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Explicit modelling of metabolic networks relies on well-known
mathematical tools and specialized computer programs. However,
identifying and estimating the values of the very numerous
enzyme parameters inherent to the models remain a tedious and
difficult task, and the rate equations of the reactions are usually
not known in sufficient detail. A way to circumvent this problem
is to use ‘non-mechanistic’ models, which may account for the
behaviour of the systems with a limited number of parameters.
Working on the first part of glycolysis reconstituted in vitro,
we showed how to derive, from titration experiments, values of
effective enzyme activity parameters that do not include explicitly
any of the classical kinetic constants. With a maximum of only

two parameters per enzyme, this approach produced very good
estimates for the flux values, and enabled us to determine the
optimization conditions of the system, i.e. to calculate the set of
enzyme concentrations that maximizes the flux. This fast and easy
method should be valuable in the context of integrative biology or
for metabolic engineering, where the challenge is to deal with the
dramatic increase in the number of parameters when the systems
become complex.
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INTRODUCTION

The ‘omics’ approaches are challenging biochemical prac-
tice. The complete genome sequence data and microarray techno-
logies reveal frequent occurrences of gene families with complex
patterns of gene regulations, quantitative proteomics give ex-
pression data for hundreds of enzymes and isoenzymes, and
metabolomics techniques give access to thousands of major
metabolites. The way all these systemic variables are affected
by development, environmental conditions and/or genetic back-
ground gives invaluable information to investigate the nature,
organization and control of complex metabolic networks. Modell-
ing metabolic systems relies on classical theoretical methods,
such as differential equations, and on powerful computer pro-
grams. With these tools, extensive efforts have been made to
achieve a comprehensive dynamic description of some essen-
tial pathways, such as glycolysis, especially in yeast [1,2],
Trypanosoma brucei [3], erythrocytes [4–6] and muscle [7].
However, such approaches, which require a long-term effort of
numerous laboratories for simple pathways, have severe limit-
ations for more complex systems. The main obstacle for bio-
chemical modelling is usually not the availability of math-
ematical and informatics tools, but the determination of the
parameter values. Single rate equations may include more than
ten parameters {as arises in the equation for PFK (6-phospho-
fructokinase; EC 2.7.1.11) [2]}, and the number of parameters
increases dramatically with the size and complexity of the
systems. Except for the concentration of the most abundant
enzymes, which can be estimated with quantitative proteomics
(e.g. [8]), there is no simple or direct way to measure essen-

tial parameters such as catalytic constants, Michaelis–Menten
constants, or inhibition constants. For example, the robot-based
platform recently developed to measure activities of approx. 20
enzymes in Arabidopsis is promising, but does not provide values
for such essential parameters [9]. In vivo, it is questionable
whether all the parameters can be estimated from perturbation
experiments [10], in particular because the range of variation
of metabolite levels is limited by homoeostasis constraints [11].
For some well-described pathways, computer simulations can
be performed to estimate the parameter values by fitting the
model with in vivo observations [12]. In any case, estimating
the parameter values remains a tedious and time-consuming task,
with multiple factors of inaccuracy, and no assurance that all the
key parameters are identified.

Consequently, modelling efforts based on conceptual short-
cuts are essential to simulate complex cellular behaviours from
a limited amount of biological data. Flux balance analysis (see
[13] for a review) represents a radical approach in this direction,
since no kinetic information is included in the models. Flux
balance analysis does not attempt to predict the exact behaviour
of metabolic networks, but uses known constraints on the
integrated function of multiple enzymes to separate the state that
a system can reach from those it cannot. Constraints considered
are the steady-state mass balance of metabolites, the effective
irreversibility of reactions due to thermodynamic constraints, or
the maximum flux capacity of enzymes or transport proteins.
In the MCA (metabolic control analysis) [14,15] or in the BST
(biochemical systems theory) [16], rate laws are not explicitly
written, but kinetic parameters are not ignored. Both theoretical
frameworks use systemic coefficients (control coefficients or
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logarithmic gains) and local coefficients (elasticity or kinetic
order), which can be estimated experimentally, to quantify the
behaviour of the systems. Derived from MCA or BST, various
so-called ‘non-mechanistic’ models have been proposed that aim
at using approximate equations to describe the behaviour of the
systems with a reduced number of parameters. The power law
representations, such as the S-systems, are obtained by specify-
ing a rate constant (the multiplicative term) and writing one
power term for each variable that directly influences the rate law
(metabolites, enzymes and effectors) [17]. The (log)linear kinetic
models rely on knowledge about the strength of interaction among
the rates of enzyme-catalysed reactions and the concentrations
of the various metabolites and regulators of the network [18]. The
linlog kinetics proposes general expressions giving steady-state
fluxes and metabolite levels as a function of enzyme concentration
and response coefficients [11]. Finally, the ‘tendency modelling’
approach results in rate equations containing a minimal number
of parameters, because it assumes that the behaviour of the meta-
bolites is determined more by the stoichiometric structure of the
network than by the exact enzyme mechanisms [19].

