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ABSTRACT
The core of statistical inference is based on both hypothesis testing and estimation. The use of inferential

statistics for QTL identification thus includes estimation of genetic effects and statistical tests. Typically,
QTL are reported only when the test statistics reach a predetermined critical value. Therefore, the estimated
effects of detected QTL are actually sampled from a truncated distribution. As a result, the expectations
of detected QTL effects are biased upward. In a simulation study, William D. Beavis showed that the average
estimates of phenotypic variances associated with correctly identified QTL were greatly overestimated if
only 100 progeny were evaluated, slightly overestimated if 500 progeny were evaluated, and fairly close
to the actual magnitude when 1000 progeny were evaluated. This phenomenon has subsequently been
called the Beavis effect. Understanding the theoretical basis of the Beavis effect will help interpret QTL
mapping results and improve success of marker-assisted selection. This study provides a statistical explana-
tion for the Beavis effect. The theoretical prediction agrees well with the observations reported in Beavis’s
original simulation study. Application of the theory to meta-analysis of QTL mapping is discussed.

THE primary goal of genetic mapping experiments only 100 progeny were evaluated, slightly overestimated
if 500 progeny were evaluated, and fairly close to theis to identify the locations of genes that affect vari-

able expression of a trait among individuals. Most re- actual magnitude when 1000 progeny were evaluated.
When the sample size was small, say 100, the statisticalsearchers also use the data from a sampled population

to estimate the genetic effects of quantitative trait loci power of detecting a small QTL was as low as 3% and
the estimated effects were typically inflated 10-fold. This(QTL). Information about the magnitude of the genetic

effects of significant QTL is useful in prioritizing sub- phenomenon has since been referred to as the Beavis
effect and has formed the basis of a number of subse-sequent uses of the loci as candidate genes for consid-

eration in genetic engineering and marker-assisted se- quent analyses (e.g., Otto and Jones 2000; Hayes and
Goddard 2001).lection (Lande and Thompson 1990). Many statistical

methods produce unbiased or asymptotically unbiased Estimating the number of quantitative trait loci is an-
other goal of QTL mapping experiments (Sillanpaaestimates of parameters. However, this property does

not apply to QTL effects estimated from genome scans. and Arjas 1998). Otto and Jones (2000) acknowl-
edged that the estimated number of QTL using molecu-This phenomenon was first discussed by Lande and

Thompson (1990). lar markers (interval mapping) can be more informative
than that obtained from analyses using only phenotypeAlmost all QTL mapping procedures can detect QTL

with large effects, but not all can detect QTL with inter- (Lande 1981; Zeng 1992). However, a QTL is reported
from the analysis only if it is detected. Therefore, themediate and small effects. Quantitative traits are defined

as traits controlled primarily by intermediate and small distribution of the detected QTL is actually inferred
from censored data due to missing small-effect QTL.QTL. Beavis (1994, 1998) designed a large-scale simula-

tion experiment to evaluate the efficiency of interval Otto and Jones (2000) incorporated the Beavis effect
into their maximum-likelihood analysis to recover themapping for detecting and estimating polygenes. Here-

after, this simulation experiment is called the Beavis potential number of QTL using the number of detected
QTL, so called “detecting the undetected.” It should beexperiment. Beavis (1998) simulated either 10 or 40 in-

dependent QTL, examining situations where each QTL emphasized that the purpose of Otto and Jones (2000)
was to infer the number of QTL for a quantitative traitexplained a proportion of the phenotypic variance rang-

ing from 0.75 to 9.5% with sample sizes ranging from within a single experiment. Some QTL, however, may
have large effects and some may have small effects, and100 to 1000. The Beavis experiment showed that the aver-

age estimates of phenotypic variances associated with estimating the total number depends on the distribution
of QTL effects. If the overall distribution of the effectscorrectly identified QTL were greatly overestimated if
is described by an exponential distribution, the distribu-
tion of detected QTL effects becomes a truncated expo-
nential distribution after incorporating the Beavis ef-1Author e-mail: xu@genetics.ucr.edu
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fect. This should not be confused with the original Beavis where n is the sample size (the number of BC progeny)
experiment where all simulated QTL had an equal ge- and
netic effect.

