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ABSTRACT
This article uses stochastic simulations with a compartmental epidemic model to quantify the impact

of genetic diversity within animal populations on the transmission of infectious disease. Genetic diversity
is defined by the number of distinct genotypes in the population conferring resistance to microparasitic
(e.g., viral or bacterial) infections. Scenarios include homogeneous populations and populations composed
of few (finite-locus model) or many (infinitesimal model) genotypes. Genetic heterogeneity has no impact
upon the expected value of the basic reproductive ratio (the primary description of the transmission of
infection) but affects the variability of this parameter. Consequently, increasing genetic heterogeneity is
associated with an increased probability of minor epidemics and decreased probabilities of both major
(catastrophic) epidemics and no epidemics. Additionally, heterogeneity per se is associated with a breakdown
in the expected relationship between the basic reproductive ratio and epidemic severity, which has been
developed for homogeneous populations, with increasing heterogeneity generally resulting in fewer in-
fected animals than expected. Furthermore, increased heterogeneity is associated with decreased disease-
dependent mortality in major epidemics and a complex trend toward decreased duration of these epidem-
ics. In summary, more heterogeneous populations are not expected to suffer fewer epidemics on average,
but are less likely to suffer catastrophic epidemics.

THERE is substantial evidence that resistance to in- cussion is usually centered upon variation in the value
of the basic reproductive ratio R0, which is the expectedfectious disease in animals has a genetic component
number of secondary infections arising directly from anand it has often been shown that there are genetic differ-
initial infection. In general a pathogen will invade aences in response to various infectious challenges (sum-
homogeneous population only if R 0 � 1. When R 0 � 1marized for livestock species by Office International
no epidemic is expected. In populations consisting ofdes Epizooties 1998; Axford et al. 2000; Bishop et
several groups there may be distinct values of R 0 foral. 2002). The implication of this observation is that
each group. This heterogeneity can occur in a varietygenotypes for resistance to a particular pathogen in a
of ways and may arise from environmental, behavioral,host population will influence the transmission of that
or genetic factors. The predicted impact upon thepathogen through the population and hence the likely
course of an infection depends upon the nature of thedisease impact. Both the mean level of resistance of
assumptions that are made but some useful conclusionsthe population and the variability of resistance, i.e., the
of general validity have been reported. For example,genetic heterogeneity, may have an impact upon the
Adler (1992) considered the impact of nonrandomtransmission of the infection. The effects of genetic
mixing between groups caused by geographical loca-heterogeneity are potentially important with respect to
tion. He found that estimated values of R 0 based onlivestock management strategies because genetic heter-
averages over a population tend to be biased downward,ogeneity and its maintenance are associated with the
producing over-optimistic predictions of the likelihoodstructure and genetic management of the population
of avoiding epidemics. Dushoff and Levin (1994) con-(e.g., effective population size).
sider the case where there is random mixing of groupsSeveral authors have discussed the effect of host heter-
with differing values of R 0 and find that essentially theogeneity on the ability of an infection to establish itself
same result holds for a heterogeneous population asin a population (Hethcote 1977; May and Anderson
for a homogeneous population; i.e., an epidemic will1989; Adler 1992; Dushoff and Levin 1994). This dis-
occur only if the average population value of R 0 � 1.
May and Anderson (1989) look at heterogeneity in
sexual activity during an AIDS epidemic and find that
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The overall impact of host genetic heterogeneity on be transmitted only by direct contact between hosts.
Initially, the population was assumed to be immunologi-the transmission of infection is a noticeable gap in the

literature. In situations where population management cally susceptible, i.e., had never previously been exposed
to the notional pathogen. Potential epidemics were thenis possible, such as in domestic or zoo populations, the

potential disease risks associated with various genetic triggered by exposing the population to the notional
pathogen, through the introduction of a single individ-management strategies need to be investigated and

brought to the attention of geneticists. Risks are a func- ual. The time courses of the epidemics were then quanti-
fied by means of stochastic epidemic models, as de-tion both of mean epidemic outcomes and of the vari-