The present study is in the line of the modelling approaches
using a limited number of parameters. We show how to use a
simplified formalism based on MCA to derive global parameters
that account for the kinetic behaviour of enzymes in their meta-
bolic context. According to the structure of the pathway and to the
position of the enzyme in the pathway, one or two parameters per
enzyme are sufficient. We evaluated the validity of the method on
a pathway reconstituted in vitro, an approach that just proved to
be very efficient to study the systemic properties of the pathways,
such as elasticities, flux control coefficients and transition time
control coefficients [20–22], dynamic properties [23,24] and
allosteric controls [25]. The upstream part of glycolysis, from
HK (hexokinase; EC 2.7.1.1) to G3PDH (glycerol-3-phosphate
dehydrogenase; EC 1.1.1.8), allowed us to measure the flux for a
large number of different distributions of enzyme concentrations,
and to compare the values with the theoretical predictions. We
showed that the predicted flux values were tightly correlated to
the measured flux values. In addition we derived equations to cal-
culate the optimal distribution of enzyme concentrations for a
given total enzyme content allocated to the network. Again the
predicted values were fully consistent with observations. As
the method does not require the estimation of any classical kinetic
parameter such as Km, Vmax or K i, the experimental effort for
modelling and determining the conditions for optimization is thus
significantly reduced. Application of the approach to metabolic
engineering and to in vivo measurements is discussed.

THEORETICAL DEVELOPMENTS

Linear pathway of Michaelis–Menten enzymes

The flux J through a linear pathway of n unimolecular reversible
reactions catalysed by Michaelis–Menten enzymes far from
saturation is [14,15]:

J =
S1 − Sn+1

K1,n+1
n∑

j=1

Km j

Vj K1, j

(1)

where S1 and Sn+1 are respectively the concentrations of the initial
and final substrates of the pathway, K1,n+1 is the product of the
equilibrium constants of all the reactions, K1,j is the product of
the equilibrium constants from reaction 1 to reaction Sj−1 → Sj,

Km j is the Michaelis–Menten constant of enzyme j and Vj is the
maximum velocity of enzyme j. Since the maximum velocity is
given as Vj = Ejkcat j, with Ej the concentration of enzyme j and
kcat j its catalytic constant, we have:

J = S
n∑

j=1

Km j

kcat K1, j E j

(2)

where S = [S1] − [Sn+1]/K1,n+1.
For a given total enzyme concentration,

n∑
j=1

E j = Etot

there is an optimal set of enzyme concentrations {E1
∗, E2

∗, . . . ,
En

∗}, that is, a distribution that maximizes the flux. At maximum
flux, we have for all enzyme i [26,27]:

E∗
i

Etot

= 1/
√

Ai

n∑
j=1

1/
√

A j

(3)

where Aj = kcat jK1, j/Km j.

Estimating systemic kinetic parameters

Equations (2) and (3) do not apply to pathways such as glycolysis
that contain non-Michaelian–Menten and regulated enzymes.
Nevertheless, we wanted to evaluate the extent to which a similar
formalism could help in computing estimates of flux values and
determining the conditions for optimizing metabolic systems of
any complexity.

Consider a system converting a metabolite S1 into Sm+1 through
a series of reactions catalysed by n reversible enzymes far from
saturation. As branching is possible, n � m. With a single input
(S1) and output (Sm+1), the flux through the whole pathway at
steady state is the rate of consumption of S1, which is equal to
the rate of formation of Sm+1. On increasing the concentration Ei

of enzyme i, the concentrations of other enzymes being fixed, the
response of the flux is expected to display a quasi-hyperbolic
ascending curve (saturation curve). This intuitive prediction
is corroborated by an abundant theoretical and experimental
literature (see the Discussion section). However, depending on
the topology, the regulations and the constraints in the network,
various mechanisms could result – at least theoretically – in a
decrease in the flux when the concentration of certain enzymes
increases (some examples are presented in the Discussion
section). Moreover, non-linear behaviour, such as oscillations,
can prevent a stable steady state being observed.

In the following developments, we considered only stable
steady states, but for more generality we considered that the
asymptotic response of the flux upon enzyme increase may be
ascending or descending.

For fitting to experimental curves, we chose an expression of
the flux J derived from eqn (2):

J = S
n∑

j=1

1

A j E j + pi

= 1
n∑

j=1

1

S A j E j + Spj

(4)

where S and Ej have the same definition as above. The parameter
Aj is a complex systemic kinetic parameter that depends on
the type of enzyme and regulation, and takes the above value
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(Aj = kcat jK1, j/Km j) only for Michaelis–Menten non-regulated
enzymes in a linear pathway. Note that Aj may be negative,
for example if the enzyme belongs to the backward branch
of a substrate cycle. The dimension of Aj is µM−1 · s−1. The
parameter pj accounts for the ‘dispensability’ of enzyme j: if
pj = 0, then J = 0 when Ej = 0, and if |pj| �= 0, then J �= 0 when
Ej = 0. For example, in the system considered (see Scheme 1 in
the Experimental section), removing the TPI (triose-phosphate
isomerase; EC 5.3.1.1) does not bring the flux to zero because of
the branching of the pathway at the reaction catalysed by the FBA
(aldolase; EC 4.1.2.13). So the pTPI value is not null, unlike those
of the other enzymes. The dimension of pj is s−1.

All those parameters can be estimated with titration ex-
periments, by varying in turn the concentration of each enzyme,
the other concentrations being kept constant. For enzyme i, we
have the following expression of the flux:

J = 1

1

S Ai Ei + Spi

+
n∑

j �=1

1

S A j E j + Spj

(5)

When Ei tends to infinity, the flux tends to the value:

J∞i = 1
n∑

j �=1

1

S A j E j + Spj

(6)

Thus the flux may be given as:

J = 1
1

S Ai Ei + Spi

+ 1

J∞i

(7)

The three parameters S Ai, S pi and J∞i of this function of Ei can be
estimated by hyperbolic fitting of the titration curves [we used the
nls package of the version 2.0.1 of the R software (http://www.r-
project.org/)]. Note that the ordinate of the intercept for Ei = 0,
when S pi �= 0, is:

J0i = 1
1

Spi

+ 1

J∞i

(8)

Hence:

Spi = J0i · J∞i

J∞i − J0i

(9)

For indispensable enzymes, we have S pi = 0, and the flux value
tends to 0 when Ei tends to 0. With all the S Ai and S pi estimates,
the flux can be computed from eqn (4) for any set of Ei values.

