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ABSTRACT
We present new methodology for calculating sampling distributions of single-nucleotide polymorphism

(SNP) frequencies in populations with time-varying size. Our approach is based on deriving analytical
expressions for frequencies of SNPs. Analytical expressions allow for computations that are faster and
more accurate than Monte Carlo simulations. In contrast to other articles showing analytical formulas for
frequencies of SNPs, we derive expressions that contain coefficients that do not explode when the genealogy
size increases. We also provide analytical formulas to describe the way in which the ascertainment procedure
modifies SNP distributions. Using our methods, we study the power to test the hypothesis of exponential
population expansion vs. the hypothesis of evolution with constant population size. We also analyze some
of the available SNP data and we compare our results of demographic parameters estimation to those
obtained in previous studies in population genetics. The analyzed data seem consistent with the hypothesis
of past population growth of modern humans. The analysis of the data also shows a very strong sensitivity
of estimated demographic parameters to changes of the model of the ascertainment procedure.

Alot of research has been done to develop methods of using SNP data for estimation of population parame-
ters. Several interesting studies were carried out in thisfor discovery of single-nucleotide polymorphisms
area. Studies by Durrett and Limic (2001) and Wang(SNP) and to characterize distributions of SNPs across
et al. (1998) estimated frequencies of SNPs under thethe genome (Collins et al. 1997; Wang et al. 1998;
hypothesis of population growth. A problem of howCargill et al. 1999; Marth et al. 1999; Picoult-New-
sampling frequencies of SNPs are influenced by ascer-berg et al. 1999; Altshuler et al. 2000). SNP data have
tainment procedures was investigated by Eberle andalready been used in association studies of complex
Kruglyak (2000), Yang et al. (2000), and Renwick et al.diseases (Boerwinkle et al. 1996; Halushka et al. 1999;
(2002). Using SNPs for estimation of the scaled productBonnen et al. 2000; Trikka et al. 2002), and it is believed
parameter � � 4Ne� of the effective population size Nethat eventually they will enable creation of fine genetic
and mutation rate �, under assumption of constant popu-maps for complex traits analysis (Kruglyak 1999; Rish
lation size, was studied by Kuhner et al. (2000). They2000). Databases, like that of the SNP Consortium, at
took into account various hypotheses of spatial (chro-http://snp.cshl.org, contain massive amounts of data on
mosomal) distributions of SNPs such as complete orpositions of SNPs in the human genome, but it is likely
partial linkage or occurrence of linked segments of non-that most of these SNPs are very rare and therefore of
recombining SNPs and, on the basis of extensive simula-limited value in gene association studies. Estimates of
tions, evaluated accuracy of estimates and possibledistributions of expected relative frequencies of SNPs
sources of bias. Studies by Nielsen (2000) and Wakeleyresult from studies that use population genetics models,
et al. (2001) were devoted to detection of signatures ofe.g., Durrett and Limic (2001) and Wang et al. (1998),
human population growth in SNP data. Nielsen (2000)and the predicted excess of rare alleles is explained as
fitted the scenario of exponential expansion to SNPresulting from expansion of human populations.
data of Picoult-Newberg et al. (1999). Wakeley etUsing population genetics methods to model and
al. (2001) used the model of stepwise change of theanalyze SNPs opens an area for investigating problems
population size with population subdivision (Wakeleylike predicting frequencies of SNPs under various demo-
2001). They fitted their model to SNP data from Wanggraphic scenarios, inferring demographic parameters
et al. (1998), Cargill et al. (1999) and Altshuler etand history from sampling frequencies of SNPs, compar-
al. (2000). Parameter-space regions corresponding toing estimates obtained on the basis of SNP data to those
the highest likelihoods were not inconsistent with theobtained with other methods, and evaluating efficiency
hypothesis of population growth. Moreover, if the ascer-
tainment bias was not considered, less realistic shapes
of parameter regions were obtained. Comparison of1Corresponding author: Department of Statistics, Rice University, M.S.

138, 6100 Main St., Houston, TX 77005. E-mail: kimmel@rice.edu cases in which population substructure was not consid-
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ered with those in which it was considered seems to
support the latter scenario. To evaluate SNP frequen-
cies, these studies used the standard coalescence ap-
proach and Monte Carlo simulations.