ability of outcomes. Quantifying the variability of out- scribed below.
Standard theoretical results for deterministic SIRcomes may be achieved by using stochastic rather than

deterministic epidemic models. models describing the relationships between total pro-
portion of the population infected during the courseIn this article we use a stochastic epidemic model

to examine the spread of microparasitic infections in of an epidemic (I), the basic reproductive ratio (R 0),
the size of the population (N), the transmission parame-livestock populations of varying genetic diversity and to

draw conclusions about the relationship between ge- ter (�), and the recovery rate (�) apply to the popula-
tions. The transmission parameter (b) is the expectednetic heterogeneity and the impact of disease. This im-

pact is measured not merely in terms of expectations, number of new infections per infectious individual per
susceptible individual per day and the recovery rate (�)as has usually been the case in the literature, but as a full

range of possible outcomes. In addition to summarizing is the inverse of the infectious period of the disease.
The asymptotic relationship between I and R 0 for aepidemics in terms of R 0, the stochastic model also pro-

vides detailed information on the proportion of the single genotype, n � 1, is
population that becomes infected, the duration of the

I � 1 � exp(�IR 0), where R 0 � �N/�. (1)epidemic, and disease-dependent mortality as a function
of genetic heterogeneity. There is no general analytical solution for n geno-

types. This has been shown by Hethcote (1977), who
derived an asymptotic result for the numbers of infectedMETHODOLOGY
individuals in each group in the form of a set of n

Host population: The host population was assumed simultaneous equations for a population consisting of
to consist of a number (n) of groups of animals. Within n homogeneous groups (see appendix a). The equa-
each group all animals shared the same genotype for tions are functions of the numbers of individuals in
susceptibility to a notional infection and hence were the groups, their reproductive rates, and their recovery
equally susceptible (or resistant) to infection. However, rates.
the different genotypes of the different groups con- When n is greater than one and variability is expected
ferred varying degrees of susceptibility to this pathogen in R 0, variability will also be observed in I. An approxi-
between groups. mate value can be generated for the variance of I as a

The susceptibilities to infection of the different geno- function of the variance of R 0 by using a Taylor series
types were selected at random by sampling from statisti- expansion for ln(1 � I) (see appendix b):
cal distributions, as described below. It was assumed that

Var(I) � var(R 0)J 2I 4/[I � J ln J ]2,susceptibility to infection was the sum of contributions
from several genes of which none had an overriding where J � 1 � I, 0 � I � 1. (2)
effect, corresponding to a finite locus model with several
genes or, when n is large, an infinitesimal model. How- This gives a measure of the variation to be expected

in I across epidemics with differing values of R 0. It isever, when n is small this model is also consistent with
a single gene controlling resistance, with genotypes de- useful for comparisons between the predicted values

of I derived from the deterministic model and resultsfined by the combination of alleles at one locus. For
example, five common alleles at the PrP locus lead to obtained for I from the stochastic model described

below.15 distinct genotypes for scrapie resistance in sheep.
For simplicity, full contact between groups was as- Stochastic simulation: A stochastic setting enables ex-

ploration of the impact of variability more easily thansumed with random mixing of all animals. The popula-
tion was also considered to be static, with no births, does a deterministic model. In particular, it allows vari-

ability in both pathogens and host populations, particu-migration, or deaths, except for those induced by infec-
tion (described below). larly in the basic reproductive ratio. In this article R 0

describes the expected basic reproductive ratio of a par-Infection model: A susceptible, infected, recovered
(SIR) compartmental model was assumed to describe ticular pathogen across all potential host populations.