Determination of the optimal distribution of enzyme concentrations

For a given total enzyme concentration, the optimal distribution
of the concentrations {E1

∗, E2
∗, . . . , En

∗} for a flux expressed by
eqn (4) can be calculated using the Lagrange multiplier method
(see the Appendix). Writing ei

∗ = Ei
∗/Etot, we get:

ei
∗ = 1/

√
Ai∑

j

1/
√

A j

(
1 +

∑
j

p j

A j Etot

)
− pi

Ai Etot

(10)

This equation is valid only if Etot corresponds to a fixed total
molarity. If Etot is a fixed total weight of enzymes (e.g. in g/l), as
considered in the present study, the molecular masses of enzymes

have to be included in the optimization equation, as shown in the
Appendix. We get:

ge
∗
i = 1/

√
A′

i∑
j

1/

√
A′

j

(
1 +

∑
j

p j

A′
j ·g Etot

)
− pi

Ai ·g Etot

(11)

where A′
j = Aj/Mj, with Mj the molecular mass of enzyme j, and

where the left subscript ‘g’ means that the enzyme concentrations
are in g/l.

EXPERIMENTAL

Chemicals

D-Glucose, Pipes, ATP, NADH, phosphocreatine and all enzymes
were obtained from Sigma. HK, PGI (phosphoglucoisomerase;
EC 5.3.1.9) and TPI were purified from baker’s yeast. FBA,
G3PDH and CK (creatine kinase; EC 2.7.3.2) were purified from
rabbit muscle, and PFK was from Bacillus stearothermophilus.
All the purchased commercial enzymes were crystalline sus-
pensions in ammonium sulphate. These proteins were desalted by
using PD-10 desalting columns according to the manufacturer’s
recommendations (Amersham Biosciences). The protein concen-
trations were determined at λ = 205 nm [28]. The molecular
masses of the enzymes are: PGI, 61300 Da; PFK, 34000 Da;
FBA, 39212 Da; and TPI, 26795 Da.

Measurements of kinetic parameters of isolated enzymes

All enzyme assays were carried out in a thermoregulated quartz
cuvette (25 ◦C), in a buffer containing 50 mM Pipes (pH 7.5),
100 mM KCl and 5 mM magnesium acetate. HK activity was
measured with 1 µM lactate dehydrogenase, 1 µM pyruvate
kinase, 1 mM phosphoenolpyruvate and various concentrations
of glucose. PGI activity was measured in the forward direction
with 0.5 µM PFK, 5 µM FBA, 3 µM G3PDH and glucose 6-
phosphate as substrate. PFK activity was measured with 0.25 µM
FBA, 0.41 µM TPI, 0.9 µM G3PDH and various concentrations
of fructose 6-phosphate. FBA activity was measured with 0.5 mM
TPI and 1 mM G3PDH and fructose 1,6-bisphosphate as sub-
strate. TPI activity was assayed with 1 µM G3PDH and glyceral-
dehyde 3-phosphate as substrate.

For estimating the kinetic parameters of isolated enzymes, we
used the classical Eadie–Hofstee representation [29] where the
maximal velocity V and the Michaelis–Menten constant Km were
estimated by fitting the linear regression model

Yi =α − β Xi + εi

where Yi = vi/Si are experimental data points for the reaction rate
vi at substrate concentration Si; Xi = vi; and εi is a random error
term. In this representation, Km = 1/β and V = α/β. Unbiased
estimators Km and V , and their corresponding sampling variance,
can be found by a Taylor series expansion of the ratios around the
true values α and β (see for example [30]):

K̂ m = 1

β̂
− s2

β̂

β̂3
and Var(K̂ m) = s2

β̂

β̂4

V̂ = α̂

β̂
− s2

β̂

β̂3
+ Cov(α̂, β̂)

β̂2

and Var(V̂) = s2
α̂

β̂2
− s2

β̂

β̂4
− 2

Cov(α̂, β̂)

β̂3

where α̂, β̂, s2
α̂
, s2

β̂
and Cov(α̂, β̂) are estimated from the linear

regression of vi/Si on vi.
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Scheme 1 Upstream part of glycolysis reconstructed in vitro

Table 1 Kinetic parameters of the enzymes

Maximal rates (V ) are expressed as units (i.e. µmol/min) per mg of total protein. Because V and K m are estimated from ratios in the Eadie–Hofstee representation, unbiased estimators and S.D.
values of these parameters were calculated by Taylor series expansions (see the Materials and methods section).

Experimental determination Manufacturer values

Enzyme V +− S.D. (units/mg of protein) k cat (s−1) K m +− S.D. (mM) V (units/mg of protein) k cat (s−1) K m (mM)

PGI 1370 +− 60 1410 1.65 +− 0.15 504 514 1.4
PFK 70 +− 1 41.7 0.033 +− 0.001 164 150 0.029
FBA 42 +− 2 27.7 0.012 +− 0.002 14 9.3 0.05
TPI 14 690 +− 1900 6680 2.38 +− 0.45 9500 4220 1.23

In vitro pathway and flux measurement

The system constructed in vitro was operated following Scheme 1.
The ATP pool is kept constant via the regeneration reaction

catalysed by CK. HK is saturated due to the high glucose con-
centration (100 mM). The HK concentration was fixed in all
experiments at 0.1 µM so that the glucose 6-phosphate input is the
same in all the experiments. G3PDH, catalysing the oxidation of
NADH, was kept constant, at high concentration (1 µM), in order
to use the slope of the linear NADH decay as a measurement of the
steady-state flux through the whole pathway. NADH consumption
was monitored every 2 s with an Uvikon 850 spectrophotometer
at 390 nm from 60 to 120 s. The assays were carried out at 25 ◦C in
a buffer containing 50 mM Pipes (pH 7.5), 100 mM KCl, 20 mM
phosphocreatine, 3 mM NADH and 5 mM magnesium acetate.
Each reaction was started by addition of 1 mM ATP.

