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ABSTRACT
A method for mapping complex trait genes using cDNA microarray and molecular marker data jointly

is presented and illustrated via simulation. We introduce a novel approach for simulating phenotypes and
genotypes conditionally on real, publicly available, microarray data. The model assumes an underlying
continuous latent variable (liability) related to some measured cDNA expression levels. Partial least-squares
logistic regression is used to estimate the liability under several scenarios where the level of gene interaction,
the gene effect, and the number of cDNA levels affecting liability are varied. The results suggest that: (1)
the usefulness of microarray data for gene mapping increases when both the number of cDNA levels in
the underlying liability and the QTL effect decrease and when genes are coexpressed; (2) the correlation
between estimated and true liability is large, at least under our simulation settings; (3) it is unlikely that
cDNA clones identified as significant with partial least squares (or with some other technique) are the
true responsible cDNAs, especially as the number of clones in the liability increases; (4) the number of
putatively significant cDNA levels increases critically if cDNAs are coexpressed in a cluster (however, the
proportion of true causal cDNAs within the significant ones is similar to that in a no-coexpression scenario);
and (5) data reduction is needed to smooth out the variability encountered in expression levels when
these are analyzed individually.

Apowerful tool for monitoring gene expression in as phenotypes and analyzed one by one separately, i.e.,
treated as any quantitative trait in a usual QTL analysisparallel is cDNA microarray technology. At pres-

ent, microarrays are being used for improving our (Brem et al. 2002; Schadt et al. 2003). This approach
encounters several difficulties, such as the problem ofknowledge about disease classification as well as for un-
assigning correct significance levels when multiple statis-raveling complex genetic regulation networks (Knud-
tical tests are conducted or the presence of skewed distri-sen 2002). So far, massive expression data have been
bution of gene expression measurements. In addition,mostly utilized per se, without regard to marker informa-
many genes are regulated and expressed in concertedtion. However, combining both sources of information
action (Caron et al. 2001), so a gene-by-gene analysismay yield a more accurate picture of genetic processes
may not be insightful enough. Further, a huge numberunderlying complex traits than that currently obtained
of simultaneous QTL analyses would be hard to inter-by using them separately. For example, expression data
pret biologically.can perhaps be used to improve estimates of location

An arguably more powerful and appealing approachof genes affecting complex traits or quantitative trait loci
may consist of detecting some underlying pattern of(QTL). Seemingly, this issue has not been addressed,
expression that is correlated with the trait of interest.although it has been suggested (Jansen and Nap 2001)
This implies that some sort of data reduction would bethat genomics and genetics should be merged into “ge-
needed. Techniques for this purpose include, e.g., prin-netical genomics.” This field would involve expression
cipal components, canonical analysis, and partial leastprofiling, marker genotyping, and the statistical tools
squares (PLS). Principal components, a widely used tech-that have been developed for QTL analysis.
nique in multivariate analysis, has been already appliedThere are several potentially useful alternatives to
to expression data (Alter et al. 2000; Holter et al.combining microarray and marker data. For instance,
2000, 2001; West et al. 2001). PLS, on the other hand,one may study the genetic basis of the individual expres-
may be viewed as a compromise between multivariatesion levels themselves; Eaves et al. (2002) gives an illus-
regression and principal component analysis (Tenen-tration. In this setting, expression levels are regarded
haus 1998; Hastie et al. 2001). The objective here is to
find some linear combination of the original expression
measurements, or “supergene,” that maximizes the cor-1Corresponding author: SAGA-INRA, BP 27, 31326 Castanet-Tolosan,

France. E-mail: mperez@toulouse.inra.fr relation with some response variable of interest, such
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1598 M. Pérez-Enciso et al.

MATERIALS AND METHODSas the phenotype for a disease trait. In PLS, each new
supergene is obtained such that it is orthogonal to all Underlying genetic model: It is assumed that the probability
previously defined supergenes (Tenenhaus 1998; Ngu- that a disease affects an individual depends on the value of

some latent, unobservable, variable (often referred to as liabil-yen and Rocke 2002). In PLS, all variables (gene expres-
ity). The relationship between the probability of disease andsion levels and phenotypes) are used to arrive at the
liability may not be linear. We express liability as some un-supergenes, whereas only the expression measurements
known linear combination of gene expression levels. Consider-

are used in principal component regression. Enlight- ing a single QTL affecting the disease, the allelic variants at
ening comparisons of PLS, principal component regres- the QTL are assumed to produce a shift in mean liability, thus
sion, and ridge regression have been published (Frank affecting the risk of individuals carrying a given mutation.