� 2
x � n�1 � n

j�1(xj � x)2 (3)Hayes and Goddard (2001) conducted a meta-analy-
sis for QTL mapping in livestock to infer the distribution is the sampling variance of the genotype. Note that n
of the effects of genes. They fit the estimated gene may be replaced by n � 1 for a more precise result.
effects surveyed from all QTL mapping experiments in The variance of x depends on the type of progeny.
pigs and cattle to a gamma distribution. The difference In a BC population without segregation distortion, half
between this meta-analysis and the usual analysis is that of the individuals will be homozygous and half heterozy-
estimated genetic effects from multiple experiments gous, leading to � 2

x � 1⁄4 in the limit of large n. We have
were fit in a model rather than estimated from observed implicitly made the assumption that there is no domi-
measurements. As a consequence, they had to take into nance effect. If there is dominance, it will be con-
account two additional sources of error for the esti- founded with the additive effect; i.e., the genetic effect
mated gene effects: the experimental error due to lim- is actually a � d instead of a. Therefore, all subsequent
ited sample sizes and bias caused by data censoring.

analyses are based on the additive model.
They found that the estimated genetic effects fit a gamma

If the positions of all QTL are known a priori (uncen-
distribution very well. Again, one should not confuse

sored), the estimate of each QTL effect is approximately
this meta-analysis with the Beavis experiment because

unbiased (depending on the method used) so that theHayes and Goddard (2001) intended to infer the distri-
distribution of â can be assumed to be approximatelybution of genetic effects throughout the genome from
normal, i.e., N(a, � 2

â). The normal distribution is mathe-multiple experiments. Even if two QTL were identified
matically convenient because it allows the standard sta-roughly at the same location by two investigators, they
tistical machinery for censored/truncated data to bewere still treated as different QTL because the estimated
used (Cohen 1991). Of course, if the assumption ofpositions were not precise enough to be assigned to
normal distribution is violated, the theory developedexactly the same position within the genome. The origi-
here is not valid. The assumption of a normal distribu-nal Beavis experiment demonstrated that a bias exists
tion for â holds better if the residual error is normally,in estimating QTL effects. Herein, I present a theoreti-
independently, and identically distributed. Some traitscal basis for the Beavis effect. The theory predicts the
may be distributed in a discrete manner but analyzedamount of bias as a function of the type of progeny
as a quantitative trait, and some traits may have a skewedused in the experiment, the estimation procedure, the
distribution with unequal variances. These traits maymarker density, and the sample size.
not have a normal residual error, and thus the theory
developed in this study should be used with extra cau-
tion for such traits.STATISTICAL THEORY

In the practice of QTL mapping, estimated genetic
Marker analysis: The theory is developed using a back-

effects are reported only for significant QTL. Thus, the
cross (BC) mating design, which provides the simplest

reported QTL consists of a censored sample so that the
genetic model in QTL mapping. The result is then ex-

distribution of the estimated QTL effects conditional ontended to other progeny derived from common mating
statistical significance is a truncated normal distributiondesigns. Let yj be the phenotypic value of a quantitative
with a mean and variance different from those of thetrait measured from individual j sampled from a BC
original normal distribution.population. The linear model describing yj is

I now proceed to calculate this truncated distribution.
yj � � � xja � εj , (1) Let us assume that a z-test statistic is used for the signifi-

cance test so that the critical value for the z-test statisticwhere � is the population mean, a is the additive genetic
is defined as Z 1��/2, where � is a controlled type I erroreffect at the locus of interest, and εj is the residual error,
rate. A QTL is reported only if |z | � Z 1��/2, where z �which is assumed to follow a normal distribution, N(0,
â/�â is the z-test statistic. In other words, all the QTL

� 2). In the BC progeny, there are only two possible
reported satisfy |â | � �âZ 1��/2, i.e., â � ��âZ 1��/2 or â �genotypes at the QTL, heterozygote and homozygote for
�âZ 1��/2. The two-tailed test leads to the possibility thatthe backcross parent allele. The independent variable xj
even if a is positive, it may be detected as a significantlyis an indicator variable defined as xj � 0 for the homozy-
negative effect due to sampling. Denote the truncatedgote and xj � 1 for the heterozygote.
â by âT so that âT � NT(aT, � 2

