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ABSTRACT
Selective recombinant genotyping (SRG) is a three-stage procedure for high-resolution mapping of a

QTL that has previously been mapped to a known confidence interval (target C.I.). In stage 1, a large
mapping population is accessed and phenotyped, and a proportion, P, of the high and low tails is selected.
In stage 2, the selected individuals are genotyped for a pair of markers flanking the target C.I., and a
group of R individuals carrying recombinant chromosomes in the target interval are identified. In stage
3, the recombinant individuals are genotyped for a set of M markers spanning the target C.I. Extensive
simulations showed that: (1) Standard error of QTL location (SEQTL) decreased when QTL effect (d)
or population size (N) increased, but was constant for given “power factor” (PF � d 2N); (2) increasing
the proportion selected in the tails beyond 0.25 had only a negligible effect on SEQTL; and (3) marker
spacing in the target interval had a remarkably powerful effect on SEQTL, yielding a reduction of up to
10-fold in going from highest (24 cM) to lowest (0.29 cM) spacing at given population size and QTL
effect. At the densest marker spacing, SEQTL of 1.0–0.06 cM were obtained at PF � 500–16,000. Two
new genotyping procedures, the half-section algorithm and the golden section/half-section algorithm,
allow the equivalent of complete haplotyping of the target C.I. in the recombinant individuals to be
achieved with many fewer data points than would be required by complete individual genotyping.

LOW resolution of the estimated chromosomal loca- 1998; Hill 1998; Soller and Andersson 1998). Effec-
tive sample size can also be increased by accumulatingtion of quantitative trait loci (QTL) is a major ob-

stacle in application of QTL linkage mapping results recombinants in advanced generations (Darvasi and
Soller 1995).for marker-assisted selection and comparative posi-

tional cloning of the gene corresponding to the QTL. The most straightforward method for increasing map-
ping resolution, however, is simply to increase the sizeUp to a certain point, mapping resolution (defined as

the standard deviation of estimated QTL location, or of the mapping population, in this way accumulating
recombinants in the interval of interest. When this strat-SEQTL) can be improved by increasing marker density

(Darvasi et al. 1993). However, for given sample size egy is employed, a useful tactic for reducing genotyping
costs has been to produce a mapping population withand standardized QTL substitution effect, ultimate map

resolution is fixed and cannot be further improved even easily scorable morphological markers flanking the in-
terval containing the target locus. A few hundred recom-with infinite marker density (Darvasi et al. 1993; Dar-

vasi and Soller 1997). Consequently, approaches to binant individuals for these markers are identified, and
only these individuals are genotyped for the set of closelyimproving QTL map resolution primarily involve in-

creasing the standardized QTL substitution effect, e.g., spaced molecular markers spanning the target interval
(e.g., Klein-Lankhorst et al. 1991; see also Rhodes etby using replicated progenies (Soller and Beckmann

1990; Weller et al. 1990), by including the effects of al. 1998 and review in Darvasi 1998).
Here we propose a similar procedure, selective recom-cosegregating QTL as regression cofactors (Zeng 1994;

Jansen and Stam 1994), or by employing multiple-trait binant genotyping (SRG), to be applied when the target
locus is a QTL with a moderate or even small substitu-analysis (Jiang and Zeng 1995; Korol et al. 1995, 2001).

More complex approaches, termed “genetic chromo- tion effect. In this case, mapping resolution is expressed
as the C.I. or as the SEQTL. SRG would ordinarily besome dissection,” involve producing or identifying re-

combinants in the chromosomal intervals shown to carry implemented following an initial total or partial genome
scan that has detected a QTL in a backcross (BC), F2,significant QTL and evaluating the recombinant chro-

mosomes through progeny testing (Darvasi 1997a, or half-sib sire-family design. It presupposes the possibil-
ity of forming or accessing a very large mapping pop-
ulation. In addition, we present two new genotyping
procedures, the half-section algorithm and the golden1Corresponding author: Institute of Evolution, University of Haifa,

Mount Carmel, 31095 Haifa, Israel. E-mail: korol@esti.haifa.ac.il section/half-section algorithm, which allow the equiva-

Genetics 164: 1657–1666 (August 2003)