Note that the effect of the gene is mediated through theand Friedman 1993).
relevant expression levels; i.e., its impact on the probability ofIf some pattern of expression correlated with the trait
an individual contracting the disease is indirect.of interest can be identified, the microarray data could Simulation strategy: Current knowledge about possible sta-

be used to refine our knowledge about the genetic basis tistical distribution(s) followed by gene expression levels mea-
of a complex trait (e.g., a disease), instead of being viewed sured with microarray technology is scant. Further, it has been

noted that expression levels may be intercorrelated in a com-merely as an additional set of phenotypes to be analyzed
plex manner, which would require posing some multivariateas any other quantitative trait. For instance, expression
distribution. Hence, a standard simulation of expression levelsdata could be used to improve QTL mapping if the would be probably unrealistic, at least given present knowl-

following two conditions were met: (1) some of the gene edge. To circumvent this problem here we propose, instead,
expression levels must be under (at least partial) genetic to use available real data and simulate the underlying liability

conditionally on observed expression levels contained in realcontrol of the QTL and (2) some of these heritable
data, thus reducing dramatically the arbitrariness in the simu-gene expression levels must be related to the disease.
lation. Suppose the “true” liability of the ith individual is hi �Otherwise, accommodating expression data in a statisti-
��xi, where � is a vector of unknown weights given to each

cal model would reduce the power of tests (due to an of the gene expression levels, with the latter contained in
additional, unneeded, level of parameterization) and vector xi. It is reasonable to suppose that most of the values
increase experimental costs. There is evidence that both in � would be zero because the majority of the genes will not

affect the trait of interest. Assume now that probability ofconditions can be met, at least in some situations. For
disease is related to liability via a logistic function, so that theinstance, p53 mutations lead to a differential gene ex-
chance of individual i being affected (yi � 1) is given by P(yi �pression in breast cancer-affected and -unaffected indi- 1|hi) � exp(hi)/[1 � exp(hi)]. Hence, given hi, the disease

viduals (Sorlie et al. 2001). Likewise, the levels of heat- status for each individual can be simulated using a Bernoulli
shock protein differ between congenic strains in rats, distribution with probability P(yi � 1|hi). The logistic transfor-

mation was chosen because it is widely used for modeling andwhich suggests a genetic basis for the observed differ-
analyzing binary data (Hosmer and Lemeshow 2000).ence in expression (Dumas et al. 2000).

Different plausible scenarios of gene interaction modelsLarge-scale experiments involving both microarray were considered to generate weights �. First, we allowed gene
and marker genotyping are not foreseeable in the imme- expression levels included in the liability to be independent
diate future. Rather, we envisage trials where a relatively or not. In the first case (referred to as “diffuse”), the cDNA

clones having an effect on liability were selected indepen-small number of individuals, say �100, have their gene
dently and with equal probability within those whose expres-expression levels monitored as well as genotyped for mo-
sion level had been measured in the microarray. In the secondlecular markers; there may be additional individuals
case (“clustered”) the first cDNA clone was chosen randomly,

whose genotypes are known but are not microarrayed. and the rest were selected with a probability that was propor-
Two of the most promising experimental approaches in- tional to the absolute value of the correlation of expression
volve recombinant inbred lines and association studies, levels between the first cDNA and the other candidates. We

generated weights using either a uniform (0, 1) distributionwhere controls and cases are carefully stratified to avoid
or an exponential distribution with mean � variance � 1.confounding effects. Use of recombinant lines is possible
Signs (�/�) of the weights were selected at random in theonly with laboratory species (Eaves et al. 2002), whereas diffuse case and had the same sign as the correlation in the

case/control studies constitute one of the most typical clustered case. cDNAs that were not selected received a weight
research protocols in humans. Although we concentrate of zero. Thus, there was a total of four hypothetical scenarios

for eliciting the true weight vector �: diffuse/uniform (D/U),on case/control designs, the principles outlined in this
diffuse/exponential (D/E), clustered/uniform (C/U), andwork apply to other statistical methods and/or designs.
clustered/exponential (C/E). The four scenarios are brieflyOur objective is to study the issue of whether or not described in Table 1. Note that the variance of liabilities

cDNA microarray data can be used to refine genomic changes according to the scenario and the number of expres-
position estimates of genes that affect a complex trait, sion levels in the liability.