âT
), where NT represents aLet â be the estimated genetic effect and � 2

â be the
truncated normal distribution, aT � E(âT) is the expecta-variance of the estimate for a QTL. For simplicity, let us
tion, and � 2

âT
� Var(âT) is the variance of the truncatedassume that the QTL is closely linked to a marker so that

normal distribution. The truncated normal distribution
is not symmetric. Let us define the two truncation points� 2

â �
� 2

� n
j�1(xj � x)2

� � 2

n� 2
x

, (2)
in the standardized (z-test statistic) scale as
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E(�̂ 2
G) � E(	â 2

T) � 	[E 2(âT) � V(âT)]

1 � �Z 1��/2 �

a
�â

� �Z 1��/2 �
√n�xa

�
(4)

� 	��a �
�

√n�x

(�2 � �1)�
2

and

�
� 2

n� 2
x

�(1 � 
2�2 � 
1�1) � (�2 � �1)2��
2 � Z 1��/2 �
a
�â

� Z 1��/2 �
√n�xa

�
. (5)

� 	�a2 �
� 2

n� 2
x

[1 � �2(
2 � 2
√n�xa

�
)Further define

�i �
φ(
i)

1 � �(
1) � �(
2)
for i � 1, 2, (6) � �1(
1 � 2

√n�xa
�

)]�
where φ(
) and �(
) are the standardized normal proba- � � 2

G � 	
� 2

n� 2
x

�1 � (

2�2 � 

1�1)�, (11)
bility density function (pdf) and cumulative distribution
function (cdf), respectively. where

Often, when using likelihood methods, the LOD score
criterion may be used for QTL detection. The critical



i � 
i � 2
√n�xa

�
for i � 1, 2. (12)

value of the LOD score can be converted into the critical
value of the z-test statistic, using the following approxi-

Therefore, the bias in the estimated variance ismate relationship,

B � E(�̂ 2
G) � � 2

G � 	
� 2

n� 2
x

�1 � (

2�2 � 

1�1)�. (13)Z 1�� � √�2
1,1�� � √4.605 LOD � 2.146√LOD, (7)

where � 2
1,1�� is the critical value of the chi-square distri- Note that there are two sources of bias: the contribution

bution with 1 d.f. and is also the critical value for the of environmental variance to the estimate of a 2 given
likelihood-ratio test statistic. The relationship between by [n�2

x]�1	�2 plus the Beavis effect given by [n�2
x]�1	�2

the likelihood-ratio test statistic and LOD can be found (

2�2 � 

1�1). Thus, this estimator is biased even in the
absence of the Beavis effect. The bias due to the firstin Lynch and Walsh (1998).
source of error has been investigated by Luo et al.According to the standard statistical machinery of
(2003), who also provided a method to correct the bias.truncated normal distributions

The one-tailed test is a special case of the two-tailed
test in that we simply set 
1 � �∞ and �1 � 0. For theE(âT) � a �

�

√n�x

(�2 � �1) (8)
two-tailed test, we can further simplify B into B � 	
(�2/n�2

x) [1 � (
2�1 � 
1�2)] due to 

1 � �
2 and 

2 �
(Cohen 1991), so that the bias is �
1 . We did not present this simplified version of B as

a general formula because it would not allow us to ex-
tend the results simply to the one-tailed test.b �

�

√n�x

(�2 � �1). (9)
The proportion of phenotypic variance explained by

the QTL is defined as
The variance of the truncated sample is

h 2
Q �

� 2
G

� 2
G � � 2

�
	a2

	a2 � � 2
�

	a2

� 2
P

, (14)
Var(âT) �

�2

n�2
x

[(1 � 
2�2 � 
1�1) � (�2 � �1)2]. (10)
where � 2

P � 	a 2 � � 2 is the total phenotypic variance
among the test progeny. The h 2

Q notation is adoptedThis truncated variance is used later when we discuss
from classical quantitative genetics and is known as thethe bias in the QTL variance estimate.
heritability. When used as a proportion of variance con-The phenotypic variance may be partitioned into the
tributed by an individual QTL, it is no longer called thetrue QTL variance (� 2