Titration curves

We varied in turn the concentrations of each enzyme, the con-
centration of the others being maintained at reference values
computed on the basis of their physiological concentration
estimated in the yeast strain S288C [8]. The reference values
are 0.15 µM for PGI, 0.29 µM for PFK, 1.54 µM for FBA and
0.84 µM for TPI (respectively 9.1, 10.4, 60.1 and 22.3 mg/l).
Hyperbolic fitting of the curves gave the relevant enzyme para-
meters that can be used for computing the predicted flux values
(see the Theoretical developments subsection).

Selecting distributions of enzyme concentrations for flux
measurement

To assess the reliability of the predicted flux values, and the
validity of the model giving the optimal enzyme concentrations,
we measured the flux values for a series of 121 distributions
of enzyme concentrations, the total amount being kept constant.
The sum of PGI, PFK, FBA and TPI concentrations was fixed
at Etot = 101.9 mg/l, chosen as the sum of the reference concen-
trations. In order to cover a large range of variation, we varied

the FBA concentration (the most abundant enzyme) from 0 to
Etot, taking ten values evenly distributed, and the proportions of
the remaining enzymes (PGI, PFK and TPI) were drawn in β
distributions with shape parameter α = 1 and scale parameter

β = 1 − eϕ

i

eϕ

i

with eϕ

i the reference proportion of enzyme i. In the 121
distributions obtained, enzyme concentrations ranged from 0 to
70 mg/l for PGI and PFK and from 1.66 to 66.9 mg/l for TPI.

Each flux measurement was repeated three times in three
independent tubes. As the fluxes should be expressed in µM/s, the
enzyme concentrations (in mg/l) were converted into µM using
the molecular masses given by the manufacturer.

RESULTS

Estimation of the kinetic parameters of isolated enzymes

The kinetics of the commercial enzymes in the forward direction
was studied under the same conditions as those used for the system
constructed in vitro. The values of the enzyme kinetic parameters
estimated using the Eadie–Hofstee representation were of the
same order of magnitude as those indicated by the manufacturer
(Table 1).

Titration experiments in the pathway constructed in vitro

Relationships between the flux and the concentration of each
enzyme of the upstream part of glycolysis constructed in vitro,
and the curves of the hyperbolic fittings, are shown in Figure 1. For
each enzyme, the parameters J∞i, S Ai and Spi were estimated as
indicated in the Theoretical developments subsection (Table 2).
As expected, S Ai values were poorly correlated with the ratio
kcatiK1,i/Kmi that can be estimated from isolated enzymes (results
not shown). TPI alone is ‘dispensable’, since the flux with no
TPI is estimated to be J0TPI = 10.47 µM/s, whereas J0i for other

c© 2006 Biochemical Society



In vitro flux prediction and optimization 321

Figure 1 Titration curves

(a) PGI, (b) PFK, (c) FBA and (d) TPI. The flux (y-axis) is in µM/s and the concentration of the enzymes (x-axis) is in µM.

Table 2 Systemic parameter values of the four enzymes estimated from
titration curves

J∞, J0, S A and Sp, see the text.

Enzyme J∞ +− S.D. (µM/s) J0 +− S.D. (µM/s) S A +− S.D. (s−1) Sp +− S.D. (µM/s)

PGI 13.22 +− 0.5 0 499.4 +− 49.6 0
PFK 17.61 +− 1.0 0 115.5 +− 15.1 0
FBA 18.24 +− 0.7 0 22.5 +− 2.4 0
TPI 12.60 +− 0.1 10.5 +− 0.1 22 940 +− 430 61.8 +− 4.5

enzymes is zero. So we have SpTPI = 61.77 µM/s, and Spi = 0 for
PGI, PFK and FBA.

Comparing predicted and measured flux values
With the estimates of the SAi and Spi, we calculated a predicted
flux value, Jpred, for any set of enzyme concentrations from
eqn (4):

Jpred = 1
1

499.4 × EPGI
+ 1

115.5 × EPFK
+ 1

22.5 × EFBA
+ 1

22 940 × ETPI + 61.8

This predictor was used to compute the flux values for 121
distributions of enzyme concentrations, and these values were
compared with the flux values measured in vitro, Jobs. Table 3
gives the Jpred and the Jobs values and the S.D. of the Jobs. The cv
(coefficients of variation) never exceeded 0.14, and 84% of the
cv were below 0.05. The linear correlation coefficient between
the predicted and measured flux value was high (r = 0.93) and the
intercept of the regression line was not statistically different from
zero (Figure 2). The slope of the regression line was statistically
higher than 1 (a = 1.38 +− 0.18), which means that the predictor
overestimates the observed flux by a constant factor. Thus Jpred/a
appears to be a reliable predictor of the flux in the in vitro system.

