; inbred plants, mean � 17.32, SD � for inbred individuals than for outbred individuals (Ler-
ner 1954; Kelly and Arathi 2003). I thus estimate2.95). For analysis, the original measurements were di-

vided by the outbred mean value for that trait. This different environmental variances for outbred and in-
bred plants, VE(o) and VE(i).linear transformation is commonly used in biometric

studies as it allows comparison of parameter estimates With regard to hypothesis testing, it is important to
distinguish universal constraints from model-specificfor traits that differ in the magnitudes of their measure-

ment values (Houle 1992; Charlesworth and Hughes constraints. The universal constraints apply to all of
the models including the unconstrained model. These2000). We also considered log-transformed values for

pollen number and PSI, as this may be more appropriate follow from basic features of inheritance, independent
of allele frequencies or the nature of genetic effects.if loci combine multiplicatively.
The universal constraints are that VE(o) and VE(i) must be
positive; VM, CSS, CFS, COS, and CHS must be greater than

HYPOTHESIS TESTING AND or equal to zero; CHS 	 1⁄2CFS; and the magnitude of COSPARAMETER ESTIMATION
is limited by CSS and CFS (Kelly and Arathi 2003).

Subject to these universal constraints, MLEs were ob-Maximum likelihood is used for both testing the vari-
tained for the unconstrained model by finding the setous models and estimating parameters. By methods de-

scribed below, I find the parameter values for each of of values for MO, �, CSS, CFS, COS, CHS, VM, VE(o), and VE(i)
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that maximize l, the log-likelihood function. Here, MO with different values in the variance-covariance matrix,
V. The V matrix is a function of four genetic parametersis the mean phenotype of outbred plants. The predicted

mean phenotype of inbred plants is MO � �. I use the in the unconstrained model (CSS, CFS, COS, and CHS), in
addition to the environmental components. For modelstandard multivariate normal model for the log-likeli-

hood function, I, V contains only two genetic parameters, CSS and h, in
addition to the same set of environmental components.
The various comparisons between relatives within V arel � C �

1
2
ln|V | �

1
2
(z � X
)TV �1(z � X
), (8)

functions of these two parameters: COS � hCSS, CFS �
2h2CSS, and CHS � h2CSS. For model II, V also dependswhere V is the variance-covariance matrix of individual
on only two genetic parameters: COS � h*CSS, CFS is givenmeasurements, z is the vector of trait values, X is an
by Equation 7, and CHS � CFS/2. For model III, the“incidence matrix” for fixed effects, 
 is the vector of
elements of V are functions of three genetic parametersfixed effects, and C is a constant determined by the
(CSS, CFS, and COS) with the genetic covariance of half-total sample size (Shaw 1987; Searle et al. 1992). The
sibs equated to CFS/2. However, two of these parameters,(co)variance parameters determine the numerical val-
CFS and COS, are constrained in value: COS � CSS/2 andues of elements in V and 
 � [MO, �]T. Equation 8
CFS � COS. These model-specific constraints affect notassumes a multivariate normal distribution of trait val-
only the numerical values within V, but also the deriva-ues, but is quite robust to deviations from this distribu-
tives of V with regard to each parameter [the (�/��)(V)tion (Searle et al. 1992; J. K. Kelly, unpublished simula-
matrices of Equation 10].tion results).

Models I, II, and III were tested by comparing theThe maximum of l was determined iteratively by using
maximum likelihood obtained under that hypothesisthe first derivatives of l with regard to each parameter
(l0) to the maximum likelihood obtained from the un-and the asymptotic dispersion matrix. Following Searle
constrained model (l1). The model was rejected if theet al. (1992), the vector of derivatives of l with regard
likelihood-ratio statistic 2(l1 � l0) was greater than theto each of the fixed effects is
appropriate critical value. It is generally assumed that,
under the null hypothesis, 2(l1 � l0) follows a chi-square�l