1658 Y. Ronin et al.

lent of complete haplotyping of the target C.I. in the Ronin et al. 1998). The interval analysis was uncondi-
tional, with no prior assumption of the QTL location.recombinant individuals to be achieved with many fewer

data points than would be required by complete individ- The simulated QTL was located at the center of a chro-
mosome of a total length of 480 cM, so that end effectsual genotyping.
did not limit the SEQTL. Each of the tails was composedThe procedure described here is similar in concep-
of t individuals, so that P � t/N. Then, for each markertion to the “contrast mapping” procedure of Thaller
subinterval Mi � Mi�1 (i � 1, . . . , k � 1) from the intervaland Hoeschele (2000). The present study generalizes
M1–Mk, the conditional LOD score was calculated, as-and extends their results by considering BC and F2 popu-
suming that the QTL resides in this subinterval. Thelations and the effects of selective genotyping and
estimates of the QTL effect and residual variance ob-marker spacing on the accuracy of QTL location. The
tained in the initial analysis for the entire M1–Mk intervalresults are also presented in a form somewhat different
were used as coordinates of the starting point in thefrom that used by Thaller and Hoeschele (2000),
optimization procedure for each subinterval. It was as-namely, as SEQTL rather than as the proportion of QTL
sumed that all individuals in the high and low selectedlocated to the true QTL interval. However, the present
groups had been genotyped for markers M1 and Mkstudy amply supports the bottom line conclusion of
and that the M1–mk and m1–Mk recombinants had beenThaller and Hoeschele (2000), namely, with large
identified.family sizes “it is feasible to map a QTL to a region of

Width of the M1–Mk interval was taken as 24 cM; QTL2 to 4 cM” (p. 103).
location was at the midpoint of the interval. It was as-
sumed that mapping takes place within a backcross or
half-sib population, so that contrast values in SD unitsTHEORY
are d (or �, in the case of a half-sib population). The

Selective recombinant genotyping: We assume a situa- following parameter combinations were investigated in
tion in which QTL mapping by any of the customary the main body of the simulations: d � 0.25, 0.50, 1.00;
procedures (complete individual genotyping, selective N � 1000, 2000, 4000, 8000, 16,000; P � 0.05, 0.10,
genotyping, selective DNA pooling) has detected a QTL 0.20, 0.25, 0.50; c � 24, 8, 2.66, 0.88, 0.29 (marker
in a confidence interval defined by a pair of flanking spacing was chosen to ensure that in no instance did a
markers, M1 and Mk. It is further assumed that a set of marker position coincide with a QTL position). For a
additional evenly spaced ordered markers (denoted M2, BC population, d � 0.25, and 0.50 and 1.00 correspond
. . . , Mi, . . . Mk�1) spanning the interval from M1 to Mk to QTL variances of 0.015, 0.0625, and 0.25, respectively.
are available and that haplotypes of the parental lines For each combination of parameters, 1000 Monte Carlo
or individual sires have been determined with respect runs were conducted. The direct empirical value of the
to the entire set of markers. In the proposed scheme, SEQTL was calculated on the basis of the estimated
high-resolution mapping is based on genotyping the values of QTL location.
markers M2–Mk�1 only for those individuals from the Genotyping requirements: Genotyping requirements
high and low population tails that are recombinant for will differ somewhat depending on whether the SRG
the flanking markers. Thus, if the parental F1 or sire procedure is implemented in a BC, F2, or half-sib family
chromosomes are M1Mk/m1mk, the progeny individuals (half-sib) designs. For clarity, a complete analysis is pro-
chosen for further genotyping will be those that carry vided first for the BC design, and modifications required
recombinant parental chromosomes M1mk and m1Mk. by F2 and half-sib designs are then discussed. It is conve-
The main question concerns the degree to which the nient to organize the genotyping requirements ac-
SEQTL depends on the standardized QTL allele substi- cording to the three steps of the SRG fine-mapping
tution effect d, on the total size of the mapping popula- procedure. Table 1 provides a summary of genotyping
tion (N), and on marker spacing (c in centimorgans) requirements for the three designs, according to these
in the interval M1–Mk. In addition, Darvasi (1997b) steps, and for total genotyping.
has shown that most of the information for QTL map
location is found in the high and low tails of the map-

BC designping population. To explore this possibility of reducing
genotyping costs, we also studied the effect of genotyp-
ing only the high and low proportions (P) of the popula- Step I. Identifying recombinant offspring: The pro-

posed procedure is based upon individual genotypingtion for the initial recombinants.
To address these questions, a Monte Carlo analysis of the entire selected sample to identify recombinant

individuals in the region M1–Mk. This will involve 4NPwas employed. Standard interval maximum-likelihood
(ML) analysis was used combined with selective genotyp- data points � 2NP individuals � 2 data points/individ-

ual (data point: the genotype of a single individualing that uses trait values of both genotyped and non-
genotyped individuals to provide ML estimates of the with respect to a single marker) and will identify R �

r(2NP) recombinants, where r is the proportion ofQTL effect and position (Lander and Botstein 1989;
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TABLE 1

Summary of genotyping requirements for application of the SRG procedure within BC, F2, and half-sib designs

Genotyping requirements

Parental Identifying Genotyping
Design haplotyping recombinants recombinantsa Total

BC 2 ML 4PN 2LPN M/100 2PN (2 � LM/100) � 2ML

F2 2 ML 2PN 2LPN M/100 2PN (1 � LM/100) � 2ML

Half-sib 3–13 ML 8PN 4LPN M/100 2PN (4 � 2LM/100) � (3–13)ML

L, target interval in centimorgans; assuming small L, proportion of recombination across target interval,
�L/100; ML, number of internal markers; N, total population size; P, proportion of each tail taken for selective
genotyping.

a For complete genotyping, M � ML; for HS genotyping, M � 4 or 5; for GS-HS genotyping, M � 3.

recombination between markers M1 and Mk. For small Thus, in an F2 design overall, the total number of prog-
eny genotyped, and hence requiring genotyping datatarget intervals of length L cM, r � L/100. Parental

haplotypes for the flanking markers are obtained in points to identify the recombinant individuals, will be
half that for a BC design. Once the recombinant individ-the course of identifying recombinant individuals.

