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ABSTRACT
This article is devoted to the problem of ordering in linkage groups with many dozens or even hundreds

of markers. The ordering problem belongs to the field of discrete optimization on a set of all possible
orders, amounting to n!/2 for n loci; hence it is considered an NP-hard problem. Several authors attempted
to employ the methods developed in the well-known traveling salesman problem (TSP) for multilocus
ordering, using the assumption that for a set of linked loci the true order will be the one that minimizes
the total length of the linkage group. A novel, fast, and reliable algorithm developed for the TSP and
based on evolution-strategy discrete optimization was applied in this study for multilocus ordering on the
basis of pairwise recombination frequencies. The quality of derived maps under various complications
(dominant vs. codominant markers, marker misclassification, negative and positive interference, and
missing data) was analyzed using simulated data with �50–400 markers. High performance of the employed
algorithm allows systematic treatment of the problem of verification of the obtained multilocus orders on
the basis of computing-intensive bootstrap and/or jackknife approaches for detecting and removing
questionable marker scores, thereby stabilizing the resulting maps. Parallel calculation technology can easily
be adopted for further acceleration of the proposed algorithm. Real data analysis (on maize chromosome 1
with 230 markers) is provided to illustrate the proposed methodology.

AN important step in generating multilocus genetic of ordering markers within linkage groups was based on
maps using the results of linkage analysis is the deter- multipoint maximum-likelihood analysis. Several effective

mination of the true marker order. One of the possibilities algorithms have been proposed using various optimiza-
in addressing this problem is to recover the linear tion tools, including the branch and bound method
marker order from the known pairwise marker distance (Lathrop et al. 1985), simulated annealing (Thompson
matrix dij. A primary difficulty in ordering genetic loci 1984; Weeks and Lange 1987; Stam 1993; Jansen et al.
using linkage analysis is the large number of possible 2001), and seriation (Buetow and Chakravarti 1987).
orders: for n loci on a chromosome, n!/2 distinct orders Olson and Boehnke (1990) compared eight different
should be evaluated. In real problems, n might vary methods for marker ordering. In addition to multilocus
from dozens to 200–500 markers and more (e.g., likelihood, they also considered more simple criteria
www.maizemap.org/ibm_frameworkmaps.htm; see also for preliminary multipoint marker ordering in large-
Ott 1991). Clearly, even for n � 30, it would not be scale problems based on two-point linkage data (by min-
feasible to evaluate all n!/2 possible orders using two- imizing the sum of adjacent recombination rates or adja-
point linkage data. This is why multilocus ordering is cent genetic distances). The simple criteria are founded
considered as a nonpolynomial (NP)-hard combinato- on the biologically reasonable assumption that the true
rial problem (Wilson 1988; Olson and Boehnke 1990; order of a set of linked loci will be the one that mini-
Falk 1992; Ellis 1997). A solution to this problem can mizes the total map length of the chromosome segment.
be obtained on a Pentium-IV (1500 Mhz) computer Simple methods work quickly but their accuracy may
even for a modest case such as n � 10 after 1 hr. depend on the number of markers, distribution of re-

Several methods have been proposed for determina- combination frequencies (presence of large gaps), per-
tion of marker order (Lathrop et al. 1985; Lander and centage of missing data, type of the employed optimiza-
Green 1987; Knapp et al. 1995; Newell et al. 1995; tion criterion, noise caused by misclassification, and
Liu 1998) and implemented in software packages like genetic interference. That is why there is a tendency to
LINKAGE (Lathrop et al. 1984), MapMaker (Lander combine two-point analysis with more general multipoint
et al. 1987), FastMap (Curtis and Gurling 1993), and methods. However, even for simple methods, based on
JoinMap (Stam 1993). Historically, the main approach pairwise analysis, there is a pressing need for efficient

algorithms enabling high-quality “preliminary” multipoint
ordering. Keeping in mind the large number of markers
employed in mapping projects of different organisms1Corresponding author: Institute of Evolution, University of Haifa,

Haifa 31905, Israel. E-mail: korol@esti.haifa.ac.il (humans, experimental model organisms, and agricul-
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tural plants and animals), such algorithms should cope elements of ES algorithms and their correspondence
with the elements and processes of an “evolving popula-with many dozens and even hundreds of markers (e.g.,

100 � 1000) per chromosome and in a reasonable exe- tion” are presented in Table 1.
The common ES algorithm steps: Evolution strategiescuting time.