R describes the basic reproductive ratio in a particularthe infection dynamics (Anderson and May 1992);
however, this was extended in some cases to include population; hence, it is a function of the host population

genotype.infection-induced mortality. Infection was assumed to
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TABLE 1

Parameter values used for stochastic simulation of epidemics

Parameter Values or distribution

N 1000
R0 Gamma: (�, 	) � (2.5, 0.6) or (20, 0.075)
R Lognormal: mean R0, CV 0.75 or 1.5
n 1, 2, 10, 100
m 0 or 0.08 or 0.16 deaths/infected animal/day
��1 14 or 28 days

We present results for stochastic simulations of epi-
demics with and without disease-dependent mortality
and with variation between subgroups in susceptibility

Figure 1.—Frequency distribution for average observed re-to infection. The parameters of the model were the
productive ratio (R).number of genotypes in the population (n), the suscep-

tibilities of the genotypes (�i, i � 1, . . . , n), the contact
rate between genotypes, and the infectious period of of 1.5 for R 0, with an associated variance of 0.9 or 0.11,
the disease (��1). Both the contact rate and the recovery implies that the full range of outcomes is possible, rang-
rate were assumed to be independent of genotype. Dis- ing from no epidemic up to an epidemic such that the
ease-dependent mortality was also assumed to be con- entire population becomes infected. The values of Ri, i � 1,
stant across genotypes and had expected values of 0.00, . . . , n for each genotype were sampled from a lognormal
0.08, or 0.16 deaths per infected individual per day. It distribution with mean R 0 and coefficient of variation
was assumed that there was no mortality from other (CV) of either 0.75 or 1.5. The value of 0.75 for the CV
causes. The chosen population of size N � 1000 was was chosen to be typical of variation among animals in
divided into n genotypes, each having the same number disease resistance data (e.g., Stear et al., 1995) and 1.5
of individuals. The population-specific basic reproduc- was used for comparative purposes.
tive rate, R, is a function of N, ��1

, and �i. The contact Ten thousand simulations were run for each choice
among animals was assumed to be random with equal of gamma distribution and for populations consisting
mixing, and the infectious period was fixed at either 14 of n � 1, 2, 10, and 100 genotypes. The results provided
or 28 days for all genotypes. The choice of recovery estimated distributions for the average realized basic
rate is not critical because it has little impact upon the reproductive rate, the proportion of animals infected,
pattern of the results. It is essentially a scaling factor. and disease-dependent mortality and information about
The parameter values used in the simulations are all the probabilities of severe or mild epidemics or no epi-
listed in Table 1. demic. For ease of computation, we defined a minor

The epidemic was initiated by the introduction of a epidemic as one in which �10% of the population be-
single infected individual into the susceptible population. came infected and a major epidemic as one in which
The model then simulated the occurrences of three types at least 10% became infected. This choice can be justi-
of events: infection of a susceptible animal, recovery of fied on the grounds that epidemics that die out quickly
an infected animal, and death of an infected animal, generally result in �10% of the population becoming
and the time at which these events took place. The infected. Comparisons concerning the frequency and
epidemic terminated either when no more susceptible severity of minor and major epidemics can be made
animals were left in the population or on the death or between homogeneous and heterogeneous populations
recovery of the last infected animal. It is described in for different degrees of variation in the distribution of

the expected basic reproductive ratio, R 0.detail in Mackenzie and Bishop (2001).
The expected value of R, R 0, was sampled from a

gamma distribution. Two gamma distributions were
RESULTSchosen, with equal means and different variances, to

enable a comparison of results for different degrees of Distribution of basic reproductive rate: Expected re-
variation in R 0. Following standard distribution theory productive ratios (R 0) were sampled from the two cho-
the parameters of the gamma distribution were � and sen gamma distributions (see Table 1 for parameter
	; thus the mean of the distribution was �	 and the values). As expected, the mean was equal to 1.5 for
variance was �	2. The chosen distributions were (i) � � both distributions and the variances were 0.9 and 0.11,
2.5, 	 � 0.6, �	 � 1.5, �	2 � 0.9; and (ii) � � 20.0, 	 � respectively. Figure 1 shows the distribution of the aver-

age observed reproduction rate when R 0 is drawn from0.075, �	 � 1.5, �	2 � 0.11. Assuming an average value
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TABLE 2

Summary statistics for the distribution of average observed reproductive ratio, R