Optimizing the metabolic system

As the total enzyme concentration was fixed, the relationship
between the concentration of a particular enzyme and the flux can
no longer be hyperbolic, since there is a global negative correlation
between the concentrations. High concentration of one enzyme

reduces that of the others, which may decrease the flux. Consistent
with this prediction, plotting the observed flux as a function of the
concentration of any one enzyme showed that the experimental
points were distributed below a hump-shaped curve (Figure 3).
For a given concentration of one of the enzymes, the flux may vary
between 0 and a local maximum, depending on the distribution
of the concentrations among the other enzymes. The distributions
were randomly drawn, which explains the high extent of scatter
of the points (some enzyme concentrations may be very low by
chance).

The optimal proportion of each enzyme in the system was
computed using eqn (11), which gave the proportions 0.155
for PGI, 0.240 for PFK, 0.590 for FBA and 0.015 for TPI.
As the total enzyme concentration, Etot, was 101.9 mg/l, these
values corresponded respectively to 15.8, 24.5, 60.1 and 1.5 mg/l.
As expected, the flux value computed with these concentrations
(Jpred max/a = 14.62 µM/s) is higher than all the predicted or
measured flux values, and the position of the optimal concen-
tration for each enzyme corresponds to the top of the hump-shaped
curve that ‘envelops’ all the points (Figure 3). For an enzyme
concentration lower than the optimum, the local maximum
flux increases with the enzyme concentration. For an enzyme
concentration that exceeds the optimum, the local maximum flux
decreases with the enzyme concentration.

DISCUSSION

We used the reconstituted upstream part of glycolysis to evaluate
a method for estimating effective enzyme parameters that account
for the behaviour of the enzyme within its metabolic pathway.
The flux values predicted from these parameters proved to be
quite close to the measured flux values. The systemic para-
meter Ai that we defined includes all the kinetic and regulation
properties of the enzyme, but its estimation does not require
any measurement of parameters such as Km, kcat or Ki. Thus
the kinetic type of the enzyme does not interfere with the
modelling. For instance, PFK, which is a regulated enzyme, was
treated like PGI, a Michaelian enzyme. It is worth noting that
Ai also contains information on the position of the catalysed
reaction in the pathway, via the equilibrium constants. In linear
pathways of Michaelis–Menten enzymes far from saturation,
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Table 3 Predicted (Jpred) and measured flux (Jobs) for the 121 genotypes

The enzyme concentrations are indicated in their respective columns. The last column (S.D.) indicates the standard deviation of the mean Jobs values computed with three replicates.

PGI PFK FBA TPI Jpred Jobs S.D. PGI PFK FBA TPI Jpred Jobs S.D.

1 39.32 12.38 25.47 24.71 10.49 8.46 0.11 62 20.00 42.50 28.50 10.90 13.45 7.57 0.65
2 51.97 14.22 25.47 10.23 10.92 8.45 0.23 63 35.00 32.50 8.50 25.90 4.59 2.39 0.21
3 12.20 27.64 35.66 26.39 14.36 11.19 0.22 64 20.00 45.00 32.50 4.40 15.02 8.28 0.33
4 32.45 28.74 35.66 5.03 15.84 9.68 0.14 65 55.00 7.50 22.50 16.90 8.40 4.53 0.65
5 15.66 23.52 45.85 16.86 17.11 12.15 0.22 66 11.50 25.00 47.50 17.90 16.89 10.11 0.34
6 15.55 30.53 45.85 9.96 17.96 10.40 0.22 67 22.50 30.00 8.50 40.90 4.54 2.34 0.10
7 6.79 20.43 56.04 18.63 15.71 11.55 0.16 68 25.00 27.50 10.00 39.40 5.26 2.49 0.07
8 3.33 5.75 66.23 26.58 8.74 9.24 0.04 69 45.00 37.50 8.50 10.90 4.63 2.32 0.06
9 9.01 8.80 66.23 17.85 13.61 11.39 0.24 70 3.98 2.28 81.52 14.12 5.52 4.62 0.06