G) and the residual variance (� 2).
heritability. The typical estimator for h 2

Q is ĥ 2
Q � 	â 2

T/The genetic variance of a QTL in a BC population is
�̂ 2

P . It is hard to find the expectation of a ratio. However,
� 2

G � a 2/4. The corresponding variance in an F2 popula-
if we assume that the estimation error of the denomina-tion is � 2

G � a 2/2. In general, the genetic variance can
tor is negligible, we can take E(ĥ 2

Q) � E(	â 2
T)/� 2

P . This
be expressed as � 2

G � 	a 2, where 	 is a constant de-
assumption is justified for many quantitative traits be-

pending on the filial relationship among segregating cause the phenotypic variance is usually accurately esti-
progeny; e.g., 	 � 1⁄2 for BC and 	 � 1⁄2 for F2. Therefore, mated. On the basis of this assumption, we get
a commonly used approach to estimating the genetic
variance is � 2

G � 	â 2
T. However, this estimation is also E(ĥ 2

Q) � 	a2 � B
� 2

P

� h 2
Q �

B
� 2

P

. (15)
biased because
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TABLE 1Letting � 2 � (1 � h 2
Q)� 2

P , the bias of the genetic vari-
ance can be rewritten as Predicted genotypic indicator variable and its probability

distribution for the four flanking marker genotypes
B � 	

(1 � h 2
Q)� 2

P

n� 2
x

�1 � (

2�2 � 

1�1)�, (16) in backcross progeny

Marker class x̂j � pj(1) � Pr(xj � 1|m1j, m2j) Pr(m1j, m2j)which leads to

m1j � 1, m2j � 1 (1 � r1)(1 � r2)/(1 � r) (1 � r)/2
E(ĥ 2

Q) � h 2
Q �

	

n� 2
x

�1 � (

2�2 � 

1�1)�(1 � h 2
Q). m1j � 1, m2j � 0 (1 � r1)r2/r r/2

m1j � 0, m2j � 1 r1(1 � r2)/r r/2
(17) m1j � 0, m2j � 0 r1r2/(1 � r) (1 � r)/2

Therefore, the proportion of the phenotypic variance r is the recombination frequency between m1 and m2.
associated with the QTL also is biased. Note that the
term (

2�2 � 

1�1) in Equation 17 involves the genetic

explicit expression is tedious, but numerical values mayeffect, which can be expressed using (14) as
be computed conveniently. For example, in a BC popu-
lation, there are four possible marker classes, and thea � �	 h 2

Q

	(1 � h 2
Q)

. (18)
estimated x is denoted by x̂j � E(xj|m1j, m2j) � pj(1), where
m1j and m2j indicate the flanking marker genotypes and

If we substitute Equation 18 into Equations 4 and 5, � pj(1) � Pr(xj � 1|m1j, m2j). Let Pr(m1j, m2j) be the joint
cancels out from (

2�2 � 

1�1). Therefore, the bias probability of the flanking marker genotype. These val-
given in Equation 17 is only a function of h 2

Q and the ues are given in Table 1, where r1 and r2 are the recombi-
parameters associated with the sampled progeny. nation fractions between the QTL and the two markers,

We now extend the results to other types of progeny. respectively, and r is the recombination between the
For simplicity, we assume that dominance is absent. In two markers. From this table, we can calculate � 2

x̂ using
an F2 population, there are three possible genotypes

� 2
x̂ � E(x̂ 2) � E 2(x̂)whose genotypic values are defined as a for the homozy-

gote with the “high allele,” 0 for the heterozygote, and � �4
j�1Pr(m1j, m2j)x̂ 2

j � ��4
j�1Pr(m1j, m2j)x̂j�

2
. (19)

�a for the homozygote with the “low allele.” The linear
Note that when � 2

x̂ is used in place of � 2
x , the assumptionmodel given in Equation 1 applies here in the F2 popula-

of a normal distribution for â may be less valid.tion except that the x variable is now defined as xj � 1,
The method used to derive � 2

x̂ implicitly assumes that0, �1 for the three genotypes, respectively. Without
the least-squares method (Haley and Knott 1992) issegregation distortion, the variance of x in an F2 popula-
used because the expectation of the QTL genotype indi-tion is � 2

x � 1⁄2 . Therefore, the results derived above
cator is calculated conditional on markers only. In maxi-apply here with � 2

x � 1⁄4 in BC progeny replaced by
mum-likelihood analysis, the expectation is actually calcu-� 2

x � 1⁄2 in F2 progeny.
lated conditional on both markers and the phenotypicThe method also can be applied to double-haploid
values. However, it is extremely difficult to derive the(DH) and recombinant inbred line (RIL) populations.
variance using expectation conditional on both markersIn both DH and RIL, the heterozygous genotype is ab-
and phenotypes. Therefore, the way we calculate � 2

x̂ issent. The x variable is defined as xj � 1 for one homozy-
considered as an approximation.gote and xj � �1 for the other homozygote. The two