Step II. Determining the parental haplotypes with re- uals are identified, however, genotyping requirements
are more or less the same as for the BC design, althoughspect to the internal markers: This step is needed

to identify the complete marker genotype for each double recombinants will require some additional data
points to establish both points of recombination.individual as required for the interval mapping proce-

dure. Given a segment of length L, the number of
additional markers needed within the segment to pro-

Half-sib designvide marker spacing c, is given by ML � (L/c) � 1.
Determining parental haplotypes for F2 or BC designs In principle, a half-sib design is the exact equivalent of
is simply achieved by genotyping the parental lines. a BC design, in that any individual progeny will receive a
Thus, the number of genotyping data points required recombinant chromosome from only one parent (the
in this case will be 2ML. sire). However, they differ in that, in a BC design, all

Step III. Genotyping recombinant individuals for the markers are fully informative, because the allele derived
markers within the target segment: Once parental from the F1 parent can be identified unequivocally, and
haplotypes are known, each recombinant individual hence the recombinant individuals and their haplotypes
is genotyped for all internal markers. The total geno- at each marker are determined by genotyping that
typing data points for the recombinant individuals marker. This is not the case for the half-sib design,
will thus equal LNPML/100. because of the incomplete informativity of the individ-

ual markers in an outcrossing population. That is, when
an individual has the same (heterozygous) genotype as

F2 design
its sire, it is not possible to determine the marker allele
transmitted to the individual from its sire. In this case,Since an F2 individual can receive a recombinant hap-

lotype from either of the two parents, the proportion the genotyping data point will not be informative for
determining recombinant status of the haplotype trans-of F2 recombinant individuals is twice that of a compara-

ble BC population. Most F2 progeny will carry only a mitted from the sire to the individual. The same will
hold when the dam is genotyped, if individual sire andsingle recombinant chromosome. For these individuals,

analysis is the same as for a BC design. Some of the F2 dam all share the same (heterozygous) genotype. This
applies both to the initial step of identifying progenyprogeny will be double recombinants. These will be of

two sorts: (1) double recombinants involving opposite- that received recombinant haplotypes from their sire
and to the step of identifying the full haplotype of thephase haplotypes (i.e., M1 . . . mk/m1 . . . Mk), which will

not be recognized as recombinants in the initial screen recombinant individual. The easiest way around this is
to genotype additional markers close to the initiallyfor recombinant progeny and will not be included

among the recombinant progeny and (2) double recom- chosen marker. Assuming conservatively that only 50%
of genotypings are informative, it is easy to see that thebinants involving same-phase haplotypes (i.e., M1 . . . mi

. . . mj . . . mk/M1 . . . Mi . . . mj . . . mk). These will be total number of genotypings required to identify and
haplotype the recombinant progeny is double that re-included among the recombinant progeny and will carry

twice as much information as a single recombinant. quired for the BC or the F2 situation.
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In addition to the above, obtaining the sire haplotype in Figure 1. For the HS algorithm, the genotype of each
individual is determined independently of all others.is also affected by incomplete informativity of the mark-
Thus, the total number of genotyping points for theers. In this case, haplotype of the sire for the flanking
entire set of recombinants, T, is simply the average num-markers will be obtained from the many progeny that
ber of genotyping points per individual multiplied byare genotyped in the screen for recombinant progeny.
the total number of recombinant individuals, R, i.e.,With respect to the internal markers, DNA will often
T � Rn.be available for one or both parents of the sire. In this