In all scenarios, the set of weights � was such that thesuch as a disease. The impact of the gene expression in-
frequency of affected individuals, P(y � 1), in the whole popu-formation is quantified under a range of plausible ge-
lation was bounded between 45 and 55%. This condition stemsnetic architectures, including presence or absence of
from assuming a case control study, where the population is

gene expression clustering, different QTL effects and sampled such that the number of affected individuals is
frequencies, and varying number of expression levels roughly equal to the number of controls. Weights were deter-

mined by trial and error sampling; usually less than threeaffecting disease susceptibility.
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TABLE 1

Gene expression scenarios considered

Scenario Description � 2
h

a

Diffuse/uniform (D/U) Clones in h chosen at random,b weights sampled from 1.8, 5.5, 8.5, 17.8
uniform (0, 1)

Diffuse/exponential (D/E) Clones in h chosen at random, weights sampled from 6.5, 19.3, 49.0, 92.9
exponential � � 1

Clustered/uniform (C/U) Clones in h chosen proportional to correlation, weights —,c 8.9, 17.2, 39.9
sampled from uniform (0, 1)

Clustered/exponential (C/E) Clones in h chosen proportional to correlation, weights —,c 26.8, 56.9, 168.7
sampled from exponential � � 1

a Variance of true liabilities averaged over replicates when 1, 5, 10, and 20 genes are included in the liability, respectively.
Disease incidence was 50% in all scenarios.

b Underlying true liability.
c Same as without clustering.

draws of weights were required because a 50% incidence is and a position at � morgans is 1 � exp(�	�), where 	 is
the number of generations since the mutation (McPeek andsimply ensured when the average of the weights is close to

zero. Weights were scaled using the standard deviation of each Strahs 1999). For those haplotypes not carrying the mutation,
the SNP alleles were sampled assuming linkage equilibriumcDNA level.

We further assumed a biallelic additive QTL, where a mu- between markers. We used a frequency of 0.7 for the most
common allele for all SNPs, and we set 	 � 500. The QTLtant allele shifts the mean of the underlying susceptibility.

Individuals carrying this allele are more prone to contracting was in position 0.
With respect to the expression data, a breast cancer datathe disease, but this relationship is not perfect (incomplete

penetrance). In the context of our model, this means that the set (Sorlie et al. 2001) was used; at the time it was one of the
largest data sets publicly available at the Stanford microarraymutation may affect several cDNA levels to a different extent,

depending on the values of the elements of the vector �. It public database (http://genome-www5.stanford.edu/microarray/
was assumed that the distribution of the liabilities given the SMD/). It consists of 85 samples and the expression levels of
genotype (g) could be approximated by a normal distribution 456 cDNA clones, what the authors called the “intrinsic data
f(h|g) � N(�g, �2); the standardized QTL additive effect was set” (Perou et al. 2000). The data reported are the log2 ratios
defined as a � (�g�AA � �g�BB)/2�, with A and B denoting the between the mean intensities of the test sample and of a
two QTL alleles. Given h, the probability of an individual i control sample that consisted of a pool of tissues. The log
having genotype k is, applying Bayes’ theorem, transformations were used to make distributions more “nor-

mal,” and the base 2 is convenient because it makes interpreta-
P(gk|hi) � P(gk)f(hi|gk)/�

3

j�1

P(gj)f(hi|gj), (1) tion easier. Full details of the experimental and statistical
protocols are available online at the web page cited above.
Only the 71 cDNAs that did not have any missing record werewhere P(gk) is the frequency of genotype k, k � 1, 2, 3 for
eligible to enter into the true liability. Thus, a number ng ofthe biallelic QTL. Equation 1 allows us to assign a genotype
cDNA levels was chosen at random out of the 71, and theprobability to an ith individual, given its observed microarray
weights � were adjusted as specified above for each of the ngdata, the weights �, the genotype frequencies P(g), and the
expression levels. The values of number of genes studied wereparameters of the normal distribution. However, one needs
ng � 1, 5, 10, or 20. The QTL effects were a � 0.5, 1, and 1.5to specify �g and �2. The mean of the distribution follows di-
SD units. The QTL genotype frequencies P(g) were chosenrectly from the desired standardized QTL effect, a. The vari-
to represent two extreme distributions, 0.25/0.50/0.25 andance of the liabilities is the variance of a mixture and can be
0.5/0.0/0.5 for the AA/AB/BB genotypes, respectively. Thewritten as Var(h) � Eg[Var(h|g)] � Varg[E(h|g)]. Given a stan-
latter frequencies correspond to a case/control study wheredardized genotypic effect, a � (�g�AA � �g�BB)/2�, we solved
the disease allele is recessive and at very low frequency; in thisfor �2 using an iterative algorithm such that Var(h) was equal
case, all affected individuals are homozygous and the fre-to the observed variance of the liabilities in our sample.
quency of heterozygous individuals in the normal populationOnce an individual’s genotype was obtained, the rest of
is negligible. Five hundred simulation replicates were carriedthe haplotype was simulated. Ten biallelic markers [single-
out for each scenario. In each replicate a new set of ng causalnucleotide polymorphisms (SNPs)] were generated every
cDNAs was chosen, and new values for �, QTL genotypes,0.5 cM, following a simple model for linkage disequilibrium
phenotypes, and haplotypes were simulated, always condition-decay. Briefly, a founder haplotype was chosen, sampling a
ally on Sorlie et al.’s (2001) data.combination of SNP alleles at random. This was assumed to