Gamma No. of
distribution genotypes P(R 
 1) Average Maximum Variance

(2.5, 0.6) 1 0.495 1.50 21.8 2.63
2 0.436 1.50 14.1 1.68

10 0.367 1.50 10.5 1.05
100 0.346 1.50 7.64 0.90

(20.0, 0.075) 1 0.417 1.50 24.2 1.59
2 0.323 1.50 12.8 0.83

10 0.146 1.50 4.93 0.25
100 0.067 1.50 3.34 0.13

R is sampled from a lognormal distribution with coefficient of variation 0.75 and mean R0, which in turn is
sampled from a gamma distribution with parameters (�, 	) � (2.6, 0.6) or (20.0, 0.075).

the first of the gamma distributions, with parameters ther a major epidemic or no epidemic decreases as the
heterogeneity in the population increases. Correspond-� � 2.5 and 	 � 0.6. The reproductive rates for the

genotypes are then sampled from a lognormal distribu- ingly, the probability of a minor epidemic becomes
greater. This result is consistent for both gamma distri-tion with mean R 0 and coefficient of variation 0.75. The

distribution is shown both for a homogeneous popula- butions. When the CV of the lognormal distribution for
R is increased from 0.75 to 1.5 the probabilities of eithertion with one genotype and for populations with increas-

ing heterogeneity. The mean is equal to 1.5 in all cases no epidemic or a major epidemic both increase with
increasing genetic heterogeneity for all populations ex-but the variance in R decreases with increasing popula-

tion heterogeneity. cept the most diverse. When there are 100 genotypes
the probability of a major epidemic decreases when theSummary statistics for R are shown in Table 2 and it

is apparent that the degree of genetic heterogeneity will CV rises to 1.5. This effect occurs because the curve for
the total proportion infected (I) as a function of Raffect expected epidemic outcomes. For a homoge-

neous population the probability that R 
 1 is greater is very much lower and flatter for very heterogeneous
populations (described below). Thus the increased vari-than for a heterogeneous population. For example, if

R 0 is sampled from a gamma (20.0, 0.075) and 100 ation does not produce a corresponding increase in the
number of values for I above the 10% threshold for agenotypes are simulated, the probability that R 
 1 is

0.067. This means that an epidemic has the possibility major epidemic.
Proportion of population infected: In addition to theof occurring on almost every occasion that an infected

individual is introduced into the population. By con- classification of epidemic type, extra insight can be
gained by considering the proportion of the populationtrast, if R 0 is sampled from the same distribution but

only one genotype is simulated, i.e., the population is that becomes infected during the course of the epi-
demic. Figure 2, A–D, shows the total proportion ofhomogeneous, the probability that R 
 1 is 0.417. In

other words, an epidemic has the possibility of occurring animals infected vs. the average observed basic repro-
ductive rate for populations with 1, 2, 10, and 100 geno-on only 58% of occasions following an initial infection.

Similarly, the maximum observed value of R is greatest types, respectively, for the more variable gamma distri-
bution (2.5, 0.6) and a CV of 0.75 for R. Results forfor the homogeneous population. This implies that ho-

mogeneous populations are more likely than heteroge- the gamma with lower variance are similar and are not
presented here. Figure 2A, for n � 1, closely follows theneous populations to suffer very serious epidemics; how-

ever, the incidence of such epidemics will be low. theoretical expected result for a homogeneous popula-
tion, I � 1 � exp(�IR0). The values on or close to theProbabilities of no epidemic, minor, and major epi-

demics: Epidemics can be classified in terms of the pro- base of the figure represent cases where there are minor
or no epidemics, both of which occur with probabilityportion of the population that is infected. There is no

epidemic if the initial infection gives rise to no second- 1/(R 0 � 1) in a fully mixed population when R 0 � 1
(Bishop and Mackenzie, 2003), assuming an SIRary infections. In this article, a minor epidemic is de-

fined as one in which �10% of the population is in- model. Figure 2B shows extensive deviation of observed
values below this average prediction. Figure 2, C andfected; otherwise the epidemic is classified as major.