10 4.24 25.75 66.23 5.67 14.94 11.70 0.30 71 3.81 2.71 81.52 13.85 6.17 6.12 0.12
11 8.44 9.53 66.23 17.69 13.93 11.22 0.10 72 6.40 2.69 86.61 6.19 6.72 6.11 0.15
12 5.92 5.25 76.42 14.30 10.03 8.90 0.06 73 4.75 2.63 81.52 13.00 6.27 5.13 0.19
13 5.79 3.30 76.42 16.38 7.51 6.38 0.29 74 5.38 3.01 86.61 6.90 7.09 6.49 0.09
14 4.23 2.62 76.42 18.62 6.09 5.46 0.10 75 6.37 4.17 76.42 14.94 8.86 7.71 0.34
15 9.40 2.58 86.61 3.31 6.77 5.05 0.13 76 4.66 4.03 81.52 11.69 8.27 7.71 0.11
16 3.72 1.95 86.61 9.61 4.90 3.99 0.13 77 24.36 7.48 56.04 14.01 13.23 9.73 0.11
17 7.36 3.21 86.61 4.72 7.77 6.47 0.08 78 28.10 8.42 50.95 14.43 13.58 9.77 0.13
18 37.90 12.60 35.66 15.73 13.24 9.74 0.05 79 8.76 5.41 66.23 21.49 10.55 8.96 0.08
19 29.71 6.62 56.04 9.53 12.52 9.39 0.22 80 23.65 7.59 61.14 9.52 13.77 9.72 0.18
20 13.29 8.21 56.04 24.36 13.11 10.08 0.05 81 6.82 14.17 76.42 4.49 16.17 11.33 0.38
21 20.60 7.18 66.23 7.89 13.61 11.52 0.08 82 5.26 11.19 71.33 14.12 13.48 11.03 0.16
22 9.88 3.73 86.61 1.67 8.92 7.31 0.04 83 9.64 16.24 66.23 9.79 17.45 11.56 0.23
23 3.40 2.81 86.61 9.08 6.20 6.92 0.24 84 4.56 4.53 71.33 21.48 8.59 7.92 0.11
24 70.00 5.00 5.00 21.90 2.44 1.22 0.08 85 8.62 3.47 86.61 3.19 8.36 7.25 0.11
25 20.00 10.00 5.00 66.90 2.60 1.87 0.04 86 5.35 4.48 76.42 15.65 8.97 8.50 0.09
26 40.00 10.00 40.00 11.90 13.13 9.70 0.55 87 22.56 7.84 50.95 20.55 12.94 9.86 0.05
27 55.00 15.00 12.00 19.90 5.98 4.56 0.06 88 23.34 7.80 56.04 14.72 13.48 11.63 0.14
28 15.00 15.00 55.00 16.90 16.79 12.90 0.53 89 27.65 9.99 45.85 18.40 13.89 10.05 0.09
29 10.00 20.00 15.00 56.90 6.98 5.15 0.26 90 17.75 4.96 66.23 12.95 10.79 8.36 0.15
30 40.00 35.00 5.00 21.90 2.78 1.72 0.02 91 18.53 4.91 71.33 7.12 10.97 9.08 0.35
31 45.00 40.00 12.00 4.90 6.43 4.18 0.22 92 8.31 6.98 61.14 25.47 11.69 10.74 0.23
32 15.00 40.00 45.00 1.90 18.22 12.07 0.81 93 15.24 5.45 76.42 4.78 11.75 9.76 0.03
33 40.00 45.00 7.00 9.90 3.86 2.07 0.12 94 11.04 15.68 61.14 14.03 17.10 12.47 0.17
34 3.00 45.00 50.00 3.90 12.10 10.50 0.35 95 7.06 14.74 76.42 3.67 16.53 12.23 0.13
35 15.00 50.00 5.00 31.90 2.76 1.79 0.00 96 19.12 16.02 56.04 10.71 17.85 10.71 0.19
36 25.00 50.00 12.00 14.90 6.40 4.18 0.15 97 11.51 13.37 66.23 10.79 16.91 12.63 0.15
37 25.00 50.00 20.00 6.90 10.19 6.64 0.10 98 22.62 8.82 50.95 19.51 13.68 10.37 0.08
38 35.00 60.00 5.00 1.90 2.80 1.89 0.01 99 45.65 13.30 25.47 17.47 10.72 7.65 0.32
39 15.00 65.00 20.00 1.90 9.95 6.69 0.11 100 30.21 11.88 45.85 13.96 14.93 11.54 0.07
40 25.00 70.00 2.00 4.90 1.14 0.74 0.08 101 9.06 16.44 56.04 20.35 15.97 11.49 0.10
41 33.00 1.00 66.23 1.66 3.08 2.20 0.06 102 5.08 15.50 71.33 9.99 14.77 12.28 0.13
42 1.00 33.00 66.23 1.66 6.30 7.23 0.01 103 19.19 17.00 56.04 9.67 18.20 11.05 0.29
43 4.00 25.00 66.23 6.66 14.50 12.65 0.21 104 33.82 18.87 35.66 13.55 14.66 9.50 0.18
44 7.00 12.00 66.23 16.66 14.61 12.35 0.21 105 21.50 7.41 56.04 16.94 13.05 10.52 0.07
45 10.00 10.00 66.23 15.66 14.68 12.05 0.07 106 33.81 9.61 45.85 12.63 13.82 10.26 0.03
46 13.00 13.00 66.23 9.66 17.09 11.90 0.14 107 11.15 8.50 61.14 21.11 13.48 10.82 0.19
47 16.00 7.00 66.23 12.66 13.13 10.10 0.29 108 23.46 10.70 50.95 16.79 14.92 11.08 0.25
48 19.00 7.00 66.23 9.66 13.34 10.11 0.27 109 16.40 17.41 50.95 17.14 17.04 11.75 0.10
49 22.00 12.00 66.23 1.66 17.51 10.80 n.d. 110 10.61 18.22 50.95 22.12 16.13 11.57 0.29
50 25.00 9.00 66.23 1.66 15.48 10.90 0.14 111 22.35 16.51 45.85 17.18 16.29 9.80 0.27
51 28.00 6.00 66.23 1.66 12.43 9.35 0.46 112 18.13 15.35 56.04 12.38 17.50 11.79 0.08
52 31.00 3.00 66.23 1.66 7.75 5.90 0.03 113 18.07 18.85 56.04 8.93 18.64 11.64 0.05
53 6.00 18.00 66.23 11.66 15.81 9.31 0.10 114 12.34 16.16 56.04 17.36 16.85 11.58 0.06
54 8.00 8.00 66.23 19.66 12.73 10.25 0.07 115 20.45 19.14 50.95 11.36 17.95 10.56 0.42
55 10.00 15.00 66.23 10.66 17.14 11.45 0.49 116 12.00 20.03 56.04 13.82 17.82 10.79 0.24
56 12.00 13.00 66.23 10.66 16.86 11.45 0.21 117 18.35 27.25 50.95 5.35 19.26 10.55 0.29
57 14.00 18.00 66.23 3.66 19.32 11.60 0.00 118 9.90 28.14 56.04 7.82 18.48 10.95 0.26
58 16.00 16.00 66.23 3.66 18.97 11.85 0.21 119 24.06 26.13 40.76 10.95 16.88 10.88 0.30
59 47.50 37.50 3.50 13.40 1.97 1.10 0.03 120 11.23 21.97 50.95 17.75 17.06 11.11 0.07
60 30.00 25.00 26.00 20.90 12.05 7.62 0.15 121 11.17 25.48 50.95 14.30 17.59 11.01 0.16
61 37.50 47.50 5.00 11.90 2.79 1.62 0.05