�

� XTV �1(z � X
). (9) distribution with the number of degrees of freedom

equal to the number of parameters distinguishing the
The derivative of l with regard to a particular variance two models. This would suggest a critical value 5.99 (for
component � is P � 0.05) for models I and II because the unconstrained

model has two more parameters than either deleterious�l
��

� �
1
2

tr�V �1 �

��
(V)� �

1
2

(z � X
)TV �1 �

��
(V)V �1(z � X
) , mutation model. There is no obvious choice for model

III because only one parameter is eliminated (CHS �(10)
1⁄2CFS) while other parameters are constrained in value

where (�/��)(V) is the derivative of the variance-covari- (COS � 1⁄2CSS, CFS � COS). These inequalities do not translate
ance matrix with regard to � and tr[*] is the trace of a in a simple way into degrees of freedom. Even the critical
matrix. values for models I and II may be suspect because the

Optimization was performed using two methods si- universal constraints apply to the unconstrained model
multaneously, steepest ascent and scoring (Searle et al. (see Shaw et al. 1998). For these reasons, I employ a
1992, Chap. 6; Eliason 1993). By steepest ascent, the parametric bootstrapping routine to evaluate the sig-
direction of movement within the parameter space is nificance of likelihood-ratio tests.
simply the vector of first derivatives. The direction for The parametric bootstrap involves repeated simula-
scoring is the product of the dispersion matrix and the tion of the data using the parameter estimates from
derivatives vector. A log-likelihood value was calculated the relevant mutational model (I, II, or III). Genotypic
at 10 points along each directional vector using Equa- values for the parental lines are first sampled (from a
tion 8. The highest of these 20 likelihood values was normal distribution with variance CSS) and the progeny
chosen to determine the set of parameters for the next groups are then formed conditional on these parental
iteration. In most cases, the optimization routine used values (and the values of the various parameter esti-
the scoring vector in the first few iterations and the mates). The numbers of individuals in each family are
steepest ascent vector close to the optimum. These cal- equivalent to the actual sample sizes from the experi-
culations, as well as the simulations described below, ment. Once the simulated data set is created, l1 and l0

were performed by a series of computer programs simi- are determined by applying the maximum-likelihood
lar to those described in Kelly and Arathi (2003). programs for the unconstrained and deleterious muta-
These programs, written in the C programming lan- tion models, respectively. I simulated 1000 data sets per
guage, are available from the author upon request. test and the various models were fitted to each data set.

The maximum log-likelihoods for each mutation The distribution of values for 2(l1 � l0), across simulated
data sets, estimates the sampling distribution of the like-model were also obtained using Equation 8, although
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TABLE 2

Simulation results for selected parameter values using the parametric bootstrapping programs

Median and percentiles for estimates
Critical value

True parameter values: model 1 for LR U h s

U � 1.0, h � 0.2, s � 0.05, VE(o) � VE(i)� CSS 5.01 1.00 (0.73, 1.31) 0.20 (0.16, 0.23) 0.049 (0.040, 0.059)
U � 1.0, h � 0.4, s � 0.05, VE(o) � VE(i)� CSS 5.22 0.99 (0.67, 1.81) 0.40 (0.36, 0.44) 0.049 (0.027, 0.073)
U � 1.0, h � 0.1, s � 0.05, VE(o) � VE(i)� CSS 3.77 1.04 (0.62, 1.50) 0.10 (0.07, 0.14) 0.050 (0.042, 0.059)
U � 1.0, h � 0.2, s � 0.05, VE(o) � VE(i) � 3CSS 3.88 0.99 (0.54, 1.72) 0.20 (0.13, 0.27) 0.049 (0.035, 0.067)
U � 1.0, h � 0.2, s � 0.005, VE(o) � VE(i) � CSS 4.62 0.98 (0.73, 1.27) 0.20 (0.16, 0.23) 0.005 (0.004, 0.006)

Critical value
True parameter values: model II for LR U K s

U � 1, K � �10, s � 0.05, VE(o) � VE(i) � CSS 6.15 1.00 (0.73, 1.31) �10.3 (�13.1, �8.2) 0.048 (0.039, 0.060)
U � 1, K � �5, s � 0.05, VE(o) � VE(i) � CSS 6.91 1.01 (0.80, 1.43) �5.06 (�6.05, �4.10) 0.049 (0.038, 0.066)
U � 1, K � �15, s � 0.05, VE(o) � VE(i) � CSS** 3.54 1.03 (0.46, 1.61) �15.1 (�29.3, �10.5) 0.049 (0.030, 0.063)
U � 1, K � �10, s � 0.05, VE(o) � VE(i) � 3CSS** 3.58 1.00 (0.52, 1.63) �10.4 (�15.3, �7.7) 0.047 (0.036, 0.057)
U � 1, K � �100, s � 0.005, VE(o) � VE(i) � CSS 6.24 1.01 (0.75, 1.30) �101 (�124, �85) 0.005 (0.004, 0.006)