Sampling distributions of SNP frequencies in popula-
tions with time-varying size can be calculated with the
use of analytical expressions for the expected lengths
of branches in the coalescence tree derived in the arti-
cles by Griffiths and Tavare (1998), Wooding and
Rogers (2002), and Polanski et al. (2003). Analytical
expressions allow computations, which are faster and
more accurate than Monte Carlo simulations. However,
the approaches shown in the articles by Griffiths and
Tavare (1998), Wooding and Rogers (2002), and
Polanski et al. (2003) suffer from one common diffi- Figure 1.—Notation for ancestral history of a sample of

DNA sequences. Coalescence times for the sample of size n �culty, numerical instability for larger genealogies. When
5 are denoted by T5, T4, . . . , T2 and their realizations bythe analyzed genealogy size is �50, these analytical
corresponding lower case letters t5, t4, . . . , t2. Times betweenmethods are either inapplicable or difficult to apply, coalescence events are denoted by S5, S4, . . . , S2 and s5, s4, . . . ,

due to the explosion of coefficients in equations. Wood- s2. A mutation event is marked by an open circle. Sequences
ing and Rogers (2002) give a method to stabilize nu- 4 and 5 have mutant alleles (bases), while sequences 1–3 have

ancestral ones.merical computations, which is valid for the case where
effective population size changes in a stepwise manner.
Here we show another approach, which is more general

k � 1, are denoted by Tk, k � 2, 3, . . . , n, and theirin the sense that it does not require assumption of
realizations by corresponding lowercase letters tn, tn�1,piecewise constant history of effective population size.
. . . , t2, 0 � tn � tn�1 . . . � t2.We transform equations for the relative frequencies of

We assume that an observed SNP was produced by aSNP to the form with nondiverging coefficients and we
single, neutral mutation, like the one denoted in Figureprovide expressions, obtained with the use of methods
1 by an open circle. In Figure 1 sequences 4 and 5 haveof hypergeometric summation, to compute these coef-
mutant alleles (bases), while sequences 1, 2, and 3 haveficients. We also provide analytical expressions to de-
ancestral ones. In the situation where it is not knownscribe the influence of the discovery procedure (ascer-
which allele is mutant and which is ancestral, we usetainment) on SNP frequencies. Our methods allow us
the terms rare and frequent allele. In other words, theto perform tasks that otherwise are prohibitive or cum-
SNP in Figure 1 has configuration b � 2 mutant vs. n �bersome, like analyzing large genealogies, estimating
b � 3 ancestral, or b � 2 rare vs. n � b � 3 frequentconfidence limits for parameters by resampling studies,
alleles. We assume that mutation intensity for SNPs isand studying sensitivity of models to parameter changes.
very low; i.e., they follow the infinite-sites mutationUsing our methods we study our power to test the null
model.hypothesis of evolution with constant population size

Probability that a SNP has b mutant bases: Probabilityvs. the alternative hypothesis of population expansion,
qnb that a SNP site in a sample of n chromosomes has bfor SNP data, under the exponential model of popula-
mutant bases, under the infinite-sites mutation model,tion size change. We also analyze some of the available
is given by Griffiths and Tavare (1998, Equation 1.3)SNP data (Picoult-Newberg et al. 1999; Trikka et al.
in terms of expectations of times in the coalescence tree2002) and we compare our results to those obtained in
(see also articles by Fu 1995; Sherry et al. 1997; Nielsenprevious studies concerning estimation of populations
2000; Wooding and Rogers 2002). In our notation,size changes (Slatkin and Hudson 1991; Rogers and
this expression has the formHarpending 1992; Polanski et al. 1998; Weiss and

Haeseler 1998).

qnb �

((n � b � 1)!(b � 1)!/(n � 1)!)�n
k�2k(k � 1)�n � k

b � 1� E(Sk )

�n
k�2kE(Sk )

,

METHODS (1)
We consider the process of coalescence with time- where 0 � b � n, Sk � Tk � Tk�1, and Tn�1 � 0.

changing effective population size. Notation for the co- The above expression can be written as
alescence tree, for the sample of size n � 5 DNA se-
quences, is shown in Figure 1. Time t is measured, in

qnb �

((n � b � 1)!(b � 1)!/(n � 1)!)�n
k�2 �n

j�k j ( j � 1)�n � k
b � 1� An

k jej

�n
k�2 �n

j�k j ( j � 1)/(k � 1)An
k jej

number of generations, from the present to the past.
Random times between coalescence events are denoted (2)
by Sn, Sn�1, . . . , S2 and sn, sn�1, . . . , s2. Cumulative times
to coalescence, from sample of size n to sample of size (Polanski et al. 2003), where
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ej � �
∞

0

tqj ( t)dt (3)

are expectations of times distributed as

qj(t) �
� j
2�

Ne(t)
exp �� �

t

0

� j
2�d�

Ne(�)� , (4)

with the effective population size history described by
a function of reverse time,

Ne( t), t � [0, ∞). (5)

Coefficients An
k j are defined by the expression

An
k j �

�n
l�k,l�j � l

2�
�n

l�k, l�j �� l
2� � � j

2��
, k 	 j 	 n , (6) Figure 2.—Growth plots of maxb,j |W n

b j | (*) and maxj (V n
j )

(�) vs. n.

