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ABSTRACT
Genealogies from rapidly growing populations have approximate “star” shapes. We study the degree to

which this approximation holds in the context of estimating the time to the most recent common ancestor
(TMRCA) of a set of lineages. In an exponential growth scenario, we find that unless the product of population
size (N) and growth rate (r) is at least �105, the “pairwise comparison estimator” of TMRCA that derives
from the star genealogy assumption has bias of 10–50%. Thus, the estimator is appropriate only for large
populations that have grown very rapidly. The “tree-length estimator” of TMRCA is more biased than the
pairwise comparison estimator, having low bias only for extremely large values of Nr.

Afundamental development in population genetics lineages experience independent evolution. In a star-
has been the recognition that the pattern of ge- shaped genealogy, sampled lineages provide indepen-

netic variation in a set of sampled sequences is heavily dent replicates of the evolutionary process since the
affected by the particular genealogy of the lineages. In time of their most recent common ancestor (MRCA).
general, however, this underlying genealogy is un- Slatkin and Hudson (1991) found that genealogies of
known. To account for the effect of the genealogy in samples taken from populations growing exponentially
analyses of population genetic data, it is useful to con- in size tend to be “star-like,” much more so than genealo-
sider “random genealogies” that are consistent with the gies from constant-sized populations (Figure 1; see also
data and to average over many such genealogies. The Donnelly 1996; Nordborg 2001). Because many hu-
coalescent framework provides a natural way to con- man populations have experienced rapid population
struct these random genealogies under various assump- growth, star-shaped genealogies have been explicitly as-
tions about the demography of populations (Donnelly sumed in diverse analyses of human genetic data (Risch
1996; Nordborg 2001). et al. 1995; Thomas et al. 1998; McPeek and Strahs

Use of the coalescent to model unknown genealogies 1999; Reich and Goldstein 1999; Liu et al. 2001;
sometimes leads to intensive computations in statistical Stumpf and Goldstein 2001, for example). Addition-
inference from data (Stephens 2001). Thus, for ease of ally, star-shaped genealogies are implicit in methods of
computation, analyses can be conditioned on assumed analysis that treat “unrelated” individuals as indepen-
genealogical shapes that are specified prior to analysis dent trials from a population with specified allele fre-
or that are inferred from genetic data. Such methods quencies or other parameters.
often ignore uncertainty about the exact shape of the Here we determine the degree to which the assump-
genealogy, producing potentially biased estimates with tion of a star-shaped genealogy is appropriate for a sam-
misleadingly small confidence intervals (Slatkin and ple taken from an exponentially growing population.
Rannala 2000; Rannala and Bertorelle 2001; Importantly, the error introduced by the assumption
Rosenberg and Nordborg 2002). When methods depends on the nature of the eventual calculation that
based on assumed genealogies are applied, it is impor- will be performed conditional on the star-shaped gene-
tant to quantify associated limitations.

alogy. Slatkin (1996) defined a “stellate index” to quan-
The “star-shaped” or “maypole” genealogy (Figure

tify the degree to which a given genealogy resembles a1A) is perhaps the simplest type of genealogy and the
star-shaped genealogy and considered properties of thiseasiest to analyze, as it has the only shape for which all
index under various population models. Our goal is
different, in that we aim to determine biases of estima-
tors that result from assuming that genealogies of sam-

1Corresponding author: Program in Molecular and Computational ples taken from exponentially growing populations areBiology, 1042 W. 36th Pl., DRB 289, University of Southern California,
Los Angeles, CA 90089. E-mail: noahr@usc.edu star shaped. For this purpose, we find that other quanti-
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Figure 1.—Shapes of genealogies. (A)
Perfect star-shaped genealogy or “maypole
genealogy.” (B) Example of genealogy sim-
ulated using the coalescent process for the
exponential growth model with population
size 100,000 and growth rate 0.01. (C) Ex-
ample of genealogy simulated using the co-
alescent process for the constant popula-
tion size model. Genealogies are scaled to
have the same TMRCA. In B and C, labels are
assigned randomly to lineages.

ties are more natural than the index of Slatkin (1996). borg 2001), with current population size N, sample size
n, and exponential growth rate r (so that t generationsWe focus on estimation of the time to the MRCA of a

set of sampled lineages. in the past, population size was N exp[�rt]). For each
set of parameter values, we computed the mean valueConsider the genealogy of a set of n sampled lineages

at a nonrecombining locus. Properties of this genealogy of Pn/Tn over 10,000 simulations.
Figure 2 demonstrates that the bias of the pairwiseinclude the time to the MRCA of the sample (Tn or

TMRCA), the total length of all branches of the genealogy comparison estimator increases with sample size, de-
creases with growth rate, and decreases with population(Ln), and the average coalescence time of a pair of

sampled lineages (Pn). Ratios of these quantities can be size. To explain the perhaps surprising dependence on
sample size, note that E[Pn] is constant as a functionused to explore shapes of genealogies under various

demographic models (Slatkin 1996; Uyenoyama 1997; of n (Tajima 1983), whereas E[Tn] increases slowly with
n (Uyenoyama 1997, for example). Thus, the increaseSchierup and Hein 2000).