For a DH population, we define x̂j in a slightly differenttypes of homozygote have an equal frequency, and thus
way (see Table 2) but still use (19) to calculate �2

x̂ . For� 2
x � 1 in both DH and RIL. The results derived above

RIL, we use the same table (Table 2), but replace r1, r2,apply by substituting � 2
x � 1⁄4 in the BC by � 2

x � 1 in the
DH and RIL.

Note that � 2
x and 	 are identical for all types of prog-

TABLE 2eny if a marker provides a fully informative genotype
Predicted genotypic indicator variable and its probabilityfor the QTL. Different notation is used because there

distribution for the four flanking marker genotypes incan be differences when the QTL is not tightly linked
double-haploid progenyto a marker.

Interval mapping: In interval mapping, a QTL may
Marker class x̂j � 2pj(1) � 1 Pr(m1j , m2j)be identified at an intermediate position between mark-

ers by inferring the genotype of the QTL from flanking m1j � 1, m2j � 1 2(1 � r1)(1 � r2)/(1 � r) � 1 (1 � r)/2
m1j � 1, m2j � �1 2(1 � r1)r2/r � 1 r/2marker information. This will affect both the parameter
m1j � �1, m2j � 1 2r1(1 � r2)/r � 1 r/2estimates and the statistical tests of inference. We need
m1j � �1, m2j � �1 2r1r2/(1 � r) � 1 (1 � r)/2to substitute the variance of x by the variance of the

estimated x, denoted by � 2
x̂ . This variance depends on x̂j � pj(1) � pj(�1) � 2pj(1) � 1, where pj(1) � Pr(xj �

1|m1j , m2j) and pj(�1) � 1 � pj(1).the relative position of the QTL within the interval. The
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TABLE 3

Predicted genotypic indicator variable and its probability distribution for the nine flanking
marker genotypes in F2 progeny

Marker genotype x̂j � pj (�1) � pj (�1) Pr(m1j , m2j )

m1j � 1, m2j � 1 1⁄4(1 � r)2(1 � r1)2(1 � r2)2 � r 2
1r 2

2

(1 � r)2

m1j � 1, m2j � 0 1⁄2r(1 � r)r2(1 � r1)2(1 � r2) � r2
1r2(1 � r2)

r(1 � r)
m1j � 1, m2j � �1 1⁄4r 2r 2

2(1 � r1)2 � r 2
1(1 � r2)2

r 2

m1j � 0, m2j � 1 1⁄2r(1 � r)r1(1 � r1)(1 � r2)2 � r1r2
2(1 � r1)

r(1 � r)
m1j � 0, m2j � 0 0 1⁄2[r 2 � (1 � r)2]

m1j � 0, m2j � �1 1⁄2r(1 � r)r1r 2
2(1 � r1) � r1(1 � r1)(1 � r2)2

r(1 � r)
m1j � �1, m2j � 1 1⁄4r 2r 2

1(1 � r2)2 � r 2
2(1 � r1)2

r 2

m1j � �1, m2j � 0 1⁄2r(1 � r)r 2
1r2(1 � r2) � r2(1 � r1)2(1 � r2)

r(1 � r)
m1j � �1, m2j � 1 1⁄4(1 � r)2r 2

1r 2
2 � (1 � r1)2(1 � r2)2

(1 � r)2

pj (�1) � Pr(xj � �1|m1j , m2j ) and pj (�1) � Pr(xj � �1|m1j , m2j ).