Ann
n � 1. summation in both denominator and numerator in
Equation 2 is an analytic expression for probabilities Equation 2. We observe that the resulting expressions

qnb. Wooding and Rogers (2002) derive equations with contain coefficients that do not explode when n in-
the structure analogous to Equations 2–5, which also creases. Proceeding in this way we obtain
contain expectations defined in (3). In contrast to (2),
they do not provide explicit expressions for coefficients

qnb �
�n

j�2 ej �j
k�2 j ( j � 1)�n � k

b � 1�((n � b � 1)!(b � 1)!/(n � 1)!) An
k j

�n
j�2 ej �j

k�2 j ( j � 1)(An
k j /(k � 1))in the equations; instead they use linear algebra opera-

tions (matrix diagonalization) to compute them. Both (7)
articles (Wooding and Rogers 2002; Polanski et al.

� �n
j�2 ejW n

bj

�n
j�2 ej V n

j

. (8)2003) report that it is rather difficult to efficiently apply
analytical formulas for genealogies of size n � 50 be-

In the above, we introduced coefficientscause of the occurrence of diverging terms with alternat-
ing signs.

V n
j � �

j

k�2

j( j � 1)
An

kj

k � 1
(9)Methods for computation of qnb for large genealogies:

To avoid large numerical errors in summations in (2)
andfor genealogies n � 50, one needs to apply computations

with precision of hundreds, or even thousands, of deci-
Wn

b j � �
j

k�2

j ( j � 1)�n � k
b � 1�(n � b � 1)!(b � 1)!

(n � 1)!
An

kj .mal digits (Wooding and Rogers 2002), which signifi-
cantly slows down computational process and requires (10)
appropriate software. Such computations must be also
carefully executed. It is necessary to repeat computa- For k � n � b � 1, the elements in the sum (10) become

zero, so the upper limit j can be replaced by min(j, n �tions several times, with an increasing accuracy, and to
examine the convergence of the returned values. b � 1). Coefficients V n

j and W n
b j remain the same for all

histories of effective population size Ne(t). Once calcu-Wooding and Rogers (2002) developed a way to
avoid the necessity of extending precision of the arith- lated, they can be stored in computer memory or tabu-

larized and reused when we wish to analyze differentmetics, based on a uniformization technique of comput-
ing matrix exponents. It is applicable for the case when histories Ne(t), e.g., when maximizing likelihood func-

tion with respect to population growth parameters.the population size changes in a stepwise (piecewise con-
stant) manner, with a finite number of steps, and it Their important property is that their growth, when

genealogy size n increases, is very moderate; e.g., forallows evaluating the expressions in a standard double
precision arithmetic. However, when the number of steps n � 100, maxj (V 100

j ) � 17.13, maxb,j |W 100
b j | � 8.24; for

n � 500, maxj(V 500
j ) � 38.36, maxb,j |W 500

b j | � 18.36; andin the population size history becomes large, e.g., if one
attempts to approximate a given Ne(t) by a piecewise for n � 1000, maxj (V 1000

j ) � 54.18, maxb,j |W 1000
b j | � 25.94.

In Figure 2 growth plots of maxb,j |W n
b j | and maxj (V n

j )constant function, this approach may be difficult to apply.
Below, we present a method for computing qnb for vs. n are shown. One can see that both plots are, asymp-

totically, of the power type with the exponent less thanlarge genealogies, which is more general than the one
developed by Wooding and Rogers (2002), in the one.

Expressions in (10) and (9) are sums of hypergeomet-sense that it does not require assumption of stepwise
change of Ne(t). The idea is to reverse the order of ric series, which can be seen by factoring the denomina-
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tors in (6), ( l
2) � ( j

2) � 1⁄2(l � j )( l � j � 1), and then We use the following notation introduced by Wake-
ley et al. (2001): Data set size is n � nD � nO, andexpressing coefficients An

kj in (6) as follows:
ascertainment set size equals to nO � nA, where nA stands

A n
kj �

n!(n � 1)!
(n � j � 1)!(n � j)!

(2j � 1)
j ( j � 1)

( j � k � 2)!
(k � 1)!(k � 2)!( j � k)!

(�1) j�k. for the number of ascertainment-only samples; nO, the
number of overlapping samples (both in the ascertain-(11)
ment study and in the later data set); and nD, the number

Substituting (11) in (9) and using Chu-Vandermode of data-only samples.
identity (Graham et al. 1998, p. 212, Equation 5.93) we To determine how ascertainment modifies probabil-
obtain ity distribution (22), we merge ascertainment and data

sets to obtain the joint set of size nJ � nD � nO � nA.
V n

j � (2j � 1)
n!(n � 1)!