Table 3 shows the probabilities that the introduction of D, shows a systematic departure from it. When the num-
ber of genotypes is 100 the total proportion infected inan infected animal results in the occurrence of either

no epidemic or a minor or a major epidemic, for popula- the simulations never reaches one.
Approximate variances for the predicted value of I,tions of differing heterogeneity. The probability of ei-
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TABLE 3

Probabilities of no epidemic, minor, and major epidemics when mortality is 8% and recovery time is 14 days

Epidemic type

Gamma (2.5, 0.6) Gamma (20.0, 0.075)
No. of

CV genotypes None Minor Major None Minor Major

0.75 1 0.66 0.26 0.077 0.64 0.31 0.055
2 0.64 0.29 0.068 0.62 0.34 0.043

10 0.63 0.32 0.056 0.61 0.38 0.016
100 0.62 0.33 0.053 0.59 0.40 0.006

1.5 1 0.70 0.21 0.083 0.69 0.23 0.072
2 0.68 0.25 0.077 0.65 0.29 0.068

10 0.63 0.30 0.063 0.61 0.36 0.031
100 0.62 0.33 0.048 0.59 0.40 0.005

R is sampled from a lognormal distribution with coefficient of variation 0.75 or 1.5 and mean R0, which in
turn is sampled from gamma distributions with (�, 	) � (2.5, 0.6) or (20.0, 0.075).

in homogeneous populations, can be calculated using 3A for n � 1, 2, 10, 100. The empirical variances for R �
1 were calculated from data excluding values of I �the theoretical expectation (2) above, assuming R � 1.

These can be then compared with the empirical vari- 0.01, i.e., trivial or nonepidemics corresponding to the
“foot” along the x-axis seen in Figure 2, A–D. We areances calculated from the simulations, shown in Figure

Figure 2.—(A) Total proportion of population infected (I ) vs. average observed reproductive ratio (R): n � 1, m � 0, ��1 �
14 days, CV � 0.75. (B) Total proportion of population infected (I ) vs. average reproductive ratio (R): n � 2, m � 0, ��1 �
14 days, CV � 0.75. (C) Total proportion of population infected (I ) vs. average reproductive ratio (R): n � 10, m � 0, ��1 � 14
days, CV � 0.75. (D) Total proportion of population infected (I ) vs. average reproductive ratio (R): n � 100, m � 0, ��1 �
14 days, CV � 0.75.
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Figure 4.—Mortality in nontrivial epidemics (total propor-
tion of population infected � 0.01): average observed repro-
ductive ratio (R) from gamma(2.5, 0.6), lognormal CV � 0.75,
m � 0.08, ��1 � 14 days.

cal and expected variances is generally greatest when n �
2. Thus, the empirical variances of I observed in hetero-
geneous populations show complex but systematic de-
partures from those expected in homogeneous popula-
tions.

Disease-dependent mortality: Figure 4 shows ob-
served disease-dependent mortality during minor and
major epidemics (but excluding trivial epidemics for
which I � 0.01) for populations with 1, 2, or 100 geno-
types when R 0 is drawn from a gamma distribution withFigure 3.—(A) Empirical variance of total proportion of

population infected (I) vs. average reproductive ratio (R). parameters � � 2.5 and 	 � 0.6. The distribution for
(B) Empirical vs. approximate variance of total proportion of n � 10 is very similar to that for n � 100 and is not
population infected (I). shown. The mortality in trivial epidemics (I � 0.01, not