For each parameter set, we used the distribution of likelihood-ratio (LR) values to determine an appropriate critical value for
hypothesis testing (for that particular array of parameter values). The median estimate and the 10th and 90th percentiles of the
distribution of 1000 estimates are given for the appropriate model. In all cases, � � 1 and VM � 0. **Distributions of parameter
estimates exclude simulations that yield estimates out of the proper range.

lihood-ratio statistic. The P value associated with a par- of parameters. Ninety-five percent (950 of 1000) of the
simulations yielded likelihood-ratio statistics that wereticular test is (M � 1)/(R � 1), where M is the number

of simulated values that exceed the actual likelihood- less than this value. For model I, the empirical critical
values differed among parameter sets but were alwaysratio value (calculated from the original data) and R is

the number of simulations (Davison and Hinkley less than the chi-square value of 5.99. For model II, there
was also variation among parameter sets, but empirical1997, p. 148).

In addition to their use in hypothesis testing, the critical values were somewhat higher than those for
model I.parametric bootstrapping programs can be used to esti-

mate the joint sampling distribution of our ML estima- The maximum-likelihood parameter estimates for
both models are approximately median unbiased (Tabletors for any mutational model in this experimental de-

sign. These simulations thus provide a means to evaluate 2). They exhibit relatively low sampling variances. The
procedures do occasionally fail to yield estimates whenproperties such as bias and sampling variance. The dis-

tribution of simulated data sets demonstrates the range certain variance components approach boundary val-
ues. However, this occurred in only a small fraction ofof possible experimental outcomes, including values for

the likelihood-ratio statistic, when the null hypothesis simulations (not at all for most parameter combina-
tions) and these cases are excluded from Table 2.is correct (when genetic variation conforms to the muta-

tional model under consideration). I conducted simula- Mimulus study: Parameter estimates with standard
tion studies of both models I and II for a range of errors (SEs) are given in Table 3 for each trait under
parameter sets to investigate (1) the null distribution the unconstrained model. The SEs are derived from the
of the likelihood-ratio statistic and (2) the statistical asymptotic dispersion matrix. These are only approxi-
properties of the estimators. Each simulated data set was mate and significantly nonzero estimates are routinely
equivalent in terms of sample sizes to the experimental within 2 SE of zero (Shaw et al. 1998; Kelly and Arathi
study. 2003). The inbred genetic variance (CSS) is greater than

the outbred variance (CFS) for each trait, although the
magnitude of the difference varies greatly. For each

RESULTS trait, CFS � COS. This implies that the point estimates
for these components violate even the weak conditionsSimulation study: Table 2 summarizes a representa-
(model III). Finally, maternal effects are evident fortive set of results from the simulation study. Cases 1–5
flower size but have no apparent effect on the maleare simulations from models I, while cases 6–10 are from
fitness traits. The VM parameter is thus eliminated frommodel II. Each simulated data set was first fit to the
the model for subsequent analyses of male fitness traits.appropriate mutational model and then to the uncon-

Maximum-likelihood values for each trait understrained model. The second column of Table 2 gives
an empirically determined “critical value” for that set model I are far lower than their associated values under
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the unconstrained model (Table 4). Each likelihood-
ratio test is highly significant by both the parametric
bootstrap and �2. A P value �0.001 for the parametric
bootstrap implies that the observed likelihood-ratio
(LR) statistic was greater than any of the 1000 simulated
values. The MLEs for each trait are also given. Confi-
dence intervals could be established for these estimates
by resampling (bootstrapping) over extended families.
I do not bother to justify the parameter estimates here
because the model on which they are based is rejected.