(n � j � 1)!(n � j)!
[1 � (�1) j ]. (12) We treat the ascertainment procedure as sampling SNP

alleles, without replacement, from the joint set. A SNP
Coefficients W n

bj in expression (10) can be efficiently is discovered if (a) both alleles are present in the ascer-
computed with the use of recursive procedures (Paule tainment sample and (b) none of the alleles in the
and Schorn 1994; Petkovsek et al. 1996). Several re- ascertainment sample has number of copies less than
cursions for W n

bj are possible, depending on which index G, where G is a predetermined threshold. Since the
one decides to consider as the running one. We used joint set contains elements of two types (two alleles),
the implementation of Zeilberger’s algorithm in Mathe- the number of copies of alleles in the ascertainment
matica, developed by P. Paule and M. Schorn, available sample follows a hypergeometric distribution. We ana-
at http://www.risc.uni-linz.ac.at/research/combinat/risc/ lyze two cases: (i) no overlap, which means nO � 0, n �
software/, to obtain recursions for W n

bj. We found the nD, nJ � nD � nA; and (ii) overlap only, which means
following recursive scheme, with respect to the index j, nA � 0, n � nJ � nD � nO. The case where both overlap
very useful: and ascertainment-only samples are present is obtained

by combining i and ii. We compute frequencies of dis-
W n

b 2 �
6

(n � 1)
, (13) covered SNPs in the data set, which follow from condi-

tions a and b above. We analyze first the case i. If a SNP
in the joint set has b mutant and nJ � b ancestral bases,

W n
b 3 � 30

(n � 2b)
(n � 1)(n � 2)

, (14) then the probability that a sample of size nA from the
joint set has 
 mutant and nA � 
 ancestral bases is

W n
b, j�2 � �

(1 � j)(3 � 2j)(n � j)
j (2j � 1)(n � j � 1)

W n
bj

h(
, n J, b, nA) �
�b

�� n J � b

nA � 
�
�n J
nA�

. (16)
�

(3 � 2j)(n � 2b)
j(n � j � 1)

W n
b, j�1 . (15)

The above recursions are numerically stable and very For a SNP to be discovered, 
 must satisfy G 	 
 	
fast. We used them, implemented in a standard double- nA � G, with G defined as above. Moreover, the following
precision arithmetic, for genealogies consisting of thou- inequalities must hold: 
 	 b, nA � 
 	 nJ � b. Conse-
sands of DNA sequences (the largest value of n tested quently, the probability �A

n� that a discovered SNP in
was n � 5000). We did not perform precise measure- the data-only set i has � � b � 
 mutant and nD � �
ments, but usually, when calculating probabilities qnb, ancestral alleles is
according to (8), computing coefficients W n

bj and V n
j takes

only a small fraction of the time, while most of the
�A

nD� �
�nA�G


�G qnJ��
 h(
, n J, � � 
, nA)

�nD
g�0�nA�G


�G qn J g�
 h(
, n J, g � 
, nA)
, (17)computing effort is needed to evaluate expectations ej.

Influence of the ascertainment procedure on SNP
sampling frequencies: Most of the published data on � � 0, 1, . . . , nD. Probabilities qnb are given by (8).

The relation � � b � 
 follows from the fact that 
SNP sampling frequencies are obtained in a two-step
process, where the first step involves discovering chro- chromosomes with mutant bases are removed from the

joint set. The numerator in (17) is a sum of contribu-mosomal locations of a number of SNPs, and the second
one involves DNA sequencing of a sample of n chromo- tions to �A

nD� for possible values of 
, while the denomina-
somes restricted to locations discovered in the first step. tor is a normalizing factor. For case ii assume again that

a SNP in the joint set has b mutant and nJ � b ancestralThe first step is called SNP ascertainment and is based
on number of chromosomes smaller than n. As de- bases. The probability that a sample of nO has 
 mutant

and nO � 
 ancestral bases is given by (16) with nAscribed in previous studies, taking into account the as-
certainment scheme is a very important aspect of SNP replaced by nO. For this SNP to be discovered 
 must

satisfy G 	 
 	 nO � G. Consequently, the probabilitydata analysis. Below we derive expressions for modeling
the way in which ascertainment modifies SNP sampling �O

n Jb that a discovered SNP in the joint set ii has b mutant
frequencies. and nJ � b ancestral alleles is
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where cb denotes number of SNP loci in the sample,
�O

n J b �
qn J b�nO�G


�G h(
, n J, b, nO)

