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ABSTRACT
This article addresses the identification of genetic loci (QTL and elsewhere) that influence nonnormal

quantitative traits with focus on experimental crosses. QTL mapping is typically based on the assumption
that the traits follow normal distributions, which may not be true in practice. Model-free tests have been
proposed. However, nonparametric estimation of genetic effects has not been studied. We propose an
estimation procedure based on the linear rank test statistics. The properties of the new procedure are
compared with those of traditional likelihood-based interval mapping and regression interval mapping
via simulations and a real data example. The results indicate that the nonparametric method is a competitive
alternative to the existing parametric methodologies.

QUANTITATIVE genetics has developed rapidly, methods. Kruglyak and Lander (1995) apply the lin-
ear rank statistics to interval mapping, which is imple-especially with progress in DNA-based genetic

linkage maps. Various statistical approaches have been mented in the latest version of Mapmaker/QTL (Lin-
coln et al. 1993) and Qlink (Drinkwater 1997). However,proposed to identify QTL by using molecular markers,

such as Sax’s (1923) single-marker t-test, Lander and the method tests only for the presence of a QTL and
does not provide an estimate of the phenotypic effectBotstein’s (1989) maximum-likelihood-based interval

mapping, Haley and Knott’s (1992) regression inter- of the QTL. In this article, we extend the rank-based
test statistic to the estimation of the quantitative traitval mapping, and Zeng’s (1993, 1994) and Jansen and
effects.Stam’s (1994) composite interval mapping.

Rank-based methods play an important role in non-All the methods mentioned above are based on the
parametric statistics. The linear rank statistic has beennormality assumption (or other parametric models) for
widely used in practice and its theoretical propertiesthe component distributions. The normal mixture
have been thoroughly studied (Hajek and Sidak 1967;model is the default analysis and is implemented in the
Hajek 1968). For linear regression, estimates of thewidely used packages Mapmaker/QTL (Lincoln et al.
regression coefficients based on linear rank statistics are1993) and QTL Cartographer (Basten et al. 1997).
available and have efficiency and robustness propertiesMany traits, however, are not normally distributed. An
that are similar to those of the linear rank statistics.example is tumor counts, which arise in cancer studies
In this article, we adapt the existing methodology toand often appear to follow a negative binomial (Drink-
construct rank-based estimates for genetic effects underwater and Klotz 1981). Naively assuming normality
the assumption that the underlying QTL componentof the underlying distributions greatly simplifies the
distributions have the same form and differ only by aform of the likelihood function. A problem is that if
shift. This appears to be the first attempt to apply linearthis assumption is violated, then false detection of a
rank-based estimates directly to the interval mappingmajor locus may occur (Morton 1984).
and thus complements existing parametric methods.When the underlying distributions are suspected to
Simulations are conducted to compare the relative effi-be nonnormal, one strategy is to use a likelihood ap-
ciencies of the nonparametric and parametric methodsproach after transforming the data using, for example,
under a variety of distributions.the Box-Cox transformation (Draper and Smith 1998).

The article is arranged as follows. In the next section,However, an appropriate transformation may not exist
we briefly introduce linear rank statistics and relatedor may be difficult to find. Also this approach can raise
estimation procedures for regression analysis. In non-serious issues of interpretation and the transformation
parametric interval mapping, the estimates of QTLinvolves an extra parametric assumption.
effects are proposed in the context of interval mapping.An alternative approach is to consider nonparametric
In numerical studies, the relative efficiencies of the
proposed estimates are compared with the parametric
estimates in simulation studies and the methods are
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marks, we discuss the practical utility of the proposed even for nonsymmetric error distributions, such as expo-
nential, the rank-based method may be more efficient.methods.

For multiple regression, all the above arguments can
be extended in a straightforward manner. Suppose P(Yi �

RANK-BASED METHODS y |Xi) � F(y � Xi��), where �, Xi � �p. Again, F is totally
unspecified. Similar to the simple regression, we defineFirst consider a simple regression model: P(Yi � y |Xi) �

F(y � Xi �), where F is an unknown distribution, Xi are Yi(b) � Yi � (Xi � X)�b
regressors, and Yi are responses, i � 1, . . . , n, and we
are interested in testing H0: � � 0. Define the shifted and
responses Yi(b) � Yi � (Xi �X)b and their ranks Ri(b) �
rank(Yi(b)). The ranks are 1 for the smallest observa- L(b) � �

n

i�1

(Xi �X)Ri(b)/(n � 1) � {L1(b), . . . , Lp(b)}�,
tion, 2 for the next, and so on, preserving the order of
the data but not the value. Under the null, the distribu- where b � (b1, . . . , bp)� � �p.
tion of Ri(0) is independent of the distribution F and Under some regularity conditions (Puri and Sen
uniformly distributed on {1, 2, 3, . . . , n}. The Wilcoxon 1985, Chap. 5),
score statistic L(b) � 1/(n � 1)�n

i�1(Xi � X)Ri(b) is a
D�1

n {L�(0)C�
n L(0)} �

n→∞
�2

p ,simple linear rank statistic (see Puri and Sen 1985 for
some alternatives) and is widely used to test H0. Statisti-

where Dn � (n � 1)�1�n
i�1(i/(n � 1) � 1/2)2 and Cn �cal inquiry based on ranks can have dramatically smaller

�n
i�1(Xi � X)(Xi � X)�. This result can be used to testvariances when data are not normal, leading to more

H0: � � 0.efficient tests and estimators. Note that if we knew the
To estimate �, define ‖L(b)‖2 � �p

j�1 Lj(b)2, and lettrue shift �, then the shifted values Yi(�) would all have
�n � {arg minb ‖L(b)‖2}. Note that the set �n may notthe same distribution F and E�{L(�)} � 0. All rank-based
be a single point. To obtain a unique estimator, we caninference and estimation procedures are built on this
let �̂ be the center of mass of �n. The computation ofpremise.
�̂ usually requires some iterative procedures.The statistic L(b) plays a fundamental role in nonpar-

ametric inference. Under the null hypothesis H0: � �
0, L(0) has the following asymptotic property: NONPARAMETRIC INTERVAL MAPPING

Backcross: In this section, we consider a backcrossZ 2 �
def

lim
n→∞

L(0)2

Var(L(0)) population [(QQ 	 qq) 	 QQ]. For a single-QTL model,
we assume P(Yi � y |Xi) � F(y � �Xi), where Xi � I(Qi)

� lim
n→∞

(n � 1){�n
i�1(Xi �X)Ri (0)/(n � 1)}2

�n
i�1( i/(n � 1) � 1/2)2�n

i�1(Xi �X)2
→ �2

1. is the indicator function that takes 1 if the QTL genotype
Qi � QQ, and 0 otherwise. We are interested in testing(1)
H0: � � 0 vs. H1: � � 0 and in estimating �, the genetic

To estimate �, find the value b that shifts values of Yi to shift in distribution at the QTL between QQ and qQ
Yi(b) such that the shifted values Yi(b) are not associated genotypes.
with Xi’s anymore. A commonly used estimator is the If the QTL genotype Qi’s are known, we could apply
Hodges-Lehmann estimator �̂, which is the solution of the Wilcoxon rank sum tests and Hodges-Lehmann esti-
the estimating equation L(b) � 0. However, the linear mators directly in QTL analysis. However, in intervals
rank statistic L(b) may not reach zero, so in practice �̂ between known loci, the QTL genotypes are not observed
is taken to be the average of the closest values on either and the quantitative traits follow discrete mixture mod-
side of 0. In other words, �̂ � 1⁄2(�̂U � �̂L) with els and thus Qi’s are generally not available. A natural

choice would be to use Haley-Knott regression (Haley
�̂U � inf{b :L(b) � 0} and �̂L � sup{b :L(b) 
 0}.

and Knott 1992). That is, first, the mixing weights are(2)
calculated as the conditional probabilities of the QTL
genotypes in intervals between marker loci using theThe asymptotic properties of the linear rank-based

inferences and estimators and their relative efficiencies genetic map and the genotypes of the flanking markers.
Then, Xi is substituted with its conditional expectationare discussed in detail in Puri and Sen (1985). The

efficiency of the Wilcoxon rank sum test (Hodges-Leh- E(Xi |flanking markers).
Since individuals with the same flanking markers havemann estimate) relative to the t-test [maximum-likeli-

hood estimate (MLE)] is �95% if the distribution is the same mixing weights and thus the same mixture
distribution, for convenience, we can group the datanormal and is never �86% for symmetric distributions.