Suppose that an estimate for Tn is desired. Under the in bias with sample size is slow, yet noticeable in the
assumption of a star-shaped genealogy, Pn and Tn are difference between Figure 2A (smaller sample size) and
equivalent. Because unbiased estimates of the coales- Figure 2B (larger sample size).
cence time of a pair of lineages can frequently be ob- The dependence on r and N can be understood as
tained (Tajima 1983, for example), Pn is estimated as follows. In the constant population size model, denote
the average of estimated pairwise coalescence times, the random time to the coalescence of k to k � 1 lineages
over all pairs of lineages. This idea underlies methods by Wk, measured in units of N generations. For k � 1,
summarized by Stumpf and Goldstein (2001), in 2, . . . , n � 1, let Xk (also in units of N generations)
which Pn is estimated under a stepwise mutation model denote the total time elapsed in the coalescence of n
(either by comparing pairs of lineages or by comparing lineages to k lineages, so that Xk � Wn � Wn�1 � . . . �
each lineage to a putative ancestral type), and P̂n is Wk�1. The corresponding time that it takes for n lineages
used as the estimator of Tn. This “pairwise comparison to coalesce to k lineages in the exponential growth
estimator” of Tn is unbiased only if the sample has a model is obtained from g�1(Xk), where
star-shaped genealogy (or if n � 2).

In general, bias of this estimator of Tn is downward, g�1(X) �
ln(1 � NrX )

r
(2)

because the average pairwise coalescence time is always
less than or equal to the overall coalescence time. In a

(Nordborg 2001, Equation 8). For any genealogy, Pn(N,constant-sized population of haploid size N, the bias of
r) is a linear combination of the coalescence times forthe pairwise estimator can be considerable. If we treat
that genealogy. Thus, for the exponential growthPn and Tn as functions of population size N and growth
model, the numerator of Pn(N, r)/Tn(N, r) is a linearrate r and measure them in units of N generations, then
combination of g�1(Xn�1), g�1(Xn�2), . . . , g�1(X1), andinstead of Pn/Tn � 1 as in a star-shaped genealogy, the
the denominator is g�1(X1). All terms in both numeratorconstant model yields
and denominator have an r�1 coefficient, which can

E[Pn(N, 0)/Tn(N, 0)] � E[Pn(N, 0)]/E[Tn(N, 0)] therefore be removed. Thus, we have

� 1/[2(1 � 1/n)] Pn(N, r)
Tn(N, r)

� �n�1
k�1ck ln(1 � NrXk)

ln(1 � NrX 1)
(3)

� n/(2n � 2) (1)

for some collection of nonnegative constants ck (with(using Equation 1 of Uyenoyama 1997). For a large
ck � 0 for at least one value of k). By demonstratingsample from a constant-sized population, Pn underesti-
that its derivative with respect to Nr is positive, it is easilymates Tn by 50%. Of course, for exponentially growing
shown that Pn(N, r)/Tn(N, r) is an increasing functionpopulations, this bias decreases as the rate of growth
of Nr. Consequently, E[Pn(N, r)/Tn(N, r)] is increasingincreases. To determine the nature of the bias, we simu-
in Nr, and increases in either N or r decrease the biaslated the coalescent with exponential growth (Slatkin

and Hudson 1991; Donnelly and Tavaré 1995; Nord- of the pairwise comparison estimator. Equation 3 im-
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Figure 2.—Expected values of the ratio of the average pairwise coalescence time to the time to the most recent common
ancestor, or E[Pn/Tn]. (A) Simulations with samples of size 5. (B) Simulations with samples of size 25. (C) Comparison of
simulations with closed-form approximation (4), n � 5. (D) Comparison of simulations with closed-form approximation (4),
n � 25. Each point in A and B is based on 10,000 realizations of the coalescent process with exponential growth; the simulation
results in C and D derive from averaging Pn/Tn across all appropriate simulations among those that are shown in A and B.