�n J�G
��Gqn J��nO�G


�G h(
, n J, �, nO)
, (18) which have configuration of b copies of the rare allele

vs. n � b copies of the frequent allele. Subsequently,
we use expressions (23) and (24) to compute likelihoodsb � G, . . . , n J � G.
of SNP samples with different ascertainment models.If it is not known which of the alleles is mutant and
To specify the ascertainment model we substitute inwhich one is ancestral, we need to symmetrize �A

nD� and
(23) or (24), pnb � pnb [expression (22), no ascertain-�O

n Jb to get probability of data configuration. For case i
ment step], pnb � pA

nb [expression (19), ascertainmentwe have expression
model type i], or pnb � pO

nb [expression (20), ascertain-
P(X R � �) � p A

n D� � �A
n D� � �A

n D, n D��[1 � 
(�, n D � �)], ment model type ii].

� � 0, 1, . . . , [n D /2] (19)
RESULTSfor the probability that the rare allele has � copies. For

case ii the probability that there are b copies of the rare Exponential history of population size: In our compu-
allele is tations we assume an exponential history of effective

population size. In previous publications devoted to SNPP(XR � b) � pO
n Jb � �O

n Jb � �O
n J,n J�b[1 � 
(b, n J � b)],

and demography, Nielsen (2000) assumed an exponen-
tial history of Ne(t). However, his analysis is very briefb � G, G � 1, . . . , [n J/2]. (20)
and restricted only to simulations. Others (Wakeley et

In the above [n/2] denotes greatest integer 	n/2. al. 2001; Wooding and Rogers 2002) analyzed stepwise
In the sequel, we refer to the models described above histories of effective population size changes.

as type i and type ii ascertainment, respectively. For an exponential scenario of population growth
Likelihood function of the sample: Data studied are

Ne(t) � Ne0 exp(�rt), (25)derived from a number of SNP sites. Let us denote the
number of SNP loci by M and random variables defined expectations in (3) become
by diallelic data by

[X 1, X 2, . . . , X M ] � [(X R
1, X F

1),(X R
2, X F

2), . . . (X R
m, X F

m) . . . , (X R
M , X F

M )],
ej � ej(Ne0, r) � �

exp�� j
2�(rNe0)�1�

r
Ei ��� j

2�(rNe0)�1�(21)

(26)where X R
m is the number of copies of the less frequent

(rare) allele and X F
m is the number of copies of the more (Slatkin and Hudson 1991), where Ei denotes the

frequent one, in the sample of nm � X R
m � X F

m. It is possi- exponential integral, Ei(��) � ��∞
1exp(��x)/x dx,

ble that X R
m � X F

m for some indices m, in which case both Re (�) � 0 (Gradshteyn and Ryzhik 1980, Sect.
alleles are equally frequent. We assume that the ances- 3.351.5). When the argument ( l

2)(rNe0)�1 in (26) becomes
tral state is not known. Then, for an SNP (X R

m, X F
m), the large, computing el(Ne0, r) involves solving product of the

probability that we observe configuration bm, nm � bm, type ∞ · 0. For ( l
2)(rNe0)�1 � 50, we used expansion,

bm 	 [nm/2] is

Ei(�x) � exp(�x)�
K

k�1

(�1)k (k � 1)!
xk

� RK (27)P(X R
m � bm ) � pnmbm

� qnmbm
� qnm,nm�bm

[1 � 
(bm, nm � bm )],

(22)
(Gradshteyn and Ryzhik 1980, Sect. 8.215) with

where 
(·) is the Kronecker delta function and qnb are
probabilities defined and evaluated in the previous sec- |RK | �

K!
|x |K�1

, (28)
tion.

When SNP sites are located far from one another,
which allowed canceling exp	( l

2)(rNe0)�1
 in (26).random variables {X1, X2, . . . , XM } in (21) are indepen-
It turns out that sampling frequencies of SNPs dependdent. If the observed numbers of copies of rare alleles

only on the product parameter � � rNe0 of initial effectiveare X R
1 � b1, X R

2 � b2, . . . , X R
m � bm , . . . , X R

M � bM, then
population size and exponential factor.the log likelihood of the sample (21) is

Distributions of SNP frequencies: Figure 3 provides
examples of probabilities of different configurations ofl � �

M

m�1

log(pnmbm
) (23)

SNP sites, for sample size n � 30, and different values of
the parameter � (0, 1, 10), under the assumption that(Nielsen 2000; Wooding and Rogers 2002). If sample
data collection did not include an ascertainment step [ex-sizes are equal for all SNP loci, n1 � n2 � . . . � nM �
pression (22)] or under the ascertainment model of typen, the above expression can be written as
ii [expression (20)] with nO � 10, G � 1, or G � 2. As
already reported in many articles, increasing � resultsl � �

[n/2]

b�1

cb log(pnb), (24)
in higher proportions of rare alleles in the sample. Plots
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Figure 3.—Probabilities of different configurations of SNP sites, for sample size n � 30; different values of the parameter �,
� � 0 (�), � � 1 (*), and � � 10 (�); under the assumption that data collection was without the ascertainment step [expression
(22)] or with ascertainment model type ii [expression (20)] with nO � 10, G � 1, or G � 2.

in Figure 3 also show how ascertainment modifies the pothesis H0 (constant population size � � �0 � 0) vs.
the alternative H1 (population expansion with � � �1 �distribution of SNP frequencies. Increasing the thresh-

old value G flattens the distribution of frequencies. Both 0). We assumed significance level � � 0.05 and values
of �1, �1 � 0.1, �1 � 1, �1 � 10, �1 � 100. Table 1, Atypes of ascertainment (i and ii) have similar ef-

fects on SNP frequency distributions (results not shown). and B, gives powers of likelihood-ratio tests for sample
size n � 50, for different models of ascertainment: noLikelihood-ratio tests to detect signatures of popula-

tion growth: An interesting issue is our power to test ascertainment [probabilities given by expression (22)]
or ascertainment model type ii [expression (19)] withhypothesis H0 of evolution with constant population

size, � � �0 � 0, against the alternative hypothesis H1 parameters nO and G. Table 1A is for the number of
SNP loci M � 30, and Table 1B is for M � 100. Fromof population expansion, � � �1 � 0, on the basis of

SNP data. It is also of interest to determine how this values of powers of tests depicted in Table 1, A and B,
one can see that the cases �0 � 0, �1 � 0.1 are practicallypower is affected by the ascertainment step of data col-

lection. From previous computations it follows that SNP indistinguishable; �0 � 0, �1 � 1 may be distinguished
only for a large enough number of SNP sites, while �0 �data can be seen as samples from multinomial distribu-

tions given by expressions (22), (19), or (20). Assuming 0, �1 � 10, or �1 � 100 are rather easily distinguishable
even for small numbers of SNPs. The ascertainmentthat the number of SNP sites is always large enough to

allow asymptotic approximation (Bickel and Doksum step in data collection can deteriorate the power to
detect signatures of population growth. Increasing the2001, p. 227) we computed powers of single-value vs.

single-value likelihood-ratio tests of statistical null hy- threshold value of G, the aim of which typically is filter-
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TABLE 1

Powers of likelihood-ratio tests

No nO � 10, nO � 10, nO � 10, nO � 10,
ascertainment G � 1 G � 2 G � 3 G � 4

A. No. of SNP loci M � 30
�1 � 0.1 0.0737 0.0736 0.0670 0.0620 0.0586
�1 � 1 0.3072 0.3058 0.2129 0.1534 0.1174
�1 � 10 0.9654 0.9573 0.7635 0.5160 0.3353
�1 � 100 1.0000 1.0000 0.9733 0.7678 0.5061

B. No. of SNP loci M � 100
�1 � 0.1 0.1004 0.0973 0.0817 0.0714 0.0647
�1 � 1 0.6919 0.6534 0.4290 0.2755 0.1866
�1 � 10 1.0000 1.0000 0.9929 0.8848 0.6448
�1 � 100 1.0000 1.0000 1.0000 0.9905 0.8615

Null hypothesis H0 (constant population size � � �0 � 0) vs. the alternative H1 (population expansion with
� � �1 � 0) is shown. Significance level is � � 0.05; sample size is n � 50. Models of ascertainment are no
ascertainment [probabilities given by expression (22)] or ascertainment model ii [expression (19)] with
parameters nO and G.

ing out sequencing errors in the data, also progressively �(�) � 2Ne(�)�, �(�) � �0 exp(���), with parameters
�0 � 400, � � 0.2. So, the true value of the productlowers the probability of rejecting the hypothesis H0 of

constant population size; i.e., it increases the probability parameter � was � � 80. For each of these 100 simulation
experiments we treated segregating sites as independentof committing type II error. This results from the flat-

tening effect of increasing G observed in Figure 3. SNPs and we estimated the parameter � by maximizing
likelihood (24). We obtained the mean of estimatesData analysis: Data on segregating sites in mitochondrial

DNA from Cann et al. (1987): First, we apply our method equal to 86.8 and standard deviation equal to 29.7. This
confirms that our approach, at least for these specificto the data on segregating sites in mitochondrial DNA

from the article by Cann et al. (1987). We fit the expo-
nential scenario (25) to these data by treating each

TABLE 2segregating site as an independent SNP. Technically,
we estimate the product parameter � � rNe0 in (25). Statistics of segregating sites in mtDNA data