Figure 1 summarizes the main steps in the simulation. First,be the original haplotype where the QTL mutation occurred.
a series of weights � are chosen according to any of the fourThen, for individuals that had one or two mutant QTL alleles,
scenarios described (Table 1), and the individual liabilitiesone or two haplotypes carrying the mutation were simulated.
are obtained; the obtained liability population is a mixture,As generations proceed, the probability that at least one re-
wherefrom the QTL genotypes are sampled using Equationcombination occurs within the 0.5-cM region surrounding the
1 for each individual; the haplotypes are obtained; and pheno-QTL will increase and thus the homology with the founder
types are sampled from binomial processes depending onhaplotype will disappear gradually. The length of the nonre-
individual h values.combinant region starting from the QTL was sampled, know-

ing that the probability of no recombination between the QTL Partial least-squares and analysis strategy: A first analysis



1600 M. Pérez-Enciso et al.

Figure 1.—Simulation scheme. (1) Choose
weights assigned to cDNA clones for obtaining
individual liabilities, after fixing a number of cDNA
clones and the gene expression scenario; (2) sim-
ulate binary phenotypes from the liability using
the logistic distribution; (3) simulate QTL geno-
types given liability, QTL effect, and QTL geno-
type frequencies using Equation 1; and (4) simu-
late haplotypes from QTL genotype, marker allele
frequencies, and number of generations since
mutation.

was carried out at the “true” position of the QTL using either 2, . . . , q and i � 1, 2, . . . , n. The goal of PLS logistic regression
is to find a linear combination of the expression levels forthe phenotypic information only or the phenotypes and the

microarray data. An analysis of variance (ANOVA) was used modeling
to test differences in phenotype (y) or estimated liability (ĥ)
among AA, AB, and BB genotypes. The liability for individual P(yi � 1) � exp��




k�1

(w�kxi)bk�� �1 � exp��



k�1

(w�kxi)bk��i was estimated as ĥi � �

k�1bktik , with b and t obtained by lo-

gistic PLS regression as explained below, and where 
 is the
number of components fitted. Subsequently, an ANOVA was � exp(hi)/[1 � exp(hi)],
performed at each of the 10 SNPs using the marker genotype

where 
 is the number of PLS components, wk is a q-dimen-as classification factor. The difference between P values of the
sional vector containing the weights given to each originalANOVA F-tests using either the phenotype or the estimated
variable in the kth component (defining a “supergene”), xi isliability provides an indication of the relative power of the
the vector containing the q expression levels for individual i,different sources of information for locating a QTL. The PLS
bk is the regression coefficient of the underlying variable onanalysis was done with all 456 expression levels, rather than
the kth component variable, and h is the underlying liability.with only the 71 with no missing data.
The elements of w and b can be obtained as follows (Esposito-Suppose that the matrix X � {xij} contains the expression

levels xij of the jth gene (cDNA) for the ith individual, j � 1, Vinci and Tenenhaus 2001):
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1. For each variable j � 1, 2, . . . , q compute its significance
in a logistic regression, each variable in turn using the
model P(yi � 1) � exp(b0 � �1jxij)/[1 � exp(b0 � �1jxij)].

2. Select those variables that are significant; The first super-
gene is defined, for each ith individual, as t1i � w�1xi, with
w1j � �1j/√�j��1�2

1j, where the sum of j is over the significant
cDNAs. An extremely useful property of this approach is
that it can deal with missing data in the regressors xij, a
common phenomenon with microarray data. Suppose a
subset of xij are actually measured in the ith individual, the
weights are given by �1j/√�j��1*�2

1j, where �1* is the subset of
significant variables present for that individual, and the
superscript 1 indicates the significant subset in the first
PLS component.