Thus the loss of efficiency in the normal case is slight into K groups by their flanking-marker genotypes. Sup-
pose within each group the data have common distribu-and is offset by the robustness of the nonparametric

method. For heavy tailed distributions, the gain in effi- tion Mk , k � 1, 2, . . . , K. Under the null hypothesis
H0, M1 � M2 � . . . � MK. After substituting Xi in (1)ciency may be great. Later our simulations show that
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TABLE 1

Comparison of parametric and nonparametric methods (20 cM)

� � 2 Power cM ARE �̂ ARE

Normal(0, 1)
ML 1 10.13(1.100) — 2.00(0.0043) —
REG 1 10.06(1.148) 0.958 2.00(0.0051) 0.843
Rank 1 10.09(1.17) 0.94 2.00(0.005) 0.86

Exponential(0.5)
ML 1 10.15(2.997) — 2.00(0.0155) —
REG 1 10.11(3.008) 0.996 1.977(0.0148) 1.047
Rank 1 10.22(2.375) 1.262 2.00(0.0068) 2.279

t(3)
ML 1 10.35(2.836) — 2.036(0.0109) —
REG 1 10.25(3.199) 0.887 1.995(0.0130) 0.840
Rank 1 10.27(1.75) 1.62 2.00(0.007) 1.557

Logistic(0, 1)
ML 1 9.8(2.9293) — 2.015(0.0198) —
REG 1 9.81(2.984) 0.982 2.009(0.0195) 1.020
Rank 1 9.78(2.557) 1.146 2.01(0.0175) 1.236

Cauchy(0, 1)
ML 0.01 9.54(73.503) — 15.448(44256) —
REG 0.01 10.37(44.478) 1.653 18.714(66482) 0.666
Rank 1 10.23(2.886) 25.521 2.00(0.018) ∞

Tables 1–4 show the mean estimate of the QTL location (cM) and its gene effect (�), with the empirical
variances of the estimates over replicates in parentheses. ARE is the estimated asymptotic relative efficiency
of regression analysis or rank-based method vs. the ML method and is defined as var(ML)/var(REG)or var(ML)/
var(Rank).

with E(Xi |flanking markers), we obtain the rank test of �. It can be shown that, for a given distribution, the
deviation goes to 0 as � goes to 0 or as the flankingstatistic equivalent to the one in Kruglyak and Lander

(1995). Note that instead of testing H0 directly, here we marker distance goes to 0. Thus we expect the estimator
�̂ to work well in QTL analysis if either there is a rela-instead test M1 � M2 � . . . � MK. Usually, K is much

greater than the number of underlying distributions. tively dense map (e.g., � 20 cM, a common scenario of
current genetic studies) or the QTL effect is relativelyFor example, in the backcross population, we are inter-

ested in testing the difference between the two compo- small. Efficiency is of less concern when the QTL effect is
nent distributions in the mixture model. In essence, we large than when it is small. In QTL mapping of complex
test for differences among the four mixtures, Mk , k � traits, an individual QTL usually has small effect. For
1, . . . , 4. Theoretically, it is unclear whether the relative these reasons, we believe and our simulations as well
efficiency of the rank sum test vs. the t-test [or, equiva- show that the rank sum-based estimators are practically
lently the likelihood-ratio test (LRT)] in linear regres- useful alternatives to the least-squares estimators from
sion still holds in this setting. However, we expect that Haley and Knott’s regression interval mapping.
the rank sum test performs better under most circum- The following are some properties of �̂. To emphasize
stances when data are nonnormal, which we investigate that �̂ depends on Y � {Yi}, we rewrite �̂ as �̂(Y). From
by simulations. the definition of �̂, it is not difficult to show that, for

The estimation of � is more problematic than that for any b � R,
simple linear regression. In traditional linear regression,
E�{L(�)} � 0. Thus the estimator �̂ is consistent. How- i. �̂(Y) � �̂(Y � b) �

def
�̂(Y1 � b, . . . , Yn � b), and

ever, due to the mixture structure of QTL data, we can ii. �̂(Y) � ��̂(�Y).
show that E�{L(�)} does not generally equal 0 when Xi is
substituted by its conditional expectation. A theoretical In words, i indicates that adding a constant to the data

has no effect on the estimator of QTL effect. Property iiformula of E�{L(�)} indicates that the magnitude of the
deviation from 0 depends on the underlying distribu- says that if the data are multiplied by �1, the estimator

has an opposite sign.tions, the flanking marker distances, and the magnitude
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TABLE 2

Comparison of parametric and nonparametric methods (20 cM)

� � 1 Power cM ARE �̂ ARE

Normal(0, 1)
ML 1 10.18(2.412) — 1.00(0.0046) —
REG 1 10.24(2.689) 0.897 0.999(0.0051) 0.902
Rank 1 10.20(2.444) 0.987 1.00(0.0054) 0.852

Exponential(0.5)
ML 1 10.06(12.036) — 1.00(0.0172) —
REG 1 9.94(12.622) 0.954 0.999(0.018) 0.956
Rank 1 9.96(6.60) 1.824 1.00(0.0072) 2.389

t(3)
ML 1 10.43(8.51) — 1.00(0.0115) —
REG 1 10.530(6.817) 1.248 1.00(0.014) 0.821
Rank 1 10.32(4.038) 2.107 1.00(0.0075) 1.533