plies that the parameters N and r are coupled in the a reasonable approximation to E[Pn/Tn] (Figure 2, C
compound parameter Nr : for example, the parameter and D).
sets (N, r) � (104, 0.001), (105, 0.0001), (106, 0.00001), For rapidly growing large populations, the bias of
all of which have Nr � 10, produce the same value of the pairwise comparison estimator may be 10% or less
E[Pn(N, r)/Tn(N, r)] (Figure 2). (Figure 2). Estimated growth rates for periods of expo-

As in the constant population size case, E[Pn(N, r)/ nential growth of various human populations range
Tn(N, r)] can be approximated under exponential from 0.001 to 0.02 per generation (Pritchard et al.
growth: 1999; Thomson et al. 2000). Thus, for groups with suffi-

ciently large N, the star-shaped genealogy might lead
to nearly unbiased estimation of Tn. However, underE�Pn(N, r)

Tn(N, r)� � E[Pn(n, r)]
E[Tn(N, r)] the exponential growth model, N equals the current

census population size only if the variance of reproduc-
� g�1(E[Pn(N, 0)])

g�1(E[Tn(N, 0)]) tive success equals 1 (other properties of populations
are also incorporated into the parameter N—see Nord-
borg 2001; Nordborg and Krone 2002). Estimates of�

g�1(1)
g�1[(2n � 2)/n] N for human populations under exponential growth

models are considerably smaller than census sizes (Prit-
�

ln(1 � Nr)
ln[1 � 2Nr(n � l/n)]

. (4) chard et al. 1999; Thomson et al. 2000, for example).
For human groups, it is questionable whether N is large
enough for star-shaped genealogies to be applied toNote that (1) can be obtained from (4) by taking the

limit as r → 0. The closed-form expression in (4) gives estimation of Tn.
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Figure 3.—Distribution of the ratio of the average pairwise coalescence time to the time to the most recent common ancestor
(Pn/Tn). Each distribution is based on 10,000 realizations of the coalescent process with exponential growth, using a sample of
size 25.

For small populations the bias of the pairwise compar- with not knowing the model is difficult to incorporate
ison estimator is particularly large. For Nr � 100 the into the calculation of confidence intervals.
bias for a sample of reasonable size will be considerable, The variance of Pn/Tn is larger for smaller values of
�20%. Thus, in small populations, even if they have Nr. Thus, as Nr decreases, not only does Pn move farther
expanded exponentially, the star-shaped genealogy as- away from Tn, but also Tn becomes harder to predict
sumption cannot substitute for genealogical modeling from Pn (Figure 3). Only for Nr � �105 is it nearly
of the data; schemes that explicitly account for uncer- certain that Tn � 1.25Pn (Figure 3C).
tainty in the genealogy (for reviews, see Rosenberg Other estimators based on the assumption of star-
and Feldman 2002; Tang et al. 2002) are likely more shaped genealogies may suffer from more severe bias
appropriate. For estimating TMRCA, population sizes and than the pairwise comparison estimator of TMRCA, be-
growth rates of relatively small groups such as Jewish cause other genealogical ratios decline more rapidly
priests (Thomas et al. 1998) may be too small to produce with sample size than does Pn/Tn. Under the assumption
approximate star-shaped genealogies. In these groups of a star-shaped genealogy, an alternate estimator of
it is probable that the pairwise comparison estimator TMRCA is the “tree-length estimator” or the estimated total
underestimates coalescence times, and use of the esti-

branch length of the genealogy divided by n (Karn et
mator should be accompanied by quantification of its

al. 2002, for example). Unbiased estimators of the totalbias.
branch length Ln can be obtained, for example, underA further problem with this estimation procedure is
the infinite-sites model, from the number of polymor-that on the assumption of a star-shaped genealogy, the
phic sites observed in a data set divided by the mutationvariance of the pairwise comparison estimator is typi-
rate. To evaluate the bias of the tree-length estimator,cally underestimated, as its calculation ignores uncer-
we must consider the ratio of Ln/n to Tn, a ratio thattainty associated with not knowing the genealogy. Under
equals 1 for a star-shaped genealogy.exponential growth, Pn/Tn can be quite variable (Figure