Application of the HS algorithm involves sequentialcase, genotyping the sire, his sire, and his dam for the
splitting of the recombinant progeny into progressivelyinternal markers, i.e., 3 ML genotyping data points, will
smaller subgroups. Each subgroup is genotyped for aprovide the sire haplotypes for all markers except those
different marker and split further. Thus, the early mark-for which the sire and his parent(s) are heterozygous
ers are used on subgroups with many members, thefor the same pair of alleles. For these markers, it will
later markers on subgroups with only a few members.be necessary to genotype progeny of the sire. For this,
As the genotyping progressed, more and more markersit will be efficient to use the nonrecombinant progeny,
were used in each round, but each marker was set upalready identified as described in the preceding screen
and used only once on a specific subgroup. For example,for recombinants. Because nonrecombinant progeny
consider genotyping 400 recombinants for 31 markers.are used and the phase of the flanking markers is known,
In complete genotyping, each individual is genotypeda single individual will provide a sire haplotype for all
for all 31 markers: a total of 12,400 genotyping datasire markers, except those for which sire and progeny
points. When using the HS algorithm, all individuals areare heterozygous for the same pair of alleles. Since maxi-
genotyped for marker 1; 200 individuals are genotypedmum heterozygosity for the same pair of alleles is 0.5,
for markers 2 and 3; 100 individuals each are genotyped10 nonrecombinant individuals should easily be suffi-
for markers 4–7; 50 individuals are genotyped for mark-cient for haplotyping a sire. These individuals will need
ers 8–15; and 25 individuals are genotyped for markersto be genotyped only for ML internal markers. Thus,
16–31—overall, a total of 1600 genotyping data points.haplotyping a sire will require 3–13 ML genotyping data
Only four rounds are required for the entire HS geno-points.
typing procedure. With the negligible exception of
three-point recombination within the target interval,
the genotyping results given by the HS algorithm areThe half-section algorithm
exactly equivalent to those given by complete genotyp-

The total number of genotyping data points can be ing. Set-up costs for markers are the same as for com-
reduced greatly by assuming that all M1–mk, m1–Mk re- plete genotyping; the only additional cost is for sorting
combinants represent single recombination events in the progeny for genotyping, according to the results of
the interval M1–Mk. This is plausible since double recom- the previous round.
binants are not included among the observed M1–mk,
m1–Mk recombinants, and triple recombinants are ex-

The golden section algorithmceedingly rare. Consequently, the marker genotype of
each recombinant individual is determined completely The number of required genotyping data points can
by the single point of recombination within the target be reduced even more by noting that, within the target
segment for that individual. The location of the point segment, the complete genotype of all individuals is
of recombination within the target segment can be pro- required only across the subinterval that contains the
gressively narrowed by noting further that, once a subin- QTL. If mapping analysis is carried out concurrently
terval spanning several markers within the segment is with genotyping, it is possible to progressively narrow
shown to be nonrecombinant, it is no longer necessary the interval within the segment within which the QTL
to further genotype any of the markers in this subinter- is found. It is then necessary to genotype only recombi-
val. Clearly, by genotyping a single marker in the center nants in this QTL-containing interval to further narrow
of the recombinant subinterval, the size of the subinter- the QTL location. Recombinants outside of this interval
val containing the point of recombination is progres- do not contribute information for QTL map location
sively reduced by one-half. Thus, if a total of M markers within the interval. Since we consider a situation with
are taken to span the target segment (including the two a single QTL in the target chromosomal region, it can
flanking markers), the number of markers genotyped be assumed that the expected LOD function (ELOD)
per individual that are required to identify the point of will be a unimodal function (Hyne and Kearsey 1995;
recombination will be between n and n � 1, where Ronin et al. 1999). This is so, even though other data
n � integer part of log2M. A small number of worked sets of a comparable mapping population will have a
examples show that the average n is closely approxi- LOD score function whose maximum is at a different
mated by n � log2M. location. Therefore, in applying this principle, we can

Application of this principle leads to a procedure that use the golden section (GS) algorithm (Gill et al. 1981)
to choose the markers for genotyping to progressivelywe term the “half-section (HS) algorithm,” illustrated
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Figure 1.—Illustration of the “half-section” algorithm for determining marker genotype of a recombinant individual. (A) In
the example, the point of recombination is between M6 and M7, so that in the initial scan for recombinants the individual was
identified as an M1–m25 recombinant. Notation: standard letters, e.g., M16, denote a marker; italicized letters, e.g., M16 and m16,
denote alleles at the marker.

Step 1 (B): Genotype M13, the central marker in the interval M1–M25. The allele found is m13, showing that the point of recombination
is between M1 and M13. From M13 to M25, the genotype of the individual is now known to be m13 . . . m25.

Step 2 (C): Genotype M6. The allele found is M6, showing that the point of recombination is in the interval M6–M13. From M1

to M6, the genotype of the individual is now known to be M1 . . . M6.
Step 3 (D): Genotype M9: The allele found is m9, showing that the point of recombination is in the interval M6–M9. From M9 to

M13, the genotype of the individual is now known to be m9 . . . m13.
Step 4: There are two options:
i. Genotype M7. In this case, the allele found is m7, showing that the point of recombination is between M6 and M7. The complete

genotype of the individual is known.
ii. Genotype M8. In this case, the allele found is m8, showing that the point of recombination is between M6 and M8. It is still

necessary to genotype M7. The allele found is m7, showing that the point of recombination is between M6 and M7, and the
complete genotype of the individual is now known.
Total genotyping points for this individual will be 4 if option (i) is chosen and 5 if option (ii) is chosen.