Logistic(0, 1)
ML 1 9.99(8.172) — 0.997(0.0167) —
REG 1 10.03(7.848) 1.041 0.999(0.0163) 1.020
Rank 1 9.86(7.031) 1.162 0.999(0.0153) 1.091

Cauchy(0, 1)
ML 0 9.66(78.53) — 5.011(1187) —
REG 0 9.09(46.265) 1.697 5.842(1698) 0.699
Rank 1 10.89(8.766) 8.958 1.00(0.017) ∞

Extensions: Next we extend the methods to any other 10 cM with simulated QTL at 5 cM or located at 0 and
20 cM with simulated QTL at 10 cM, respectively. Thecross derived from two inbred lines, such as F2. In gen-

eral, the model can be expressed as P(Yi � y |Xi) � setups are similar to those in Xu (1995). The QTL effect
� is either 1 or 2. Standard normal, exponential(0.5),F(y � Xi��), where � � (a, d)� and Xi � (X1,i , X2,i)�. The

covariates t(3), standard logistic, and standard Cauchy are used
as error distributions. One hundred simulations were

X1,i � �1, 0, or 1 if individual i has QTL genotype qq,
conducted for each combination with sample size n �

qQ, or QQ, and
1000. The average values and corresponding standard

X2,i � 1 (or 0) if individual i has QTL genotype qQ (or
errors of estimated QTL position, QTL effect from para-

else)
metric interval mapping (ML), and nonparametric Wil-
coxon rank sum interval mapping (Rank) are given incorrespond to the additive and dominance genetic ef-

fects, a and d, respectively. In regression mapping, if Tables 1–4. As a comparison, we also run the regression
analysis (REG) of Haley and Knott (1992) and thethe unknown Xj,i’s are replaced by their conditional

expectations E(Xj,i |flanking markers), then the estima- results are given in Table 1.
The estimates of QTL position and effect from thetor �̂ can be derived as described in rank-based meth-

ods for multiple regression without any modifications. REG and the ML methods are very similar not only for
normal data, which is consistent with Haley and KnottThe methods may also be adapted to map multiple

QTL (Kao et al. 1999) or to more complicated designs (1992) and with Xu (1995), but also for nonnormal
data. Note that the nonparametric test and estimateinvolving more than two inbred lines (Liu and Zeng

2000) by changing the dimension of �. Of course, the generally are much more efficient than the parametric
versions when data are not normally distributed. Thereefficiency may be low if the dimension of � is large.

This requires further investigation. is a modest loss of efficiency with normal data, which
agrees with theory for simple linear regression. The
marker distances and the magnitude of the QTL effect

NUMERICAL STUDIES
do not seem to have a large impact on the relative
efficiencies of the estimators.Simulations were conducted to study the behavior of

Z and �̂ in a backcross population. For simplicity, only To estimate the power, the rank test statistic Z is first
transformed to LODR � {2 log(10)}�1Z 2 and the testone chromosomal segment flanked by two markers is

simulated. The two markers are either located at 0 and statistic from REG is also transformed to an equivalent
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TABLE 3

Comparison of parametric and nonparametric methods (10 cM)

� � 2 Power cM ARE �̂ ARE

Normal(0, 1)
ML 1 5.01(0.535) — 1.99(0.0047) —
REG 1 4.96(0.483) 1.108 1.989(0.0052) 0.905
Rank 1 4.99(0.454) 1.179 1.99(0.0054) 0.884

Exponential(0.5)
ML 1 4.94(1.491) — 2.03(0.0217) —
REG 1 5.02(1.636) 0.911 2.017(0.0230) 0.945
Rank 1 4.97(0.999) 1.492 2.00(0.0084) 2.592

t(3)
ML 1 5.18(1.26) — 2.04(0.0111) —
REG 1 5.10(1.323) 0.952 1.988(0.0136) 0.818
Rank 1 5.16(0.984) 1.280 1.995(0.0079) 1.414

Logistic(0, 1)
ML 1 4.98(1.192) — 2.00(0.0131) —
REG 1 4.95(1.159) 1.028 2.01(0.0134) 0.973
Rank 1 5.000(1.030) 1.156 2.01(0.0120) 1.090

Cauchy(0, 1)
ML 0.01 5.23(14.987) — 2.72(75.157) —
REG 0.01 5.28(9.82) 1.526 2.87(88.92) 0.845
Rank 1 4.94(1.835) 8.130 1.978(0.0145) ∞

LOD score. We then take threshold 3 for the LOD position although the LOD curves are slightly different,
which will result in some slightly different confidencescores, which is recommended in practical genome-wide