shown) is effectively zero. Results are shown for disease-
dependent mortality of 8% of infected individuals perinterested in the variation in the main body of values
day; however, 16% mortality gave a similar pattern ofof I and not in the extreme values within the foot, which
results. Expected mortality decreases with increasingare present for all values of n and, if included, have a
heterogeneity. For the data shown in Figure 5 averagelarge effect upon the estimated variance in all cases.
mortality is 0.32 (0.006) for n � 1, 0.22 (0.005) for n �Figure 3A shows that the empirical variance of I is high
2, and 0.085 (0.003) for n � 100. This is due to thefor all values of n when R lies between 1 and 2. This is
lower number of animals from heterogeneous popula-the region where the observed slope of the curve for I
tions that are infected in major epidemics. The mainvs. R is greatest. The largest slopes correspond to n �
difference between distributions for n � 1, 2, 10, and1, 2. The slopes for n � 10, 100 are lower (see Figure
100 is that there is a small peak between 50 and 60%2, A–D) and this is reflected in the heights of the peaks
mortality for n � 1, which is not present in the distribu-for the variance of I. As R increases the variance of I
tions for the heterogeneous populations. All distribu-for n � 1, 2 falls rapidly and continues at a low level
tions have a sharp peak at �20% mortality. This is highestfor all R � 2.5. The variance of I for n � 2 does not
for the most heterogeneous populations. The frequencyfall so rapidly and stabilizes at a higher value. The vari-
distributions are a function of the total proportion of theance for n � 10 is intermediate. Figure 3B shows the
population infected during the course of an epidemic;empirical variances plotted against the approximate the-
however, it should be noted that when mortality isoretical variances. The agreement for n � 1 is good.
greater than zero the profile of infection is differentHowever, when n � 1 empirical variances are generally
from those shown in Figure 2, A–D. The curve for I isconsiderably greater than expected variances in homo-
shifted to the right so that the total proportion infectedgeneous populations, especially when the expected vari-
for a given R is equivalent to that for a lower value ofances are small. This reflects the departure of the empir-
R in the absence of mortality. This effect is explainedical relationship between I and R from the theoretical

expectation for n � 1, and the contrast between empiri- by the fact that death removes an infective individual
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Figure 5.—(A) Frequency distribution of duration of all epidemics: average observed reproductive ratio (R) from gamma(2.5,
0.6), lognormal CV � 0.75, m � 0.08, ��1 � 14 days. (B) Frequency distribution of duration of nontrivial epidemics (total
proportion of population infected �0.01): average observed reproductive ratio (R) from gamma(2.5, 0.6), lognormal CV �
0.75, m � 0.08, ��1 � 14 days. (C) Duration of nontrivial epidemics (total proportion of population infected �0.01) vs. total
proportion of population infected (I) for n � 1. (D) Duration of nontrivial epidemics (total proportion of population infected
�0.01) vs. total proportion of population infected (I) for n � 100.

from the population before it has recovered and so the duration distribution as n increases from 2 to 10,
as seen in Figure 5B. The distributions for n � 1 andreduces the overall probability that it infects others.

This effect is consistent across both homogeneous and n � 2 are both unimodal. The distributions for n � 10
and n � 100 are bimodal. The means (with standardheterogeneous populations.

Epidemic duration: Genetic diversity appears to have errors in parentheses) for the distributions for n � 1,
2, 10, and 100 are 92.2 (1.4), 88.7 (1.3), 87.4 (1.3), andlittle impact upon the overall duration of epidemics

when all are considered together. However, for minor 86.9 (1.5) days, respectively. The reason for the change
from unimodality to bimodality can be seen in Figureand major epidemics (excluding trivial epidemics for

which I � 0.01) there is a trend for the average duration 5, C and D. These show duration plotted as a function
of the total proportion infected (I) for nontrivial epi-to decrease with increasing heterogeneity. This is associ-

ated with a change in the distribution of durations as demics with n � 1 (Figure 5C) and n � 100 (Figure
5D). The longest epidemics, with durations �200 days,the number of genotypes rises. The distribution of all

epidemics is shown in Figure 5A and the distribution occur at intermediate values of I, between 0.2 and 0.7.
Epidemics in which either �10% or �90% of the popu-of epidemics with I � 0.01 is shown in Figure 5B for R 0

sampled from gamma (2.5, 0.6) (mortality rate of 0). lation become infected do not last for � �150 days.
The epidemic either dies out very quickly or takes holdThe distribution for n � 1 is very similar to that for n �

2 and is not shown. Figure 5A shows no apparent effect and passes through most of the population very quickly.
The frequency distributions for n � 1 and n � 2 areof diversity because the majority of the distribution

arises from minor epidemics where the differences are unimodal because the majority of epidemics occur at
extreme values of I and have similar durations. Whennegligible. However, when nontrivial epidemics with I �

0.01 are considered there is a noticeable alteration in the population is more diverse, n � 10 and n � 100,
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there are no epidemics with values of I in excess of 0.9 cording to a gamma distribution. They present results
and relatively more with intermediate values of I. This in which the total proportion of infected individuals in
produces a second peak at a higher duration than that the population (I) depends not only upon the expected
associated with very low values of I. value of R 0 but also upon the CV of the distribution of R 0.

In general terms, the I values that May and Anderson
(1989) present for a given R 0 decrease as the CV in-DISCUSSION
creases, with values for heterogeneous populations al-

The aim of this study was to estimate the effect of ways being less than those for homogeneous popula-
genetic variability on both the probability of occurrence tions. In principle this result is consistent with ours
of an epidemic and its potential severity following the although presented in a different setting. However, in
introduction of a microparasitic infection into a suscep- terms of the specific results, our I values converge to an
tible population. Our main results may be summarized asymptote similar to those expected for homogeneous
as follows. Genetic heterogeneity, with random mixing populations for high values of R, whereas the I values
between genotypes, has no impact upon the mean ob- presented by May and Anderson (1989) converge to
served R 0; however, it does affect the variability in R 0 much lower values. It is difficult to tell whether the
values. The consequence of this is that increased genetic two sets of results are consistent with each other, first
heterogeneity is associated with an increased probability because of the differences between the models and the
of minor epidemics and decreased probabilities of both choice of distributions and second because May and
major epidemics and no epidemics. Additionally, heter- Anderson (1989) do not provide an analytical deriva-
ogeneity per se is associated with a breakdown in the tion of their results.
expected relationship between R 0 and I developed for Despite the uncertainty of the comparison with May
homogeneous populations, with epidemics generally in- and Anderson (1989), the interpretation of their result
fecting fewer animals than expected given the mean is instructive. Their interpretation, derived in the con-
population value of R 0 (using arguments developed for text of a model for AIDS, is that the epidemic burns
homogeneous populations). The joint effect of these itself out in highly active subgroups of the population
two factors is that increased heterogeneity is associated when the coefficient of variation is high. An example
with decreased disease-dependent mortality in nontriv- to support this argument is given in May (1987), which
ial epidemics and a complex trend toward decreased shows that the predicted proportion of individuals in-
duration of these epidemics. It is important to note that fected in a population divided into six categories classi-
for a homogeneous population our results, in terms of fied by sexual activity is directly proportional to the level
epidemic type and outcome, are as anticipated from

of activity. The equivalent interpretation in the context
the deterministic theory.

of our model is that the disease spreads quickly amongThe general pattern of the effects of genetic diversity
highly susceptible genotypes but dies out because of theupon the outcome of epidemics was consistent for all
relatively high number of less susceptible genotypes inchoices of the mortality rate, for both of the gamma
a heterogeneous population. This effect is magnifieddistributions used for generating R 0 and for both
when the coefficients of variation of the distributionschoices of the coefficient of variation for the lognormal
for R 0 and R are increased. The overall conclusion fromdistribution used to generate R. Increased mortality sim-
both studies is that heterogeneity, in whatever form,ply decreases the effective values of R 0 and R indepen-
does alter the expected relationship between R 0 and I.dently of the number of genotypes in the population.