Data in Cann et al. (1987) include 195 segregating
b cbsites in 148 individuals. Table 2 shows the statistics of

segregating sites in these data. Elements in the first 1 98
column (b) are possible numbers of copies of the rare 2 31
allele, and elements in the second column (cb) are num- 3 21
bers of segregating sites in the sample that have the 4 6

5 9number of copies of the rare allele equal to b. Figure
6 54 shows the plot of log-likelihood function obtained by
7 4using expressions (8–15) and (26). Maximum of the
8 1log-likelihood function is attained at �̂ � 80. The 95% 10 3

confidence interval for this estimate, obtained with the 11 2
use of likelihood-ratio statistics (Bickel and Doksum 12 2
2001), is � � [40, 166]. 13 3

14 2Segregating sites collected by Cann et al. (1987) are
16 1obtained from nonrecombining DNA and the indepen-
26 2dence assumption is clearly not satisfied. To explore
35 1whether a violation of the assumption that SNPs are 43 1

independent significantly affects the estimate of the pa- 58 1
rameter �, we have performed 100 coalescent simula- 62 1
tions of genealogies representing ancestries for 148 67 1
mtDNA sequences. We added mutations along branches

Based on Cann et al. (1987), elements in b are possible
of coalescence trees according to the infinite-sites model numbers of copies of the rare allele, and elements in cb are
with intensity �. In the simulations we assumed muta- numbers of segregating sites in the sample that have the num-

ber of copies of the rare allele equal to b.tional time scale � � 2�t and exponential change of
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Figure 5.—Log-likelihood curve for the exponential modelFigure 4.—Log-likelihood curve for the exponential model
of population growth for SNP data from Picoult-Newbergof population growth for data on segregating sites in mtDNA
et al. (1999). The maximum is attained at �̂ � 3.7.from Cann et al. (1987). Each segregating site was treated as

a separate SNP. The maximum is attained at �̂ � 80.

Picoult-Newberg et al. (1999) by using expression (17)
values, will allow us to obtain a reasonable estimate of with nA � 10 and G � 2. A plot of log-likelihood function
�. From these simulations follows the estimate of 95% for the data on Caucasians from the articles by Picoult-
confidence interval for the parameter �, when the sam- Newberg et al. (1999) is shown in Figure 5. It attains a
ple consists of 148 mtDNA sequences and the demogra- maximum at �̂ � 3.9, with the 95% confidence interval,
phy is as shown above. This estimate, [mean � 2 stan- obtained with the use of likelihood-ratio statistics, � �
dard deviations, mean � 2 standard deviations], equals [0, 105.3]. Log-likelihood function for the data on Cau-
� � [27, 147]. This estimate is quite consistent with the casians from Trikka et al. (2002) is plotted in Figure 6.
95% confidence interval obtained from likelihood-ratio Ascertainment was modeled by expression (18) with
statistics, � � [40, 166]. The shift toward the left of the nO � 10 and G � 1. The maximum-likelihood estimate
confidence interval based on simulations results from of the product parameter, from the plot in Figure 6, is
the asymmetric shape of the distribution of the estimate �̂ � 0.78, with the 95% confidence interval, obtained
of �. By applying a logarithmic transformation to simula- with the use of likelihood-ratio statistics, � � [0, 6.1].
tion results (estimates of �) we were able to obtain Sensitivity of estimates to ascertainment model parameters:
almost perfect agreement of the two confidence inter- A question arises: How sensitive are the estimates of
vals, [40, 166] and [45, 175]. parameter � to changes of the model of the ascertain-

SNP data from Picoult-Newberg et al. (1999) and ment? We studied this question by increasing or decreas-
Trikka et al. (2002): There are several population stud- ing the value of the threshold G in expressions (17)
ies in the literature where relative frequencies of SNP and (18). Indexing the estimated parameter with nA, nO,
alleles are shown. We have chosen data from the re- and G, we can denote our estimates from the previous
search by Picoult-Newberg et al. (1999) and data on section as
SNPs in three human genes: BLM, WRN, and RECQL,

�̂[nA�10,G�2] � 3.9 (Picoult-Newberg et al. 1999)reported recently by Trikka et al. (2002). In our analysis,
(29)we used the data on Caucasians from both sources. The

first reason to focus on Caucasians was the possibility
andof comparing two results, and the second reason was

that discovery samples were from Caucasians. Picoult- �̂[nO�10,G�1] � 0.78 (Trikka et al. 2002). (30)
Newberg et al. (1999, Table 4) have 44 SNP sites in 8
Caucasians (16 chromosomes), while Trikka et al. Here we compute estimates �̂[nA�10,G�1], �̂[nA�10,G�3] on the
(2002, Table 2) show allele frequencies of a total num- basis of data from Picoult-Newberg et al. (1999) and
ber of 31 SNPs in samples of chromosomes of sizes �̂[nO�10,G�0], �̂[nO�10,G�2] on the basis of data from Trikka
varying from 154 to 158. et al. (2002). Analysis of data from Trikka et al. (2002) re-