and r by c1, c2, and c, where c � 2r/(1 � 2r) (Lynch flanked by two fully informative markers. Note, as the
QTL position approaches a marker, � 2

x̂ approaches 1⁄2 .and Walsh 1998).
In an F2 population, there are nine flanking marker

genotypic classes. The definitions of x̂j’s and their proba-
NUMERICAL EVALUATIONbilities for the nine classes are given in Table 3. The same

formula (Equation 19) is used to calculate �2
x̂ except that Bias was evaluated numerically by considering the

the summation is taken over nine categories. For example, following factors: the sample size, the genetic effect
if the QTL position is in the middle of a 20-cM interval, measured by h 2

Q , and the LOD score criterion. In evalu-
we have r1 � r2 � 0.0906 and r � 0.1648, leading to ating the bias of QTL effects, the residual variance was
� 2

x̂ � 0.4013. Figure 1 shows the relationship between set at unity, i.e., � 2 � 1.0. If the actual residual variance
� 2

x̂ and the position of the QTL in the 20-cM interval is not unity, one can always standardize the genetic
effect using a/� in place of a.

The numerical evaluation was conducted only in BC
populations because the general trends are similar for
all types of progeny (data not shown). In addition, only
a one-tailed test was evaluated. The one-tailed test is
a special case of the two-tailed test with 
1 � �∞ and
�1 � 0. The functional relationships between the size
of the detected QTL and the true sizes are shown in
Figure 2. The diagonal lines in the first column of Fig-
ure 2 represent the case where aT � a and those in the
second column represent the case where ĥ 2

Q � h 2
Q ,

which holds only when the sample size is infinitely large.
With finite sample sizes, the curves deviate from this
straight line and the deviation increases as the sample
size decreases. The deviation also increases as the LOD
criterion increases. The deviation is negligible whenFigure 1.—Relationship between � 2

x̂ and the position of a
h 2

Q � 0.5 (corresponding to a/� � 0.2), even if theQTL flanked by two fully informative markers in an interval
of 20 cM in an F2 population in the limit of large n. sample size is as small as n � 50. Assume that the com-
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Figure 2.—Functional relationships of the detected QTL parameters to the true parametric values under various sample sizes
and LOD score critical values in BC mapping. The diagonal lines represent the relationship between the parameter of detected
QTL and the true parametric value when the sample size is infinitely large (unbiased relationship). Note that as the LOD
criterion increases, the bias associated with detecting a very small QTL (a → 0) becomes worse but the probability of detecting
such a QTL becomes much smaller (not shown). Note that in the Beavis experiment, LOD � 2.5 and n � 100, 500, 1000.
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monly used LOD criterion is 3 and the sample size is samples, some QTL were detected due to large esti-
mated dominance effects, even though the dominance200; the bias is within 7% of the true value as long as

h 2
Q � 0.10. The bias becomes more severe, however, for was absent in the simulations (see Table 10.5 of Beavis

1998). To verify this, we redid the simulations for allsmall detectable QTL. This observation is consistent
with that observed by Beavis (1998). It is interesting to the cases with n � 100 and used the pure additive model

(dominance was included in neither the simulation nornote that when h 2
Q � 0 and n � 50, the bias in ĥ 2

Q is as
high as 0.18 for LOD � 2 and 0.33 for LOD � 5. the model). We used our own interval-mapping pro-

gram known as QTL-BY-SAS to detect QTL (Xu and XuThe functional relationships between ĥ 2
Q and the sam-

ple size under various LOD criteria and h 2
Q are shown in 2003). Here, we replicated the experiment 500 times,

instead of 200 times. The results are listed in Table 5,the right column of Figure 3. The corresponding plots
for the effects are given in the left column. When n � which shows very good agreement between the pre-

dicted and observed biases. Even though the LOD test200 and h 2
Q � 0.10, all the biases are negligible (within

10% of the true value), regardless of the LOD criterion. statistic of the Beavis experiment involved 2 d.f. (addi-
tive and dominance), our model still predicted the bi-For small h2

Q, a large sample size, even as large as n � 500,
is not sufficient to eliminate the bias, again consistent ases quite accurately when the sample size was relatively

large (n � 500). This was because for large samples,with results of the Beavis experiment (Beavis 1998).
If the average estimated ĥ 2

Q is 0.14 among all the the LOD score test statistic was determined primarily
by the additive effect. The 2-d.f. LOD score and 1-d.f.experiments surveyed where the average sample size is