narrow the subinterval within which the QTL is found. values will deviate slightly from the ELOD values. That
is, there always will be some small fluctuations fromThe GS algorithm is commonly used in numerical analy-

sis for efficiently finding the maximum of a function monotonic behavior of the LOD function to both sides
of the final estimate of QTL position on the chromo-with a single maximum (or minimum) measured with-

out errors. As applied to QTL mapping, the GS algo- some implicit in the given data set (see Hyne and
Kearsey 1995). Consequently, there is a nonzero (albeitrithm basically involves identifying two flanking points

between which the maximum of the mapping criterion a very small) probability of placing the QTL in a wrong
subinterval (and of following up the wrong recombinant(LOD function) is known to reside and evaluating the

LOD function at these two points. The chosen points individuals) using the GS criterion. Under such a situa-
tion, the final steps in the application of the GS methodare, respectively, F and 1 � F of the distance between

the two flanking points [where F is the golden section (which is an efficient tool for optimization of determin-
istic unimodal functions) become inefficient. There-parameter equal to the Fibonacchi constant, F � 1/

(1 � �5) � 0.38]. The point for which the value of fore, we propose employing the optimal properties of
GS in producing the first 2.62R data points. Then, usingthe LOD function is less defines a new flanking point.

The process is now reiterated. It can be shown that the an internal pair of already genotyped markers, Mi and
Mj, which flank the last location of the maximum LOD,number of individuals genotyped at each successive step

will be R, (1 � F)R, (1 � F)2R, etc. Thus, application we continue with complete genotyping of all remaining
markers (i.e., residing between Mi and Mj) for individu-of this procedure will require only [1 � (1 � F) � (1 �

F)2 �…]R � 2.62R genotyping data points, irrespective als that are recombinants Mimj and miMj. This complete
genotyping is conducted on the basis of the high-savingof the number of markers in the target segment. Figure

2 illustrates the application of the GS algorithm. HS algorithm. Total genotyping data points for the in-
ternal segment under this combined GS-HS procedureIn practice, due to finite population size, the LOD
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Figure 2.—Illustration of the “golden section” algorithm for determining marker genotype of a recombinant individual. (A)
As in Figure 1, the point of recombination of the tracked individual is between M6 and M7, so that in the initial scan for
recombinants the individual was identified as an M1–m25 recombinant. The maximum LOD score (MLS) for the given data set
is assumed to be located near M14.

Step 1: Genotype M16, located 0.62 of the distance from M1 to M25. Since all recombinant individuals are genotyped, the number
of genotyping points for this step is R. We assume that points of recombination are distributed uniformly throughout the
interval M1–M25. Consequently, of the total number of recombinant individuals, 0.62R will have allele m16, and 0.38R will have
allele M16. For the individuals with allele m16, the genotype at all markers in the interval M16–M25 is known: m16 . . . m25. For the
individuals with allele M16, the genotype at all markers in the interval M1–M16 is known: M1 . . . M16.

Step 2 (B): Genotype M10, located 0.38 of the distance from M1 to M25. Only the 0.62 of recombinant individuals that were m16

need to be genotyped. Individuals that were M16 will not be genotyped further. Thus, the total number of genotyping points
for this step is 0.62R. Of the individuals genotyped for marker M10, 0.62 will have allele M10, and 0.38 will have allele m10.
Mapping analysis is now carried out with markers M1, M10, M16, and M25. According to the assumed location of the MLS, M16

will have a higher LOD score than M10. Thus, M10 now becomes the new left flank marker. At this point markers M2–M9 are
no longer of interest from the point of view of high-resolution mapping and will not be genotyped in any individuals.

Step 3 (C): Genotype M19, located 0.62 of the distance from M10 to M25. For the 0.62 of individuals that were m16, genotype at
M19 is known to be m19. Thus, genotyping needs to be done only for the 0.38R � (0.62)2R individuals that were M16. Note that
the individual with point of recombination between M6 and M7 is included in the group that need not be genotyped for M19.
Mapping analysis is now carried out with added marker M19. M16 will have a higher LOD score than M19. Thus, M19 now becomes
the new right flank marker. Markers M21–M25 are no longer of interest.

Step 4 (D): Genotype M13, located 0.62 of the distance from M19 to M10. It is necessary to genotype, only for M13, those individuals
that were m16 and m13 � 0.24R � (0.62)3R individuals. Mapping analysis is now carried out with added marker M13. M13 will
have a higher LOD score than M16. Thus, M16 becomes the new right hand flanking marker, and the QTL has been located
between M10 and M16. Markers M17 and M18 are no longer of interest.