Ai includes merely the product of the equilibrium constants
from the initial reaction to the reaction catalysed by enzyme i
[14], but in the general case of complex networks there is no
simple relationship between the equilibrium constants. The other
parameter that we defined is the ‘dispensability’ (pi), which is

different from zero whenever removing the enzyme from the sys-
tem does not drive the flux to 0, a situation that occurs in the case
of reticulation in the system. The parameters Ai and pi could not
be estimated independently of S, a parameter that depends also on
the equilibrium constants of the reactions and on the initial and
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Figure 2 Relationship between the measured flux Jobs and the predicted flux Jpred

The regression line Jpred on Jobs is indicated.

final substrates of the pathway, but this had no incidence on the
calculus of the predicted flux.

The visual inspection of the titration curves used to estimate
these parameters revealed that for every enzyme, the experimental
points follow a slightly more convex curve than the fitted
hyperbola, so that the estimated J∞i are higher than the apparent
maximum experimental flux values. Thus the slope a of the
regression line of Jpred on Jobs is higher than 1, so the right predictor
of flux is Jpred/a. Other, more complex, functions could lead to
better fittings. However, the quality of the prediction that we
obtained with only two parameters does not justify making the
model more complex. In addition, we think that the prediction
could be even improved in a system in which the concentration
of the first substrate could be maintained constant. Under our
conditions, the first substrate of the system was glucose 6-phos-
phate; its input was constant because HK was saturated by glucose
and did not vary, but its steady-state concentration depended on
the concentration of the other enzymes. As a consequence, unlike
what was assumed in the model, the parameter S could slightly
vary, which inevitably increased the dispersion of the values.

The method for estimating global parameters can apply whether
flux response towards enzyme variation is positive or negative,
i.e. whether enzymes have positive or negative flux control coeffi-
cients. Here, the flux displayed a saturation curve for all enzymes,
which means that the enzymes have a positive control coefficient
for any concentration. This situation has been described for
diverse pathways in many classical papers (e.g. [31–33]), and
is theoretically expected in case of linear pathways [14] even if
there are feedback or feedforward loops [34]. In this connection,
it would be interesting to test the robustness of the method on
the complete glycolysis, which would introduce strong feedback
loops. In branched pathways, there are some particular situations
where increasing an enzyme concentration could result in a
decrease in the flux. (i) When the enzyme under study is located
inside a feedback loop, negative control coefficients may be
observed, depending on the parameter values of the network
[34]. This is consistent with observations showing that increasing
the trehalose-6-phosphate synthase may result in a decrease in
trehalose synthesis, via the inhibition of HK by trehalose 6-
phosphate [35]. (ii) When there is a substrate cycle (or ‘futile’
cycle), i.e. when a reaction, or a set of reactions, that converts
metabolite Si into Sj, is opposed by a second set that reconverts

Sj into Si, as observed for example with the cycle glucose–
glucose 6-phosphate. Overexpression of glucose-6-phosphatase
in rat hepatocytes decreases glucose 6-phosphate levels, with a
negative control coefficient of this enzyme on glycogen synthesis
[36]. In such cycles, increasing concentration of a backward
enzyme is expected to decrease the whole flux to a minimal
level, whereas a maximum flux value will be observed if the con-
centration of any one backward enzyme is null. (iii) When there is
regulation by covalent modifications of enzymes, negative control
coefficient may be observed. In the classical example of reversible
phosphorylation of enzymes by protein kinases, the effects on the
target enzymes can be activatory or inhibitory. Interestingly, when
antagonistic enzymes in cycles are phosphorylated, usually one
is activated and the other is inhibited [37]. Analogous, though
more complex, mechanisms account for the high negative control
coefficient of glycogen phosphorylase on glycogen synthesis [38].
All these situations necessarily result in negative values for S Ai

and S pi, which is allowed in our modelling since we made no
assumption on the sign of those parameters. (It is worth noting
that when the enzyme under study does not belong to the branch
the flux of which is measured, negative flux control coefficients are
expected [39,40], but this situation is not relevant to our approach,
because we considered the flux through the whole pathway, with
input flux equals output flux.)

The equations that we derived also allowed us to find the optimal
distribution of enzyme concentrations in case of constraint on
total enzyme. Despite the fact that the amount of enzyme the
cell allocates to a given metabolic pathway is necessarily limited,
biochemical modelling implicitly considers in most cases that
enzyme concentrations are independent of each other, i.e. there
is no limitation of resources (matter and energy) in the cell.
However, some results clearly indicate that there are constraints on
the variation of enzyme concentrations, particularly for the most
abundant ones, due to competition for space, energy and cellular
resources. Thus global negative correlations may occur between
enzyme concentrations, resulting in the so-called ‘protein burden
effect’ [41]. For example, it has been shown that increasing the
expression of various glycolytic enzymes in Zymomonas mobilis
causes a significant decrease in the glycolytic flux and growth
rate [42]. In terms of economy of resources, and hence from the
evolutionary point of view, it is important to achieve a given flux
value with the minimum amount of total enzyme. Formally, this

c© 2006 Biochemical Society
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Figure 3 Relationship between the concentration of each enzyme and the observed (A) and predicted (B) flux through the pathway

The grey lozenges correspond to the theoretical optimal concentration of each enzyme, i.e. the concentration that leads to maximum flux. The error bars in (A) correspond to +− 1 standard deviation.

question is equivalent to the one that we addressed, namely how
to achieve the maximum flux value with a given amount of total
enzyme (for a general treatment of this question, see [26,27,43]).
The equations that we derived allow this optimal distribution to
be found.