�100 and the average LOD criterion is �3, the true LOD score were virtually identical.
h 2

Q may actually be zero (found from the second panel
from the top of the right column of Figure 2). If ĥ 2

Q is
DISCUSSION

0.15 (just a slight increase), however, the true h 2
Q is

�0.08. If ĥ 2
Q � 0.25, the true h 2

Q is about the same as The Beavis effect describes a phenomenon that oc-
curred in the Beavis experiment where all QTL wereĥ 2

Q; i.e., very small bias is expected. From these graphs
or using Equation 17, one can find the true h 2

Q retrospec- simulated to have the same effect and distributed inde-
pendently throughout the genome. The average effecttively from ĥ 2

Q for all other settings.
We now use the parameter values of the Beavis experi- of the detected QTL was biased upward due to censor-

ing. It is more likely that QTL effects vary across thement to compare the biases with those observed by
Beavis (1998). Table 4 shows the original data reported genome and the distribution of the QTL effects may be

described by a negative exponential distribution (Xuby Beavis as well as the predicted biases for both the QTL
effects and their variances. The average QTL position is 2003). In addition, some QTL may be linked within

the same chromosomes and thus they do not segregatein the middle of a 20-cM interval. However, for an inter-
val this short, the position of a detected QTL rarely independently. On the one hand, the Beavis effect will

cause the estimated number of QTL to be biased down-coincided with the true position. We observed that the
detected position within the interval varied almost uni- ward (Beavis 1994, 1998; Otto and Jones 2000), be-

cause the undetected QTL are not reported. On theformly across the interval. Therefore, we choose an aver-
age � 2

x̂ � (0.5 � 0.4)/2 � 0.45 as the estimated variance other hand, the average effect of the detected QTL will
be biased upward.of x, where 0.5 is the variance when the QTL is com-

pletely linked with a marker and 0.4 is the variance Using the Beavis effect to interpret results of a meta-
analysis of QTL mapping is more straightforward. If awhen the QTL is exactly in the middle of the interval.

The agreements between the observed and the pre- QTL mapping experiment can be repeated many times,
the average effect of a chromosome location calculateddicted biases, judged by the differences between the

two, are quite good except when the sample size is only from the significant replicates will definitely be
biased unless this QTL is detected in all replicates. Ifsmall (n � 100). However, the percentage differences,

(observed-predicted)/predicted, show an opposite trend one considers incorporating a particular marker into a
marker-assisted selection program for an economicallywith �8% discrepancies in the variance observed only

when n � 1000. The percentage difference may be mis- important quantitative trait, the Beavis effect will affect
the decision. The investigator may decide to search theleading, however, as the predicted effects become smaller
literature to see how much genetic variance is accountedand more sensitive to error with increasing sample size
for by this marker from all published experiments.and because, ultimately, one is interested in the absolute

The theory developed here helps predict the poten-error made in inferring the effects of QTL. The large
tial bias in the estimated effect of QTL. The theory mayabsolute deviations of the predicted biases from the
also be used to correct the bias but should be used withobserved values for small sample size may be explained

as follows. The critical value of LOD � 2.5 was used by caution. Let ĥ 2
Q � N�1� N

k�1ĥ 2
Q(k) be the average of the

Beavis for a test statistic involving both the additive and QTL effect estimated from N replicated experiments.
dominance effects. Our prediction, however, was based To correct the bias, we may simply substitute the expec-

tation given in Equation 17 by the observed average,on a test statistic for additive effects only. For small
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Figure 3.—Changes in
effect and variance of de-
tected QTL as a function of
their true parametric values
as sample size increases for
various sizes of QTL and
LOD score critical values in
BC mapping.

equation becomes
ĥ2

Q � h2
Q � (1 � h2

Q)N�1�
N

k�1

	

nk �2
x

�1 � (

2�2 � 

1�1)�,
(20) ĥ2

Q � h2
Q �

	

n�2
x

�1 � (

2�2 � 

1�1)�(1 � h2
Q). (21)

and solve for h2
Q to obtain the unbiased estimate of h2

Q.
The solution is even more sensitive to n. Therefore, theThe equation is highly nonlinear, but the solution can
theoretical prediction of the Beavis effect may not bebe easily solved numerically. Unfortunately, the solution
used retrospectively to correct for the bias when theis very sensitive to the sample size (n). It works only
sample size is small. The correction is necessary whenwhen n is sufficiently large, say n � 500. For a single

experiment, we have only one estimate and the above the estimate is obtained by summarizing the results of
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TABLE 4