There is generally better fit of the data to model II,
although the model is still rejected for all traits (Table
5). As expected, the likelihood ratios are much lower
for model III (Table 6). In fact, genetic variation in
both Ln(pollen number) and Ln(PSI) are statistically
consistent with the weak conditions. For all of the mod-
els, the likelihood ratios are lower for Ln-transformed
male fitness values than for untransformed trait values.

DISCUSSION

This study clearly illustrates both the strengths and
the faults of biometric estimates for mutational parame-
ters. On the positive side, I was able to calibrate several
different mutational models with an experiment of only
moderate size (2345 plants). These models are surpris-
ingly general, allowing variable mutational effects, ma-
ternal effects, and distinct environmental deviations for
inbred and outbred plants. The parametric bootstrap
simulations demonstrate that, if genetic variation is
maintained according to one of the mutational models,
the MLEs are surprisingly accurate (Table 2). Taken
together, these observations suggest that biometric
methods have the potential to yield accurate estimates
for mutational parameters with much lower effort than
is typically necessary for mutation-accumulation experi-
ments.

The primary weakness associated with our parameter
estimates is that they are based on models insufficient
to explain the data. Likelihood-ratio tests reject models
I and II for each of the traits (Tables 4 and 5). This
is not surprising for flower size, as a previous study
demonstrated that this trait is inconsistent with a delete-
rious mutation model of genetic variation (Kelly and
Willis 2001). However, it is unexpected that models I
and II were rejected for the male fitness traits. Evolution-
ary analyses of life-history (fitness) traits frequently as-
sume that genetic variation is maintained by mutation-
selection balance (Crow 1993; Houle et al. 1996; Deng
and Lynch 1997). Our results call this assumption into
question.

The rejection of mutation-selection balance for male
fitness traits is clearly tentative. Model III was not re-
jected for either Ln(pollen number) or Ln(PSI). This
may reflect the fact that these “weak conditions” are
consistent with a range of genetic architectures, at least
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within the scope of estimation error. However, it may
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TABLE 4

Likelihood-ratio tests and parameter estimates for model I (fixed mutational effects) applied to each trait

Trait LR Pboot P[�2] U� h s�

Corolla width 16.14 �0.001 �0.001 0.33 0.39 0.018
Pollen number 24.58 �0.001 �0.001 5.70 0.46 0.006
Ln(pollen number) 14.48 �0.001 �0.001 0.51 0.20 0.139
PSI 34.88 �0.001 �0.001 0.40 0.28 0.049
Ln(PSI) 19.28 �0.001 �0.001 0.38 0.23 0.124

Two P values are provided for each likelihood-ratio statistic, the first from the parametric bootstrap simulations
and the second from the �2 distribution with 2 d.f.

also mean that variation is governed by a deleterious has also been documented for several life-history traits
of Drosophila melanogaster and used to reject mutation-mutation model that is simply more complicated than

models I or II (e.g., Caballero and Keightley 1994; selection balance as a sufficient explanation of variation
(Mukai and Nagano 1983; Takano et al. 1987; Charles-Zhang et al. 2002). While our experiment is not suffi-

ciently complex to both calibrate and test a more com- worth and Hughes 2000).
The higher-than-expected estimates for CFS and CHSplicated mutational model, it is straightforward to ex-

pand the design to include more comparisons. also explain why the estimated dominance coefficients
for male fitness traits under models I and II (Tables 4Models I and II fail because there is too much additive

genetic variation in both flower size and male fitness and 5) are greater than those obtained previously. Wil-
lis (1999a) used a subset of these same inbred lines totraits. The genetic covariance of full siblings (CFS) is

equal to the additive variance when the parents are fully estimate the average dominance of deleterious muta-
tions by the “regression method” (Mukai et al. 1972;inbred. The genetic covariance of half siblings (CHS) is

equal to one-half the additive variance (appendix a). Mukai and Yamaguchi 1974; Caballero et al. 1997).
He randomly paired lines and mated them to produceUnder the deleterious mutation models, the amount of

additive variation relative to other components depends F1 families. The regression of F1 family mean trait values
onto the corresponding sum of mean values for theiron the average dominance of deleterious mutations.