Another noticeable interest of predicting optimal distribution
of enzyme concentrations is for in vitro metabolic engineering.
For instance, a process for the production of 2-oxo-L-gulonic
acid, a precursor to vitamin C, implies two enzymatic reactions
exterior to the non-living permeabilized Pantoea citrea cells used
in the bioreactor [44]. The optimal concentrations of those extra
enzymes could be determined following the method described
in the present paper. Similarly, the approach could be applied
to functional protein chips based on mRNA–enzyme fusion
molecules hybridized on a DNA microarray, where immobilized
enzymes retain activity proportional to the amount of capture
DNA, allowing modulation of the relative activity of enzymes;

this novel and elegant technique was used for the optimization of
the trehalose synthesis pathway [35], but on an empirical base,
while our theoretical treatment would make it rational.

The approach is not restricted to systems reconstituted in vitro,
and can be applied to two experimental systems closer to in vivo
conditions. With cell-free extracts, titration experiments using
external enzymes are possible, as has been shown for character-
izing control properties in glycolysis of mouse muscle [45]
and rat liver [46]. Interestingly, it was shown that the kinetic
parameters of commercial enzymes did not produce a reliable
model of control properties of HK and PFK as compared with
kinetic parameters determined in muscle extract [45]. In plants,
isolated mesophyll cells from leaves of Digitaria sanguinalis
keep functional plasmodesmata that allow the free exchange
of low-molecular-mass compounds with the culture medium.
This system has been used successfully to analyse the kinetic
properties of the phosphoenolpyruvate carboxylase, with external
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malate dehydrogenase added to the medium [47]. Varying
external enzymes in such experimental systems would allow the
parameters we defined to be estimated ‘in cell’.

In conclusion, we developed a general method that allows
us both to predict flux values from global enzyme parameters
and to estimate optimal enzyme concentrations. This method is
promising for integrative biology and could find applications in
metabolic engineering.
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APPENDIX

Calculation of the optimal concentrations of the enzymes

We used the Lagrange multiplier method to find the distribution
of enzyme concentrations that maximizes the flux for a given
amount of total enzyme. At maximum flux, we have:

∂

∂ Ei

[
J − λ

(
n∑

j=1

E j − Etot

)]
= 0. (A1)

Taking the expression of the flux of the main text (eqn 4), we
have:

∂ J

∂ Ei

=
S Ai

(Ai E∗
i + pi )2(

n∑
j

1

A j E∗
j + pj

)2 , (A2)

where E∗
i is the optimal concentration of enzyme i.

From eqn (A1), we see that all the derivatives are equal to λ, so
we have:

∀i, j
Ai

(Ai E∗
i + pi )2

= A j

(A j E∗
j + pj )2

, (A3)

which is equivalent to:√
Ai

A j

= Ai E∗
i + pi

A j E∗
j + pj

. (A4)

Hence:

E∗
j = 1√

A j

(√
Ai E

∗
i + pi√

Ai

)
− pj

A j

. (A5)

Introducing Etot, it yields:

Etot =
∑

j

E∗
j =

∑
j

(
1√
A j

(√
Ai E

∗
i + pi√

Ai

)
− pj

A j

)
. (A6)

After rearrangements, we get:

E∗
i = 1/

√
Ai∑

j

1/
√

A j

(
Etot +

∑
j

p j

A j

)
− pi

Ai

. (A7)

This equation leads to eqn (10) of the main text, with

e∗
j = E∗

j /Etot.

This general treatment, where implicitly the concentrations are
expressed in mol/l, has to be adapted if the constraint on Etot is
a fixed total weight of enzymes, as we did in the present study.

In this case, the enzyme concentration, gEi (left subscript ‘g’ for
g/l), can be written as:

gEi = Mi Ei , (A8)

where Mi is the molecular mass of enzyme i. Thus the constraint
is:

n∑
j=1

M j E j = g Etot, (A9)

and eqn (A1) becomes:

∂

∂ Ei

[
J − λ

(
n∑

j=1

M j E j − gEtot

)]
= 0. (A10)

Here the derivatives of the flux are not equal, since we have:

∂ J

∂ Ei

= λMi . (A11)

The flux equation can be rewritten to make the molecular masses
apparent:

J = S
n∑

j=1

1

A′
j M j E j +pi

, (A12)

with A′
j = Aj/Mj.

Hence eqn (A11) can be written as:

S A′
i(

A′
i ·g E∗

i + pi

)2

(
n∑
j

1

A′
j ·g E∗

j + pi

)2 = λ, (A13)

with g E∗
i the optimal concentration of enzyme i.

Thus replacing Ai (respectively Aj) by A′
i (respectively A′

j ), and
E∗

i (respectively E∗
j ) by g E∗

i (respectively g E∗
j ) in eqns (3)–(7),

we obtain directly:

gE
∗
i = 1/

√
A′

i∑
j

1/
√

A′
j

(
gEtot +

∑
j

p j

A′
j

)
− pi

A′
i

. (A14)

This equation leads to eqn (11) of the main text, with

ge
∗
j = g E∗

j /gEtot.
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