3. The regression coefficient b1 is obtained from fitting P(yi �
1) � exp(b0 � b1t1i)/[1 � exp(b0 � b1t1i)].

4. The next PLS component is obtained by testing again each
of the original q variables plus the previous surpergene
P(y � 1) � exp(b0 � b1t1 � �2jxj)/[1 � exp(b0 � b1t1 �
�2jxj)], j � 1, 2, . . . , q. Once the new set of significant
variables is determined, the second supergene is obtained
from t2i � w�2xi, with w2j � �2j/√�j��2�2

2j, applying identical
considerations as before with missing observations.

Figure 2.—(a) Percentage of cDNA clones that do influ-This process is repeated until no new variable (expression ence true liability found to be significant (and included inlevel) is found to be significant. It should be noted that a any of the PLS components) as a function of the number ofgiven gene expression level may be significant in only one clones that affect underlying liability and according to thePLS component, whereas others may be significant in more gene expression scenario. (b) Number of cDNA clones in thethan one component. Moreover, it is also possible (actually, PLS component, as a function of the number of clones thatthis is often the case) that a variable is not significant in com- affect underlying liability and according to the gene expres-ponent k but significant in component k � 1. Thus, it is wise sion scenario. The results are the average over 500 simulationnot to discard a set of variables fully from the first component. replicates and across QTL frequencies and effects, which wereIn this study, a variable was declared significant if its estimate very similar. Inset: D/U, diffuse/uniform scenario; D/E, dif-divided by its standard deviation, which is approximately nor- fuse/exponential; C/U, cluster/uniform; C/E, cluster/expo-mally distributed, was �3.27, a two-tailed 0.1% significance nential (Table 1). Note that a cluster scenario is not definedlevel. Logistic coefficients can be estimated using a variety for a single clone.of algorithms and software. Here we employed the publicly
available subroutines of A. Miller (http://users.bigpond.net.
au/amiller/). implemented in some commercial packages (Umetrics

2001). Nevertheless, the problem caused by multiple
tests cannot be overemphasized. Here, we used a ratherRESULTS AND DISCUSSION
high significance level because the number of clones

One of the main issues arising when microarray data was relatively small but more stringent levels should be
are analyzed is the “excess” of potential regressors rela- used in larger data sets. The false discovery rate can be
tive to the much smaller number of individuals arrayed. a useful alternative to the usual Bonferroni corrections
Here, we have proposed to combine linearly a set of ex- employed with multiple testing (Storey and Tibshir-
pression levels instead of studying each cDNA clone ani 2003). Frank and Friedman (1993) have shown
separately. Among the many available techniques in how PLS, principal component regression, and ridge
multivariate analysis, we have chosen the partial least- regression can be interpreted in terms of applying a
squares approach (Wold et al. 1983). This technique is penalty on the usual least-squares estimates; i.e., these
quite popular in chemometrics but much less so in are shrinkage estimators. It has been recently discussed
genetics. The main advantages of PLS lie in its simplicity (Gianola et al. 2003) how classical shrinkage estimators
(it can be implemented using standard statistical tools); can be superseded by Bayesian counterparts for marker-
its versatility (e.g., generalized linear models can be fit- assisted selection. We are not aware of the existence of
ted, as in the present study); and in the fact that the any equivalent of PLS in the Bayesian context; this could
components are derived using both the regressors (X) be an interesting area of research either by itself or
and the dependent variable, the latter being disease in how it relates to microarray analysis. Nonetheless, a
status here. Tests of hypotheses are carried out using drawback of most of the dimension-reducing tech-
standard techniques. We used Wald’s test to ascertain niques, PLS included, is that the results are usually diffi-
whether a given expression level was significant but cult to interpret biologically.
other tests, such as using the deviance, can be applied A potentially important application of microarray ex-
as well (Hosmer and Lemeshow 2000). Bootstrapping periments is the identification of genes whose expres-

sion is affected by a given disease, in the hope of findingtechniques also appear in the PLS literature and are
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Figure 3.—Effect of the
gene expression scenario
on correlations (r) between
true liability and different
variables (plain lines): esti-
mated liability (light gray,
labeled hh_hat), estimated
liability when deleting the
cDNA clones that affect true
liability from the data set
(dark gray, labeled hh_hat*),
and phenotype (black, la-
beled hy). Correlations be-
tween genotypic value and
different variables (starred
lines) are true liability
(dashed black lines, labeled
gh), estimated liability (solid
light gray, labeled gh_hat),
estimated liability when the
genes affecting true liability
are removed (solid dark
gray, labeled gh_hat*), and
phenotype (solid black, la-
beled gy). Results corre-
spond to QTL effect � 1 SD
and QTL frequencies 0.25/
0.50/0.25, averaged over
500 simulation replicates.