Step 5: At this point it is convenient to determine genotypes for all markers in the interval M10–M16 (hence the entire algorithm
can be referred to as GS-HS rather than as GS). For M11 and M12 genotypes need to be determined only for the 0.125 of
individuals that were M10–m13–m16 (0.25R genotyping points), and for M14 and M15, for the 0.125 of individuals that were
M10–M13–m16 (0.25R genotyping points). For all other individuals, genotypes for markers M11, M12, M14, and M15 can be inferred
as above from the previously determined genotypes for M10, M13, and M16. For example, the individual we are tracking would
have been m10–m16, so that genotypes for markers M11, M12, M14, and M15 must be m11, m12, m14, and m15.

will be 3M or less. Clearly, 3R � R log2M, for M � 8. lected in each tail (P), allele substitution effect at the
QTL (d), size of mapping population (N), and markerIn principle, therefore, the GS algorithm will generally

require fewer data points than the HS algorithm. How- spacing (c). A very wide spectrum of SEQTL values was
obtained, ranging from 77.7 cM for the least powerfulever, both represent major savings relative to complete

genotyping. If, in the data set obtained in an actual parameter combination (P � 0.05, d � 0.25, N � 1000,
c � 24) to 0.05 cM for the most powerful combinationexperiment, the ELOD function was bimodal, the GS

algorithm would not be applicable, and the HS algo- (P � 0.50, d � 1.00, N � 16,000, c � 0.29). In an attempt
to condense and simplify the total data set, nonlinearrithm would be used.
regression analysis was used to express the SEQTL as a
power function of the simulation parameters. While the

RESULTS AND DISCUSSION
prediction equation obtained in this way explained
much of the variation in SEQTL, many individual pointsThe complete set of simulation results (data not

shown) gave the SEQTL according to proportion se- were quite far from their predicted values. Conse-
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quently, the regression equation could not be used as SEQTL. The reduction in SEQTL with successive step
decreases in c (i.e., from c � 24 to c � 8, c � 8 to c �a substitute for the tabulated values. However, the re-
2.66, c � 2.66 to c � 0.88, and c � 0.88 to c � 0.29)gression analysis did show a tight relationship between
differed in a nonlinear manner depending on the powereffects of N and d on SEQTL. This accorded with the
factor and on the specific step. In general, the reductionwell-known fact that test statistics for determining link-
in SEQTL per step decrease in c was greater for theage between markers and QTL stand in proportion to
initial steps and smaller for the final steps and wasd 2N (Song et al. 1999). Indeed, within a given combina-
greater for large PF and smaller for small PF (Table 1).tion of P and c, SEQTL were more or less the same for
It is noteworthy that an increase in marker spacing aloneparameter combinations of d and N, for which d 2N was
can increase map resolution by as much as eightfold,the same. For example, within the parameter combina-
depending on the power factor. This finding is poten-tion P � 0.05, c � 0.29; SEQTL for d � 0.25, N � 16,000;
tially of major importance. It tells us that when PF isd � 0.5, N � 4000 and d � 1.0, N � 1000 (d 2N � 1000
high, saturation of the genomic interval carrying thein each case) were 0.54, 0.51, and 0.59, respectively.
detected QTL by additional markers is justified. Further-Because of its powerful effect on SEQTL, the parameter
more, in many cases, by the use of multiple-trait analysisd 2N is termed the “power factor” or PF. Examination of
(Korol et al. 2001) the scaled multiple-trait allele substi-Table 5 of Thaller and Hoeschele (2000) shows the
tution effect of a QTL (D) is much greater than thesame dependence of accuracy of inferring QTL location
single trait effect (d). Since the PF stands in proportionon d 2N; compare, e.g., in their Table 5, the “power”
to D2, this will markedly increase the PF at the same N.values for QTL effect 0.5, N � 100, 500, 2500 to those
This increase in PF, in turn, will enable a further majorfor QTL effect 0.25 and N � 400, 2000, and 10,000.
decrease in SEQTL by adding even more markers toOn the basis of the above relationship, a second table
the genomic interval carrying the detected QTL. Thuswas prepared, giving SEQTL according to P, c, and d 2N
by combining multiple-trait analysis with marker satura-(data not shown). Where there were two or more combi-
tion, map resolution for given N can be increased mani-nations of d and N with the same value of d 2N, these
fold. The possibility of multiple-trait interval mappingwere averaged. The effect of proportion selected, P, was
analysis for selective genotyping design was alreadynow examined. When this was done, with increase in P
shown by Ronin et al. (1998).there was a consistent reduction in SEQTL at given PF

Along similar lines, there was a consistent reductionand c, with the exception of the transition from P �
in SEQTL with an increase in PF at all levels of c. How-0.25 to P � 0.50, which was accompanied by only a very
ever, the reduction did not stand in simple proportionslight overall reduction in SEQTL (SEQTL at P � 0.50
either to the PF itself or to the square root of the PF.