Comparisons of predicted and observed (estimated) biases in estimated QTL effects and variances from
Beavis F2 simulation experiments

Variance explained Additive effect
Simulated Average estimated
conditionsa Simulated Observed Predictedb Simulated Observed Predictedc location

10-30-100 3.00 16.76 16.0537 2.45 4.96 5.6410 11.3
10-30-500 3.00 4.33 4.1890 2.45 2.89 2.8617 10.53
10-30-1000 3.00 3.02 3.1846 2.45 2.56 2.4868 10.8
10-63-100 6.25 12.65 16.5984 3.55 4.68 5.7328 10.51
10-63-500 6.25 7.08 6.5581 3.55 3.73 3.5829 10.96
10-63-1000 6.25 6.34 6.3566 3.55 3.60 3.5500 11.04
10-95-100 9.50 18.68 17.3883 4.36 5.85 5.8466 10.58
10-95-500 9.50 10.1 9.7082 4.36 4.49 4.3607 11.08
10-95-1000 9.50 9.67 9.6028 4.36 4.44 4.3600 11.19
40-30-100 0.75 15.78 15.6270 1.22 4.40 5.5436 10.83
40-30-500 0.75 3.17 3.3332 1.22 2.35 2.5671 10.17
40-30-1000 0.75 1.46 1.7961 1.22 1.85 1.8790 10.17
40-63-100 1.56 16.31 15.7983 1.77 4.71 5.5999 10.45
40-63-500 1.56 3.54 3.5783 1.77 2.59 2.6582 10.13
40-63-1000 1.56 1.96 2.1435 1.77 2.09 2.0494 10.37
40-95-100 2.40 16.55 15.9694 2.18 5.02 5.6236 10.45
40-95-500 2.40 3.97 3.9190 2.18 2.79 2.7641 10.12
40-95-1000 2.40 2.58 2.6970 2.18 2.36 2.2784 10.29

a Numerical values denote the number of QTL-heritability-number of progeny.
b Using Equation 17.
c Using Equation 8.

many experiments. In that case, we should incorporate statistic utilized is the z-test statistic, which is a 1-d.f. test.
Further investigation is necessary to predict the biasesnot only the mean of the estimates but also the variance

of these estimates. The optimal method is the maximum- in both the additive and dominance effects using a 2-d.f.
test. Similar extensions can be made for a test with �2likelihood method that treats the estimates of the multi-

ple experiments as censored data and infers (or recovers) d.f., e.g., four-way crosses (Xu 1996) and diallel crosses
(Rebai and Goffinet 1993).the parameter of the uncensored data (Cohen 1991).

The theory developed herein applies to segregating The variance of the genotype indicator (x) deter-
mines the estimation error of the QTL effect and thuspopulations with two alternative genotypes. For popula-

tions with more than two alternative genotypes, e.g., F2, plays an important role in the Beavis effect. When the
QTL under investigation is tightly linked to a fully infor-the model is restricted to either the additive or the

dominance model but not both. This is because the test mative marker, � 2
x is a constant depending on the filial

TABLE 5

Comparisons of predicted and estimated biases in estimated QTL effects and variances from our own F2 simulation
experiments at sample size 100

Variance explained Additive effect
Simulated Average estimated
conditionsa Simulated Observed Predictedb Simulated Observed Predictedc location

10-30-100 3.00 15.29 16.0537 2.45 5.48 5.6410 10.29
10-63-100 6.25 16.93 16.5984 3.55 5.76 5.7328 10.34
10-95-100 9.50 17.75 17.3883 4.36 5.89 5.8466 10.05
40-30-100 0.75 14.62 15.6270 1.22 5.36 5.5436 10.12
40-63-100 1.56 15.01 15.7983 1.77 5.42 5.5999 10.39
40-95-100 2.40 15.50 15.9694 2.18 5.51 5.6236 10.10

a Numerical values denote the number of QTL-heritability-number of progeny.
b Using Equation 17.
c Using Equation 8.
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