the actual causal genes. A main issue, then, is to evaluate -negative breast cancers (Gruvberger et al. 2001; Khan
et al. 2001; West et al. 2001; Pérez-Enciso and Tenen-the chance of identifying a gene whose expression af-

fects liability. Figure 2a shows that this depends mostly haus 2003).
A positive association was found between the numberon the number of cDNA clones actually involved in h;

we did not find any influence of the QTL effect or of of cDNA clones in h and the number of clones included
in ĥ (Figure 2b), and the association was even strongerthe QTL allele frequencies, so results were averaged

over effects and frequencies. If liability is monogenic, when causal cDNAs were coexpressed in a cluster. How-
ever, as the number of clones in h increased, the relativethe probability that the cDNA clone is included in at

least one of the PLS components (supergenes) varies effect of each clone is expected to decrease, especially
in a diffuse scenario, and so does the power of PLS forbetween 60%, when weights are uniformly distributed,

and 80%, when an exponential distribution is used. This identifying each effect. This may explain the lack of
linearity of the association in the diffuse scenario. Thesimply reflects the fact that weights are, on average,

larger in the exponential than in the uniform scenario. number of PLS components fitted was also affected by
the actual number of cDNA clones in the liability: onlyThe distribution of weights did not seem to affect the

results appreciably when liability was polygenic. Never- one PLS component was retained in �95% of replicates
when the true liability was monogenic (ng � 1). Thistheless, clustering of gene effects increased the number

of true significant cDNAs identified. This is a conse- does not mean that the PLS component consisted of a
single cDNA, as the number of genes in the PLS compo-quence of a higher number of total significant cDNAs

in PLS in clustered compared to diffuse scenarios (Fig- nent was �4 (Figure 2b). A second component was
significant when liability was polygenic in 10–20% ofure 2b). In fact, the percentage of true causal cDNAs

among significant ones was similar in diffuse and in replicates. An exponential distribution for the weights
� increased the percentage with two PLS componentsclustered scenarios. There is clear evidence that coex-

pression can be strong in both humans and Drosophila fitted, but this percentage was roughly the same for 5,
10, or 20 genes within this scenario. This may reflect(Caron et al. 2001; Arbeitman et al. 2002). All in all,

on average, only between two and four real causal clones the fact that PLS is computed such that the number of
components is minimized.are identified as significant when 20 expression levels

are actually involved in the liability (see Figure 2a). This The results shown in Figure 2a do not imply that
the liability was estimated poorly. On the contrary, themay explain why discordant sets of cDNA clones are

identified in different microarray experiments, e.g., when correlation between estimated and true liabilities was
�0.80 over a wide range of parameters. Considerdiscriminating between estrogen receptor-positive and
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TABLE 2

Main results

QTL frequencies

0.25/0.50/0.25 0.50/0.00/0.50

% QTL % SNP1 % QTL % SNP1
P value QTLd maxe maxf P value QTL max max

Scenarioa ab ng
c ĥ y ĥ y ĥ y ĥ y ĥ y ĥ y

Diffuse/uniform 0.5 1 0.24 0.37 38 18 19 7 0.18 0.27 54 29 28 18
5 0.21 0.29 38 30 20 9 0.08 0.11 69 54 20 14

10 0.18 0.22 44 34 13 13 0.06 0.07 71 70 27 24
1.0 1 0.16 0.20 66 40 26 18 0.08 0.10 77 65 40 20

5 0.03 0.05 88 72 30 21 0.02 0.01 94 93 43 37
10 0.02 0.03 89 81 29 24 0.01 3  10�3 94 95 42 42

1.5 1 0.09 0.11 77 62 37 18 0.10 0.10 71 69 44 30
5 0.03 0.02 90 88 39 28 0.01 10�3 93 98 40 42

10 9  10�3 5  10�3 95 96 31 32 0.01 5  10�4 96 98 47 47
Diffuse/exponential 1.0 1 0.07 0.12 80 63 24 18 0.04 0.07 88 81 43 38

5 0.02 0.03 88 85 24 24 3  10�3 3  10�3 98 97 47 47
10 8  10�3 0.01 95 93 35 30 8  10�4 2  10�4 98 98 43 43