was on average 0.96 of SEQTL at P � 0.25). This is
Thus, a further simple reduction of Table 1 with respect

expected, since virtually all of the information for QTL to c or PF was not possible. Table 2 can therefore be
map location is found in the high and low 25% of the taken as the final condensed representation of the data.
population (Darvasi 1997b). When the reduction in The actual SEQTL for given d, N, P, and c can be
SEQTL in going from Pj � 0.05, 0.10, and 0.20 to P � approximated closely by going to the corresponding
0.25 was calculated for given PF and c, there was much value of PF and c in Table 2 and multiplying by the
fluctuation within the individual cells of the table, but inverse of the Pj to P � 0.25 reduction factor. For exam-
for given Pj, overall trends were not found, and the ple, the SEQTL for d � 0.5, N � 4000 (PF � 1000), c �
reduction in SEQTL appeared to be consistent across 2.66, P � 0.2 in the initial data simulation was 1.14. To
the entire table of values (data not shown). The average reconstruct this value from Table 1, go to PF � 1000,
reduction in SEQTL relative to P � 0.25 in going from c � 2.66 in Table 2 to find the value 0.785. This is
Pj � 0.05, 0.10, and 0.20 to P � 0.25 was 0.46, 0.69, and multiplied by the factor 1/0.69 to give SEQTL � 1.14,
0.94, respectively. SEQTL for P � 0.05, 0.10, 0.20, and which in this case happens to equal exactly the value
0.50 were therefore transformed to a P � 0.25 basis by found by simulation (data not shown). Not all equiva-
multiplying by the appropriate average factor (0.46, lents were this exact, but most were very close.
0.69, 0.94, and 1.04, respectively). The results were aver- Darvasi and Soller (1997) showed by simulation
aged and are given in Table 2. It is of interest that the that the 95% confidence interval of QTL map location
factors for P � 0.05, 0.10, and 0.20 appear to stand with a backcross or half-sib design, using a completely
in close proportion to (P/0.5)0.5, indicating a massive saturated map, can be closely approximated by the ex-
reduction in information content of the marginal data pression 95% C.I. � 3000/d 2N. On this approximation,
points in each case. the expected SEQTL with a fully saturated map can be

Examining the effect of marker spacing in Table 2 approximated as SEQTL � 95% C.I./4 � 750/PF. These
shows that the phenomenon of maximum achievable values are also shown in Table 2 and should be com-
resolution for given PF noted by Darvasi et al. (1993) pared to those obtained for c � 0.29, which are the limit
is found only for the lowest power factor, PF � 62.5. At values of the present simulation. The values obtained in
all other power factors, with each step decrease in c the present study for PF � 62.5 and PF � 125 were

much greater than the Darvasi and Soller (DS; Darvasithere was a consistent, albeit often small, reduction in
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TABLE 2

SEQTL according to marker spacing (c) and power factor (d 2N)

d 2N

c (cM) 62.5 125 250 500 1,000 2,000 4,000 8,000 16,000

24 42.19 18.46 6.05 2.78 1.70 1.24 0.87 0.70 0.51
8 33.52 14.47 4.04 1.76 1.06 0.69 0.47 0.37 0.26
2.66 34.15 13.89 3.13 1.39 0.79 0.46 0.28 0.21 0.15
0.88 31.59 12.28 2.85 1.17 0.64 0.36 0.21 0.13 0.08
0.29 33.08 11.73 2.69 1.14 0.60 0.31 0.17 0.10 0.06
R 0.78 0.64 0.44 0.41 0.35 0.25 0.20 0.14 0.12
DS 12.00 6.00 3.00 1.50 0.75 0.38 0.19 0.09 0.05

For proportion selected, P � 0.25, calculated as the average value obtained by converting values for P �
0.05, P � 0.10, P � 0.20, and P � 0.50 to a P � 0.25 basis, and the obtained value for P � 0.25. R, the
proportion of reduction in SEQTL in going from c � 24 cM to c � 0.29 cM. DS, the approximate values
obtained by the Darvasi and Soller (1997) simulation.

and Soller 1997) values. This is due to the fact that 2.62R, and 3R, respectively. At this very dense spacing,
the DS simulation assumed that the QTL was within the SEQTL obtained by use of the GS algorithm alone are
simulated target region and hence gives smaller values two- to threefold greater than SEQTL obtained by use
than the present simulation gives when the SEQTL is of the HS algorithm. SEQTL obtained by the use of
large and when some estimated QTL positions are out- the combined GS-HS algorithm, however, are essentially
side the target region. The values obtained in the pres- equal to those obtained by the HS algorithm. Since
ent simulation for PF � 250–4000 were somewhat less genotyping results obtained by the HS algorithm are
than the DS values. The reason for this is not clear. exactly the same as those provided by complete genotyp-
Finally, the present study gave values equivalent to those ing, the latter procedure was not simulated separately.
of the DS approximation for PF � 8000 and 16,000. In Clearly, the need for a small additional genotyping
general, therefore, the values given by the DS approxi- “investment” caused by moving from the GS to complete
mation are consistent with those of the present simula- genotyping (2.62R → 3R) is due to fluctuations caused
tion. by finite sample size. The estimates in Table 3 demon-