The results discussed here are based on a model thatSimilarly, changes in the variance of the distribution of
assumes equal subgroup sizes. This is a simplifying as-R 0 and the coefficient of variation of the distribution
sumption chosen to illustrate the impact of heterogene-of R alter the variation observed in the results but do
ity and is unlikely to hold exactly in either natural ornot change the pattern or the general interpretation of
selected populations. Equal subgroup sizes will max-the results.
imize the influence of heterogeneity. For example, weA considerable body of published theory exists, based
have investigated populations with two subgroups whereon deterministic models of epidemics describing the
the ratio of subgroup sizes varied from 1:1 (i.e., sub-impacts of various specific types of heterogeneity. How-
groups of equal size) to 19:1. As the inequality in sub-ever, this theory generally provides results only for the
group sizes increased, both the probability of a majorexpected outcome of epidemics and does not deal fully
epidemic and the total number of individuals infectedwith the impact of variation (Hethcote 1977; May
increased toward the values for a homogeneous popula-1987; May and Anderson 1989; Adler 1992; Dushoff
tion; i.e., the limit as the size of the smaller subgroupand Levin 1994). Moreover, this literature does not
tends to zero. The beneficial effect of heterogeneity ismake extensions to genetic heterogeneity or give results
at a maximum when subgroup sizes are equal or approx-that may be directly and easily interpreted by geneticists.
imately equal. This pattern generalizes to populationsThe study with the greatest analogy to ours is that of
with any number of subgroups but the impact of varyingMay and Anderson (1989) who describe a situation in

which contact rates among subpopulations vary ac- subgroup sizes becomes smaller and more difficult to
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quantify satisfactorily as the number of subgroups in- pathogen, the equivalent strategy would be to attempt
to vaccinate or treat those genotypes known to be mostcreases.

A comment is warranted on the additional insight susceptible. Thus heterogeneity not only may help to
protect a population from the spread of infection butgained from using a stochastic modeling approach. De-

terministic approaches remain important for providing also can provide a clear means of protecting against
potential epidemics.elegant insights into expected outcomes of biological

processes. However, in the case of complex and nonlin- This work was funded by a grant from the Biotechnology and Biolog-
ear processes deterministic solutions may prove difficult ical Sciences Research Council Mathematics and Modelling of Agricul-

tural and Food Systems initiative.to obtain and stochastic simulation may more easily
yield solutions. Additionally, the stochastic approach
used here has yielded additional information on vari-
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APPENDIX A

Hethcote (1977) gives the following analytical result for the spread of an infectious disease in a population
consisting of n subgroups, each of which is homogeneous with respect to resistance to the infection. The subgroup
sizes are Ni (I � 1, . . . , n) and the proportions of infected, susceptible, and recovered individuals in each subgroup
at time t are Ii(t), Si(t), and Ri(t). The recovery rates are � i . The contact rates between the ith and jth subgroups
are �ij (i, j � 1, . . . , n).

The proportions of the subgroups that have been infected at infinity are given by the n simultaneous equations:

Ii(∞) � 1 � Si(0)exp���
n

j�1

�ijNj

Ni
�1 � Sj(∞) � Rj(0)

�j
�� , i � 1, . . . , n.

However, there is no analytical solution.

APPENDIX B

Derivation of approximate variance for the total proportion infected (I) as a function of the variance of the
reproductive rate (R).



1474 A. J. Springbett et al.

We have the asymptotic result for a SIR epidemic:

I � 1 � e�IR for R � 1 and 0 
 I 
 1.

This can be rearranged as a function of R :

R � �loge(1 � I)/I.

Using a Taylor series expansion for the rhs about I0 ,

�loge(1 � I)/I � �loge(1 � I0)/I0 � (I � I0)[I �1
0 (1 � I0)�1 � I �2

0 loge(1 � I0)]

� �I[I �1
0 (1 � I0)�1 � I �2

0 loge(1 � I0)] � (1 � I0)�1 � 2I �1
0 loge(1 � I0).

Putting R � �loge(1 � I )/I and J 0 � 1 � I0 and simplifying,

I � �RJ0I 2
0/[I0 � J0 loge J0]2 � f(I0, J0),

where f(I0, J0) is a function solely of I0 and J0 and is a constant for given I0 and J0. Thus,

Var(I ) � var(R)J 2
0I 4

0/[I0 � J0 log J0]2.