When analyzing SNP data we followed remarks given quires more comment. The model to estimate �̂[nO�10,G�0]

in the source articles (Picoult-Newberg et al. 1999; assumes that no ascertainment procedure is taken into
Trikka et al. 2002) to adjust parameters nA, nO, and G account. The model to estimate �̂[nO�10,G�2] is inconsis-
of the model of ascertainment procedure. We modeled tent with complete data of Trikka et al. (2002) in the

sense that the data contain one SNP locus with b � 1.the ascertainment procedure for collecting data from



435SNPs, Ascertainment and Population Growth

Insight into this problem can be gained by comparing
estimates obtained using different approaches.

Our aim when estimating � from relative frequencies
of segregating sites in the article by Cann et al. (1987)
was to confirm that different methodologies used for
the same data will still lead to comparable results. There-
fore, we compared our estimate, obtained by treating
nonrecombining segregating sites as SNPs, to those pre-
viously obtained on the basis of the same or similar data,
but with the use of different methods. Studies that we
compared to ours were those by Slatkin and Hudson
(1991), Rogers and Harpending (1992), and Polan-
ski et al. (1998), who used pairwise difference statistics,
and by Weiss and von Haeseler (1998), who applied
the maximum-likelihood approach. Data in these arti-
cles originate from different sources, but consideringFigure 6.—Log-likelihood curve for the exponential model
estimations of the authors, reasonable ranges of theof population growth for SNP data from the article by Trikka
product parameter �, for both the worldwide popula-et al. (2002). The maximum is attained at �̂ � 0.78.
tion and Caucasians, fit into the interval from � � 50
to � � 500. Our estimate of �̂ � 80 is consistent with
the above ranges.To apply the model �̂[nO�10,G�2] we have removed this

Mutation intensity (per site) at autosomal loci is ap-one locus.
The results of computations show an extreme sensitiv- proximately one order of magnitude lower than that in

ity of estimates to the ascertainment model. Notably, mtDNA (Li 1997). However, the estimate of the product
parameter � � rNe0 is invariant with respect to timescale

�̂[nA�10,G�1] � 0, changes and therefore does not depend on the value
of the mutation intensity. We can assume that mutation�̂[nA�10,G�3] � ∞ (Picoult-Newberg et al. 1999) (31)
intensity is used only to scale the time axis. The effective
population size for autosomal loci is four times the effec-and
tive population size for loci at mtDNA. So, the estimate

�̂[nO�10,G�0] � 0, of � from mtDNA should be one-fourth the estimate of
� from nuclear DNA. Taking into account the large�̂[nO�10,G�2] � 683 (Trikka et al. 2002). (32)
stochastic variation, the estimates of � coming from SNP
data should then be comparable (of the same order ofIn (31), by �̂[nA�10,G�3] � ∞ we meant that the likelihood
magnitude) to those obtained from mtDNA.function was increasing for values of � up to 108.

However, our estimates of the parameter � based onThe fact that the ascertainment model strongly affects
SNP data, �̂ � 3.9 and �̂ � 0.78, are markedly smallerestimates of parameters is also confirmed in the previous
than values coming from mtDNA, which runs counterarticles on SNPs. Wakeley et al. (2001) in their Figure
to the expected tendency. Differences between our esti-3 show a large bias in SNP frequencies resulting from
mates and the above ranges can be, probably, attributedascertainment. Similarly, Nielsen (2000)uses a rather
to two factors. The first one, mentioned by Woodingoversimplified model, nO � 2, G � 1, for data (Picoult-
and Rogers (2002), is that some fraction of SNPs inNewberg et al. 1999) and obtains �̂ � 0. The need for
the data could be under balancing selection, whichcareful modeling of ascertainment is also stressed by
would shift their frequencies toward higher values andKuhner et al. (2000).
move the estimate of � toward lower values. The second
factor, which comes from our analysis, is the sensitivity
to the parameters of the ascertainment model, shownDISCUSSION
in (31) and (32). With this high sensitivity, even a small

The methods developed in this article allow us to unmodeled factor resulting from eliminating some low-
analyze large data sets and carry out computations for frequency SNPs by assuming that they were sequencing
different parameter values, which helps us draw more errors can lead to estimates substantially lower than the
conclusions from data. We have shown examples of ap- true value of �.
plying our methodology to the study of several issues

The authors are grateful to Peter Paule and Markus Schorn forarising in SNP data analysis.
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