For example, with h � 0.2 in model I, the variance parental lines provides an estimate for the average domi-
nance of deleterious alleles. By this method, Willisamong fully homozygous genotypes (CSS) should be 12.5

times greater than the variance among outbred geno- (1999a) estimated the average dominance to be �0.1
for both pollen number and pollen viability (both mea-types (CFS) and COS should be 2.5 times greater than CFS.

The CSS estimates are substantially greater than CFS surements log-transformed). In contrast, our estimates
of h (from model I) are about twice are large (Tableestimates, particularly for log-transformed male fitness

traits. However, COS is invariably less than CFS when the 4) and the estimates of h (from model II) are 3.5 times
greater (Table 5).unconstrained model is fit to the data (Table 3). The low

estimates of COS relative to CSS indicate that, if variation is The comparison of F1 families with parental lines is
actually contained within this design (Figure 1) and itattributable to rare alleles, these alleles must be fairly

recessive on average. However, the more recessive they is straightforward to show that the regression method
is actually estimating COS/CSS. If we calculate COS/CSSare, the less additive variation there should be. Estimat-

ing h just from COS and CSS in Table 3, we would expect from the estimates in Table 3, the values are quite close
to those obtained by Willis (1999a): 0.13 for Ln(pol-the additive variances of the male fitness traits (as mea-

sured by CFS and CHS) to be only �20% of their actual len) and 0.14 for Ln(PSI). In contrast, the maximum-
likelihood estimates for h and h (Tables 4 and 5) dependestimated values. An excess of additive genetic variation

TABLE 5

Likelihood-ratio tests and parameter estimates for model II applied to each trait

Trait LR Pboot P[�2] U� K s s h

Corolla width 15.28 �0.001 �0.001 0.35 �0.210 0.014 0.41
Pollen number 23.78 �0.001 �0.001 3.40 �0.115 0.010 0.45
Ln(pollen number) 9.06 0.012 0.011 0.94 �0.439 0.063 0.35
PSI 24.76 �0.001 �0.001 0.61 �0.334 0.029 0.38
Ln(PSI) 11.04 0.007 0.004 0.70 �0.389 0.059 0.36
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not only on COS and CSS but also on CFS and CHS. Maximum spread within the laboratory population as a whole be-
cause each family contributed to one and only one line.likelihood finds the best “compromise” given the rela-

tive magnitudes of all four variance components. This Adaptation to lab conditions might be a more serious
concern for randomly mating populations that propa-requires dominance coefficients to be adjusted upward

to account for the higher-than-expected values for CFS gate themselves for a number of generations prior to
estimation of genetic parameters (see Matos et al. 2000;and CHS. If intermediate frequency alleles make a sub-

stantial contribution to variation in fitness, the regres- Hoffmann et al. 2001; Linnen et al. 2001; Sgro and
Partridge 2001).sion method (COS/CSS) may actually provide a more accu-

rate estimate for the dominance of rare alleles than the An alternative approach would be to let the natural
population adapt to the lab environment prior toprocedure used here (J. K. Kelly, unpublished results).

Assumptions: Models I and II employ an equilibrium biometric analyses. This has the advantage that popula-
tion allele frequencies will settle to values dictated bymodel to predict the frequencies of deleterious alleles as

a function of mutational parameters. These frequencies the selective conditions of the lab environment (the
relevant values of U, h, and s if variation in fitness isare determined by the action of selection in nature (if

the model is accurate), but the effects are estimated maintained in mutation-selection balance). Of course,
any parameter estimates would be specific to the labfrom variation measured in the greenhouse. This is

noteworthy given that both the relationship between environment. Moreover, a satisfactory fit of the data to
a mutational model would not conclusively indicate thattrait values and evolutionary fitness and the relationship

between genotype and phenotype are likely to be differ- natural variation is maintained by mutation-selection
balance. Variation maintained by variable selection, inent in the greenhouse than in the wild. Character herita-

bilities and genetic correlations may change when or- either space or time, or genotype-by-environment inter-
action, would likely be lost in the process of lab adapta-ganisms are assayed in a novel environment (Service

and Rose 1985). In addition, the magnitude of inbreed- tion.
A second potential concern with this study is that theing depression may be substantially greater under natu-

ral conditions than in the relatively benevolent green- deleterious mutation models assume random mating
in the ancestral population. While the Iron Mountainhouse environment (e.g., Dudash 1990; Carr and