Cluster/uniform 1.0 5 0.02 0.06 90 72 29 23 7  10�3 6  10�3 97 93 42 35
10 7  10�3 0.01 95 85 36 27 3  10�3 10�3 99 98 45 41

Cluster/ 1.0 5 0.01 0.03 92 84 26 23 2  10�3 3  10�3 97 97 48 47
exponential 10 0.01 0.01 94 93 27 24 2  10�4 3  10�4 100 99 51 47

a See Table 1 for description of each scenario.
b QTL effect in SD units.
c Number of cDNA levels in true liability.
d Mean ANOVA P value using estimated liability (ĥ) or phenotype (y).
e Percentage of replicates when maximum statistics, using estimated liability (ĥ) or phenotype (y), coincided with QTL position.
f Percentage of replicates when maximum statistics, using estimated liability (ĥ) or phenotype (y), coincided with closest SNP

when QTL genotype was not included in the region scan.

Figure 3, where the correlation between true and esti- the phenotype when liability is polygenic. A clustered
scenario makes the loss in accuracy smaller when causalmated liability is labeled “hh_hat” (the plain light gray

line). This correlation was independent of the QTL cDNAs are not spotted. Figure 3 also depicts the correla-
tions between genotypic values and liability, its estimate,effect (results not shown), but it increased slightly as

the number of cDNAs in the true liability increased. or the phenotype (starred lines). The dashed black line,
labeled “gh” (correlation between genotype and trueFigure 3 also shows that the advantage of using microar-

ray data over simply the phenotypes was inversely related liability) sets the maximum correlation that can be ex-
pected. The trends of correlations with true liability orto the number of cDNAs in the true liability and that

it was maximum when liability was monogenic (compare genotype were similar (compare plain and starred lines).
Again, as the number of cDNAs in liability increased,the lines labeled hh_hat vs. “hy”). Interestingly, a clus-

tered scenario was more favorable than a diffuse sce- the value of phenotypic information relative to that of
estimated liability increased. Clustering, instead, favorednario, especially when weights were uniformly distrib-

uted. the usefulness of the estimated liability.
Table 2 presents the ANOVA P values obtained usingAn implicit assumption of our model is that the clones

that influence liability have been spotted in the microar- either ĥ or phenotype (y), as well as the percentage of
replicates where the significance was maximum at theray. If this were not so, the possible advantage of using

microarray data would be reduced, although it would QTL position or at the closest SNP (SNP1) when the
QTL position was not included in the genome regionseldom be nil because of possible correlations of expres-

sion between spotted and nonspotted genes. We evalu- scan. These percentages somewhat reflect the confi-
dence that we can have in the estimated QTL positionated this possibility by removing from the data set all

cDNA clone data involved in h and carrying out the PLS with and without microarray information. Not all cases
analyzed are reported to facilitate legibility. First, noteanalysis subsequently. It can be seen (Figure 3, dark gray

lines labeled “hh_hat*”) that the correlation between that estimated liability performed relatively better than
phenotype at intermediate rather than at extreme QTLliability and its estimate is still high, but below that with
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Figure 4.—Example of profile of the P values: ANOVA P
value with estimated liability (—) and ANOVA P value with
phenotype (- - -). Cluster/uniform scenario with QTL effect �
1 SD, five cDNA clones in true liability, and QTL frequencies
equal to 0.25/0.50/0.25, averaged over 500 simulation repli-
cates, is shown.

frequencies. Other things being equal, microarray data
will be more useful if liability is monogenic, as could

Figure 5.—P-value profile of a single replicate, for the esti-be expected from results in Figure 3. Similarly, the per-
mated liability (thick circled line) and each of its individualcentage of replicates where the position of maximum cDNA components (thin gray lines), QTL effect � 1 SD in

significance coincided with the QTL position was com- the diffuse/uniform scenario. (a) The true number of cDNA
paratively better with ĥ than with y at small QTL effects. clones in the liability is 1; (b) the number of cDNA clones is

10. The QTL is in position 0.Clustering and an exponential scenario favored using
ĥ over only the phenotype when significance was low.