QTL analysis (see also Kruglyak and Lander 1995 intervals of the putative QTL locus by the conventional
1-LOD drop method. The additive and dominance esti-for analytic genome-wide threshold calculations). The

power is calculated as the proportion of significant tests mators are 0.262 and 0.059, respectively, from standard
interval mapping and are 0.257 and 0.038, respectively,from 100 simulated data sets. For the extreme case

where data are Cauchy distributed, there is no power based on our method. To assess whether the differences
between the two methods are significant or not, 1000to detect the QTL by ML or REG interval mapping while

Rank interval mapping does have power. bootstraps are performed. We restrict our analysis within
chromosome 1. From our method, the 95% confidenceTo further demonstrate the method, we consider the

data on the time to death following infection with Listeria interval (CI) of the QTL locus is (50 cM, 84 cM). The
mean of the additive effect is 0.247 with standard errormonocytogenes of 116 F2 mice from an intercross between

the BALB/cByJ and C57BL/6ByJ strains (Boyartchuk et 0.077 and the mean of the dominant effect is 0.055 with
standard error 0.122. Similarly, from standard intervalal. 2001). The histograms of the log time to death of

the nonsurvivors are given in Figure 1. Roughly 30% of mapping, we get the 95% CI of the QTL locus as (51
cM, 92 cM). The mean of the additive effect is 0.268mice survive beyond 264 days. From the histogram it is

hard to justify that the log time to death of the nonsurvi- with standard error 0.071 and the mean of the dominant
effect is 0.0284 with standard error 0.122. In all, thevors is normally distributed. Broman (2003) applied

four different methods, including both the standard nonparametric QTL locus estimator is relatively more
efficient than the parametric estimator and our nonpar-interval mapping and nonparametric interval mapping,

to this data set and showed that the locus on chromo- ametric analysis confirms the results of Broman (2003).
some 1 appears to have effect only on the average time
to death among the nonsurvivors. For this reason, our

CONCLUSION AND REMARKS
analysis is restricted on chromosome 1 for those nonsur-
vivors. In this article, traditional rank-based estimators for

linear regression have been adapted to analyze quantita-The LOD scores obtained by standard interval map-
ping and the nonparametric interval mapping with the tive traits. The new method has been shown to be very

similar to Haley and Knott’s regression interval mappinglog time to death are plotted in Figure 2. It is clear that
the two methods result in the maximums at the same when data are normally distributed and more efficient
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TABLE 4

Comparison of parametric and nonparametric methods (10 cM)

� � 1 Power cM ARE �̂ ARE

Normal(0, 1)
ML 1 4.98(1.252) — 0.996(0.0039) —
REG 1 4.96(1.17) 0.986 0.996(0.0044) 0.885
Rank 1 4.96(1.19) 1.052 0.997(0.0046) 0.837

Exponential(0.5)
ML 1 5.03(4.252) — 1.00(0.018) —
REG 1 5.09(3.962) 1.073 1.00(0.0184) 0.980
Rank 1 5.09(2.26) 1.881 1.00(0.0064) 2.830

t(3)
ML 1 4.97(2.999) — 1.00(0.016) —
REG 1 4.92(2.80) 1.071 1.00(0.0161) 0.996
Rank 1 4.96(1.594) 1.881 0.993(0.0096) 1.667

Logistic(0, 1)
ML 1 5.12(3.581) — 0.993(0.0114) —
REG 1 5.07(3.157) 1.135 0.998(0.0116) 0.979
Rank 1 5.14(2.889) 1.239 0.996(0.0104) 1.096

Cauchy(0, 1)
ML 0 5.49(15.543) — 0.442(61.51) —
REG 0 5.34(10.69) 1.454 0.396(68.26) 0.901
Rank 1 4.88(3.238) 4.800 0.991(0.0146) ∞

for nonnormal data. Our simulations indicate that the based on one QTL model. We believe the nonparamet-
ric model is very likely to produce ghost QTL as thenormal likelihood-ratio-based interval mapping is usu-

ally unbiased, even when the data are nonnormal, but parametric method does when two QTL are close to
each other and multiple nonparametric QTL mappingmay have very low efficiency. All our simulations are
is needed.

In genetic studies of quantitative traits, adapting rank-

Figure 1.—Histogram of log 2(survival time), following in-
fection with Listeria monocytogenes of 85 nonsurvival mice out
of a total of 116 mice. The remaining 31 mice recovered from Figure 2.—LOD score curves from standard interval map-

ping (solid line) and nonparametric interval mapping (dashedthe infection and survived to the end of experiment, 264 hr
[log 2(264) � 8]. line).
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