Eubanks 2002). This may lead to biased estimates of population of M. guttatus is primarily outcrossing (Wil-
lis 1993b), some self-fertilization does occur. Inbreed-mutational parameters. This difficulty is abrogated, to

some extent, by the inclusion of � in the model (Table ing should reduce the frequency of deleterious muta-
tions relative to the random-mating expectation, �/(hs).1). This parameter effectively translates between the

measured phenotype and evolutionary fitness. This would reduce the absolute value of the variance
components but not their relative values (to a first ap-The important question for this study is whether the

change in growth environment is responsible for the proximation when deleterious alleles are rare). Because
the relative values of variance components determinepoor fit of models I and II to the data. Could the transfer

cause rejection of the mutational models even if the the sufficiency of the models in the likelihood-ratio tests,
inbreeding is not the cause of failures for models I andnatural population is in mutation-selection equilibrium?

It is difficult to provide a definitive answer to this ques- II. In this vein, it is noteworthy that M. guttatus does
exhibit large amounts of inbreeding depression in fitness-tion, but it seems unlikely given that the hypothesis tests

do not impose stringent constraints on the values of related traits despite its mating system (Willis 1993a,b;
Dudash and Carr 1998). Moreover, most of this in-mutational parameters. Instead, parameters such as h

and s of model I are estimated from the data. Thus, we breeding depression was not purged during the forma-
tion of the lines used for this study (Willis 1999b).should not falsely reject the null model, even if muta-

tional effects are different in the lab. Scale of measurement is another important concern
for analyses based on patterns of variation. Scale trans-The allele frequencies at QTL are the key to the con-

straints. A false rejection of the mutational models might formations, such as the logarithm or square root of
measurements, are routinely used in quantitative genet-occur if alleles that are deleterious in nature become ad-

vantageous in the lab environment. Such alleles might ics to “stabilize” the variance (Wright 1952; Lynch
and Walsh 1998, Chap. 11). In the present study, log-increase in frequency and the resulting lab-adapted pop-

ulation would exhibit an excess of additive genetic varia- transformation substantially improved the fit of male
fitness traits to each of the deleterious mutation modelstion relative to the field population. However, the op-

portunity for this kind of selection was greatly limited (Tables 4–6). This may mean that loci affecting these
traits combine in a way that is more nearly multiplicativein this study. The inbred lines that constitute the parents

of the breeding design were generated rapidly by self- than additive. However, it could also mean that log-
transformation simply obscures deviations from thefertilization, with random selection of progeny within

families (Willis 1999a,b). Each line was initiated from models.
The most appropriate scale for the application of thea single family (see study species and methods). A rare

allele, present within a single family, might fix within present methods is the one in which loci contribute in
the most nearly additive way to trait variation. On thisthe line founded by that family. However, it could not
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tive model of variation in quantitative traits. Genetics 138: 883–TABLE 6
900.
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netics 147: 1487–1490.
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Corolla width 6.04 0.02 Carr, D. E., and M. D. Eubanks, 2002 Inbreeding alters resistance
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(Scrophulariaceae). Evolution 56: 22–30.Ln(pollen number) 1.96 0.15
Carr, D. E., and C. B. Fenster, 1994 Levels of genetic variation andPSI 4.38 0.03

covariation for Mimulus (Scrophulariaceae) floral traits. HeredityLn(PSI) 0.58 0.38
72: 606–618.

Charlesworth, B., and K. A. Hughes, 2000 The maintenance of
genetic variation in life history traits, pp. 369–392 in Evolutionary
Genetics From Molecules to Morphology, edited by R. S. Singh and

scale, the mean phenotype should decline linearly with C. B. Krimbas. Cambridge University Press, Cambridge, UK.
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the effects of changing homozygosity are confounded Charlesworth, B., M. T. Morgan and D. Charlesworth, 1993
The effect of deleterious mutations on neutral molecular varia-with the effects of genetic purging. As a consequence,
tion. Genetics 134: 1289–1303.it is difficult to determine the best scale of measurement Cockerham, C. C., and B. S. Weir, 1984 Covariances of relatives

for estimating mutational parameters. More data in this stemming from a population undergoing mixed self and random
mating. Biometrics 40: 157–164.area are clearly necessary.