Figure 4 displays an illustration of the performance
when all expression levels are analyzed separately; recallof the test over the interval considered when we use the
that a typical microarray experiment consists of thou-phenotype y (dashed line) or the estimated liability with
sands of measurements. This means that it may be veryPLS ĥ (solid line). On average, the point of maximum
difficult to interpret all sets of QTL profiles when cDNAsignificance (minimum P value) coincides with the QTL
levels are analyzed individually.position (position zero), and over the entire interval the

The four scenarios considered in this work are ideal-power is larger when using microarray data than when
ized representations of a variety of possible gene interac-using the disease status (phenotype) only. Although the
tion networks. The diffuse/uniform case corresponds toaverage test was maximum at the QTL position, see Ta-
the simplest scenario and may be viewed as a “null hy-ble 2 for the percentage of replicates when this actually
pothesis” model. In the diffuse/exponential model wehappened. Association studies are well known for the
study the effect of unequal gene contributions, whichdifficulty in obtaining replicable results (Emahazion et
is perhaps a more realistic assumption. Overall, it seemsal. 2001), which is due, in part, to the wide variability
that gene clustering is far more relevant than the factthat disequilibrium exhibits (Nordborg and Tavaré
of having unequal weights (e.g., Figures 2 and 3). There2002). Note that when the causal (QTL) mutation was
is ample evidence of coexpression of large clusters ofnot genotyped, the closest SNP coincided with the maxi-
genes (Caron et al. 2001; Arbeitman et al. 2002), but inmum statistic in �50% of the replicates for most of the
the context of this work we are interested in coexpressedcases studied (Table 2).
genes that are causal as well. If coexpressed genes areThe purpose of this article was not to assess extensively
not causal, the number of genes in the PLS componentsthe impact of disequilibrium variability on cDNA-QTL
will increase (Figure 2a), but not the number of causalstudies. However, the study illustrates that a PLS-esti-
significant genes.mated liability will normally have a more stable behavior

There is, thus far, no empirical evidence about thethan any of its components (i.e., cDNA measurements
genetic basis of gene expression on a genome-wide scalehere) taken individually. For instance, Figure 5 displays
in outbred populations, although some experiments con-results for two individual replicates in the diffuse/uni-
cerning QTL analysis in crosses between inbred stocksform scenario where the estimated liability and all of
have begun to appear, notably that of Brem et al. (2002)its individual components are shown when the true lia-
in yeast but also in mice and maize (Schadt et al. 2003).bility is monogenic (Figure 5a) or polygenic (Figure 5b).
Brem et al. (2002) found that a good percentage (�80%)The variability of the estimated liability was lower than
of expression levels were controlled by more than onethat of any of its individual components, with the trend
gene, probably by at least five genes. In a few cases,increasing as the number of cDNA clones in the liability

increases. Moreover, the noise will increase significantly a single genome region controlled several expression
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levels, ranging from 7 to 87 levels. In summary, they in each expression level when taken individually; and
(3) it is unlikely that the cDNAs identified as significantfound a variety of gene architectures affecting expres-

sion levels, as was the case in Schadt et al. (2003). We in PLS (or in similar data reduction techniques) are the
truly responsible cDNA clones, especially as the numbercan say, in light of our simulation study, that a polygenic

basis will be one of the main challenges for interpreting of cDNAs in the liability increases. This can occur even
when there is a very high correlation between true liabil-QTL expression data; it will increase the number of

significant cDNA clones but it will be less likely that the ity and its estimate. This corresponds with the cautionary
remark made some years ago (Lander 1999): correla-true causal cDNAs are among those that are significant

(Figure 2). Clustering will enhance this phenomenon. tions or associations found with microarray experiments
should not be viewed as cause-effect relationships. TheA final word of caution should be said. Throughout,

we have assumed that the expression levels are measured same caution is in order when interpreting similar ex-
periments yielding distinct results. For instance, the ex-without error or at least measured with the same preci-

sion as the disease is diagnosed. However, this is not nec- periments may declare different sets of genes as “sig-
nificant” when discriminating disease subtypes, but suchessarily true because of technical problems in the micro-

array devices, rapid changes in mRNA concentrations, genes may not be the causal ones.
or imperfect conversion into cDNA. All these phenom- We thank Bruce Walsh and the referees for suggestions and A.
ena will hamper the usefulness of microarray data but Miller for making his subroutines available to the public. Work was

funded by grants to D.G. (National Research Institute CGP-Unitedit is difficult to quantify their effect at this stage of
States Department of Agriculture 99-35205-8162 and National Scienceknowledge. There are specific statistical techniques for
Foundation DEB-0089742; United States) and to M.P.E. (Action endealing with the problem of regressors measured with
Bioinformatique ; France). This research started while M.P.E. and

errors that can prove to be valuable in this setting (Ngu- M.A.T. were visiting scientists at the University of Wisconsin-Madison.
yen et al. 2002; Suh and Schaferb 2002).
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