Under the constant-sized population model, we have3), compared to its constant value of 1 in the star geneal-
(using Equation 2 of Tavaré et al. 1997)ogy model. By assuming that Pn and Tn are equal, the

pairwise comparison estimator ignores inherent varia-
tion in the relationship between these two quantities, E� Ln(N, 0)

nTn(N, 0)� � E[Ln(N, 0)]
nE[Tn(N, 0)]which exists even if N and r are known exactly. Of course,

all model-based procedures experience problems simi-
�

2�n�1
k�11/k

n[2(1 � 1/n)]lar to this limitation of the star genealogy model. The
variance of estimators is typically evaluated conditional
on a model, such as the star genealogy model or the � � � ln(n �1)

n � 1
, (5)

constant population size model; uncertainty associated
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Figure 4.—Expected values of the ratio of the total length of the genealogy to the sample size times the time to the most
recent common ancestor, or E[Ln/(nTn)]. (A) Simulations with samples of size 5. (B) Simulations with samples of size 25.
(C) Comparison of simulations with closed-form approximation (6), n � 5. (D) Comparison of simulations with closed-form
approximation (6), n � 25. Each point in A and B is based on 10,000 realizations of the coalescent process with exponential
growth; the simulation results in C and D derive from averaging Ln/(nTn) across all appropriate simulations among those that
are shown in A and B.

of Ln/(nTn) is zero under constant population size,where � � 0.5772 is Euler’s constant. In the exponential
whereas Pn/Tn has a large-sample limit of 1⁄2. Thus, asgrowth model the analogous argument to (4) suggests
sample size increases, Ln/(nTn) decreases much faster
than Pn/Tn, and the tree-length estimator has bias con-E� Ln(N, r)

nTn(N, r) � � E[Ln(N, r)]
E[nTn(N, r)] siderably larger than that of the pairwise comparison

estimator.
� g�1(E[Ln(N, 0)])

g�1(nE[Tn(N, 0)]) The potential error of the star genealogy assumption
is perhaps greatest when properties of the genealogy
itself, such as Tn, are of interest. If the goal of analysis is� g�1[2(� � ln(n � 1))]

g�1[n(2n � 2)/n] to compare genealogies for different loci or populations
relative to each other, bias may affect estimates similarly

�
ln[1 � 2Nr(� � ln(n � 1))]

ln[1 � 2Nr(n � 1)]
. (6) and may have a reduced impact, although differences

in sample size and population size should be taken into
consideration. Also, if the genealogy is treated as a nui-The closed-form expression in (6) approximates E[Ln/
sance parameter, such as in fine mapping of disease(nTn)] less accurately than (4) approximates E[Pn/Tn]
susceptibility loci, the assumption might not have severe(Figure 4). However, Ln/(nTn), obtained from the same
consequences. The success of methods based on thesimulated genealogies that underlie Figure 2, is similar
star genealogy assumption in pinpointing previouslyto Pn/Tn, in the ways that it depends on the param-

eters. The major difference is that the large-sample limit identified susceptibility genes (Liu et al. 2001, for exam-
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Pritchard, J. K., M. T. Seielstad, A. Pérez-Lezaun and M. W.ple) suggests that human genealogies may be sufficiently
Feldman, 1999 Population growth of human Y chromosomes:

star-like for mapping of some disorders, although mod- a study of Y chromosome microsatellites. Mol. Biol. Evol. 16:
1791–1798.eling of the dependence among lineages can lead to

Rannala, B., and G. Bertorelle, 2001 Using linked markers tomore accurate positional inference (Morris et al. 2002).
infer the age of a mutation. Hum. Mutat. 18: 87–100.

We have seen here that the approximate star-shaped Reich, D. E., and D. B. Goldstein, 1999 Estimating the age of
mutations using variation at linked markers, pp. 129–138 in Micro-features of genealogies in an exponentially growing pop-
satellites: Evolution and Applications, edited by D. B. Goldsteinulation may be insufficient to guarantee low bias in
and C. Schlötterer. Oxford University Press, Oxford.

analyses based on the star genealogy assumption, unless Risch, N., D. de Leon, L. Ozelius, P. Kramer, L. Almasy et al., 1995
Genetic analysis of idiopathic torsion dystonia in Ashkenazi Jewsthe population has grown very rapidly to a very large
and their recent descent from a small founder population. Nat.size. For estimation of Tn, the numerical results and Genet. 9: 152–159.

approximate expressions shown can guide the use of Rosenberg, N. A., and M. W. Feldman, 2002 The relationship be-
tween coalescence times and population divergence times, pp.the assumption. Future uses of star-shaped genealogies
130–164 in Modern Developments in Theoretical Population Genetics,in population genetic analysis will benefit from demon- edited by M. Slatkin and M. Veuille. Oxford University Press,

stration that the assumption is appropriate in the rele- Oxford.
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