Crow, J. F., 1987 Muller, Dobzhansky, and overdominance. J. Hist.Concluding comments: More than anything, this study Biol. 20: 351–380.
illustrates the need to combine model evaluation (hy- Crow, J. F., 1993 Mutation, mean fitness, and genetic load. Oxf.

Surv. Evol. Biol. 9: 3–42.pothesis testing) with parameter estimation in biometric
Davison, A. C., and D. V. Hinkley, 1997 Bootstrap Methods and Theirstudies. Three distinct deleterious mutation models Application. Cambridge University Press, Cambridge, UK.

were tested. The first two models were rejected by the Deng, H.-W., 1998 Characterizing deleterious mutations in outcross-
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Deng, H.-W., and M. Lynch, 1996 Estimation of genomic mutationof additive genetic variation relative to other variance parameters in natural populations. Genetics 144: 349–360.
components. Thus, while most of the estimates in Tables Deng, H.-W., and M. Lynch, 1997 Inbreeding depression and in-

ferred deleterious mutation parameters in Daphnia. Genetics4 and 5 are reasonable, they cannot be treated as unbi-
147: 147–155.ased. However, model III was not rejected for either of Deng, H. W., G. Gao and J.-L. Li, 2002 Estimation of deleterious

the log-transformed male fitness components (Table 6). genomic mutation parameters in natural populations by account-
ing for variable mutation effects across loci. Genetics 162: 1487–This suggests that a more elaborate deleterious muta-
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in VD are of order qi
2, this term vanishes under rare-alleles

CHS �
1
2

VA , (A4) models of inheritance. This explains why CHS � CFS/2 in
each of the deleterious mutation models.

where VA is the standard additive genetic variance, VD

is the standard dominance variance, VDI is the inbred
APPENDIX Bdominance variance (the variance of dominance effects

with complete homozygosity), and CAD is the covariance We need to integrate over the probability density
of additive and homozygous dominance effects (Kelly function of mutational effects, f(s). Consider � for a

particular locus,and Arathi 2003).
Each of the causal components (VA, VD, VDI, and CAD)

� � � �
∞

0

f(s)q(s)�s(1 � 2h(s))�s , (A10)can be written as a function of allele frequencies and
genetic effects across loci (Cockerham and Weir 1984;

where f(s) and h(s) are given in the text andKelly 1999). Using the parameterization of Table 1, I
find that

q(s) �
�

sh(s)
. (A11)

VA � �
i

2qi(1 � qi)�2
i s2

i (1⁄2 � (1⁄2 � hi)(2qi � 1))2 (A5)
Substituting f(s), q(s), and h(s) into Equation A10, we

VD � �
i

4q2
i (1 � qi)2�2

i s2
i (1⁄2 � hi)2 (A6) find that

� � �
2��

s �
∞

0
�Exp��s�1s � K �� � Exp��s

s ���s � 2���1 �
1

1 � sK� .CAD � �
i

2qi(1 � qi)(1 � 2qi)�2
i s2

i (1⁄2 � hi)(1⁄2 � (1⁄2 � hi)(2qi � 1))

(A12)(A7)

Summing over loci, we obtain text Equation 6a. TheVDI � �
i

4qi(1 � qi)(1 � 2qi)2�2
i s2

i (1⁄2 � hi)2 (A8)
single-locus integrals for the variance components are

and
CSS �

2��2

s �
∞

0
�s Exp��s�1s � K ����s �

2��2s
(1 � sK)2

(A13)

� � �
i

�2qi(1 � qi)�isi(1⁄2 � hi) . (A9)

COS �
��2

s �
∞

0
�s Exp ��s

s ���s � ��2s (A14)
Since deleterious mutations should be rare, we expect
that qi 
 q2

i 
 q3
i , etc. Equations 1a–1e in the text are

CFS �
��2

s �
∞

0
�s Exp��s�1s � K����s �

��2s
(1 � sK)2

(A15)obtained by neglecting terms containing higher powers
of qi in Equations A5–A9. Equations A5–A8 are then sub-
stituted into Equations A1–A4. Because the leading terms and CHS � CFS/2.