Figures 1 and 2 illustrate the HS and GS genotyping strate that this small investment provides the same reso-
procedures. An example of the relative efficiency of lution as given by HS at a higher cost (note the close
the HS, GS, and combined GS-HS algorithms alone on results for HS and GS-HS obtained by 7.58R and 3R
mapping resolution is given in Table 3, which explores genotyping data points, respectively).
these relationships by simulation for the cases d � 1;
N � 4000, 8000; P � 0.10, 0.20; c � 0.125; and an initial
interval of 24 cM, so that total number of markers � PRACTICAL FEASIBILITY AND IMPLEMENTATION
(24/0.125) � 1 � 193. Total genotyping data points

The results of this study show that when large map-required by HS, GS, and GS-HS algorithms are 7.58R,
ping populations are available, SEQTL can be reduced
to subcentimorgan levels, even for QTL of moderate

TABLE 3 effect (d � 0.25). This gives 95% confidence intervals
SEQTL based on the HS, GS, and combined GS-HS algorithms of QTL location in the range of 1–5 cM. Confidence

applied to selective genotyping design intervals of this magnitude provide tightly linked mark-
ers for marker-assisted selection, a strong basis for a

N P HSa GS GS-HS search for population-wide linkage disequilibrium in
outcrossing populations, and a platform for a search4000 0.1 0.34 0.50 0.36

0.2 0.18 0.29 0.17 for the actual gene corresponding to the QTL.
8000 0.1 0.13 0.29 0.12 By careful consideration of Table 2, the trade-off be-

0.2 0.10 0.28 0.11 tween population size, proportion selected, and marker
spacing can be calculated, so as to obtain maximumThe results correspond to d � 1, averaged over 1000 Monte

Carlo runs; marker spacing c � 0.125 cM, L � 24 cM. N, total return for the research investment. If large families are
size of the mapping population; P, proportion of individuals available and samples can easily be accessed, it will be
selected for genotyping. more cost effective to use a small P with largest possiblea Results obtained by full genotyping of all recombinant

family size and wider marker spacing. If families areindividuals were exactly the same as those obtained by HS
genotyping. relatively small, or if it is difficult to access samples, it
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will be more cost effective to use a large P and closer segment, to the right or left. Thus, if SRG analysis indi-
cates that the QTL is located to the extreme end of themarker spacing.

The major requirement for application of these pro- target segment, one would go on to identify recombi-
nants in the adjacent segment (at a cost of 2NP datacedures is availability of a population of required size

and sufficient density of informative markers. The com- points) and conduct an SRG analysis across both seg-
ments. Setting the initial target interval with much widermon dinucleotide microsatellite markers are generally

not available at a spacing of �1–2 cM. However, with limits than the 95% C.I. would not be as useful, because
the introduction of single nucleotide polymorphism in most instances the QTL will map within its 95% C.I.
markers an increase by one or two orders of magnitude so that the additional effort is not needed, and, with a
in the number of markers and a decrease of an order very wide target interval, double and triple recombi-
of magnitude in costs of genotyping are confidently nants will play more of a spoiling role.
expected for the near future. The present results relate to expected SEQTL under

With respect to population size, F2 and BC popula- various assumed design and parameter combinations.
tions of 10,000 or more can readily be produced in The question arises as to the relevance of the SEQTL
many species of agricultural plants. Thus, these species of the present study, obtained across many simulations,
are excellent candidates for SRG. In agricultural animal to the C.I. of map location as it might be estimated from
species, the enormous sire half-sib families, consisting the one-time data of an actual experiment. In this case,
of 10,000 or more daughters that are routinely produced bootstrap and information matrix methods are available
through artificial insemination in dairy and in some to obtain approximate confidence intervals for QTL
beef cattle populations, have the requisite family struc- map location. However, it would also be possible to use
ture for QTL mapping, and phenotypic information is the estimate of QTL effect obtained from the actual
available on each individual. For application of SRG experiment to obtain a SEQTL estimate by interpolation
to poultry and swine breeding nuclei, progeny can be in Table 2. We believe that C.I. obtained by the two
collected across a number of sires heterozygous for the approaches will be similar, but this remains to be ex-
same QTL to provide the desired total number of prog- plored in detail.
eny for high-resolution mapping. This would require a In addition, once an estimate of QTL effect has been
preliminary step in which many sires are analyzed to obtained, the results of this study are relevant to decid-
identify sires heterozygous at the QTL. To reduce geno- ing whether and to what degree further marker density
typing costs, screening of sires for heterozygosity could in the C.I. could reduce the SEQTL and C.I. of map
be achieved by selective DNA pooling (Darvasi and location.
Soller 1994; Lipkin et al. 1998).
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