We present in this article a new, highly efficient algo- define the size of a population and the rules for the
selection process. Various approaches were proposedrithm of multilocus ordering based on two-locus linkage

data that employs the evolutionary optimization strategy for choosing the population size in the ES, including
the (1 � 1) strategy (Rechenberg 1973) and (�, �)(ES). ES is a heuristic algorithm mimicking natural pop-

ulation processes. The numerical procedures in such strategy (Schwefel 1977). With the (1 � 1) strategy,
population size is equal to one individual used to obtainoptimization are based on simulation of mutation and

reproduction, followed by selection of the fittest “geno- offspring individuals via mutation operation. If a new
individual is better than the “parent,” it replaces thetypes,” representing the obtained values of the optimiza-

tion criterion. Together with genetic algorithm (Hol- parent. The (�, �) strategy works with a population of
size �. The selection operator chooses � best individualsland 1975) and evolutionary programming (Fogel 1992),

evolution strategies form the class of evolutionary algo- to establish the new generation. Both versions, (1 � 1)
and (�, �), employ the following steps:rithms (Nissen 1994). The evolutionary strategies were

proposed in the 1970s (Rechenberg 1973; Schwefel
1. Create � individuals (xk) of initial population P 0.

1977, 1987) to solve optimization problems with real-
2. Compute the fitness f(xk), k � 1, . . . , �.

value variables. A recent survey of search strategies for
3. If the optimization process is terminated, then stop.

combinatorial problems was provided by Muhlenbein
4. Select the � � � best individuals.

et al. (1998). ES for optimization problems is presented
5. Create �/� offspring xk�1 of each of the � individu-

as a random search by asexual reproduction, which uses
als by small variation.

mutation-derived variation and selection. The mutation
6. Return to step 2.

change of the current vector of parameters can be intro-
duced by adding a vector of normally distributed vari- Peculiarities of the combinatorial version of ES:

Clearly the multilocus ordering problem cannot be di-ables with zero means. The level of changes can be
adapted by variances of these disturbances. rectly represented in terms of ES with real-value formu-

lation. Combinatorial versions of ES differ from theIn contrast to ES, genetic algorithms, introduced by
Holland (1975), simulate sexual reproduction that is real-value formulation by specific representation of the

solution vector x and mutation mechanisms (Hom-characterized by recombination of two parental strings
to build the offspring generation. Clearly, the contribu- berger and Gehring 1999). In combinatorial formula-

tion, the solution (an “individual”) can be represented astions of mutation and recombination as sources of variation
in the search strategy are different: mutation is based a vector x � (x1,x2, . . . xn) that consists of n ranked discrete

coordinates (chromosomes) or as a directed graph G(A,on chance only, and the success of a single mutation
is largely unpredictable. Crossover can be viewed as a B) with a set of nodes A � {a1, a2, . . . an} and set of

arcs B � A � A, where node aj, j � 0, represents thehistory-preserving operation, which at the same time
introduces a new structure to be tested in competition. chromosome. The fitness function assigns to each of the

n(n 	 1)/2 arcs (ai, aj) [or pair of coordinates (xi, xj)] aHomberger and Gehring (1999), Mester (1999, 2000),
and D. Mester (unpublished results) adopted the ES nonnegative dij cost of moving from element i to element

j. The problem is symmetric if and only if dij � dji foralgorithm to solve the vehicle routing problem with
time-window restrictions, which is similar, to some ex- all arcs. For optimization of a combinatorial problem,

one needs to define such an order of the vector coordi-tent, to multipoint analysis of markers belonging to
several chromosomes (linkage groups). In this article, nates (or nodes) that will provide minimum total cost.

The mutation operator (referred to hereafter as muta-we applied the ES algorithm for multipoint marker or-
dering using the similarity between this problem and tor) changes the vector xk, thereby producing a new

solution vector x k�1. For this goal, one can use the move-the well-known traveling salesman problem (TSP; Press
et al. 1986; Weeks and Lange 1987; Falk 1992; Schiex generation and the solution-generation mechanisms (Osman

1995; Homberger and Gehring 1999) or the remove-insertand Gaspin 1997).
mechanism (Mester 1999). Our version of the combi-
natorial ES algorithm employs multiparametric mutator

EVOLUTION STRATEGIES AND THE HEURISTICS (MPM), which changes the solution vector via removing
IN THE DEVELOPED ALGORITHM

and inserting 
 coordinates of x k (Mester 1999; D.
Mester, unpublished results). The common heuristicThe employed procedure as a simulated analog of

evolutionary processes: Usually, the optimization pro- remove defines a random proportion 
 � (0.1 � 0.5r)n
of rejected coordinates in the solution vector, where ncess of an objective function f(x) with n real-value vari-

ables x � (x 1, x 2, . . . , xn) can be represented as an is the number of coordinates in the solution and r is a
random value (e.g., evenly) distributed between 0 andevolution of the solution vector x � Rn . The main
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TABLE 1

Main components of ES algorithm as a simulation analogue of evolutionary models

Natural elements Simulation elements

Chromosome Variable value xi

Individual, a set of chromosomes A solution vector x � (x1, x2, . . . , xn)
Mutation, a change of the chromosome for a small value Operator M: x k → x k�1

Population, a set of (parental) individuals A set P of solution vectors {x k}
Fitness, a quantitative characteristic of organism’s performance Optimization criterion value f(x k)
Selection, choosing the fittest individual(s) for the next generation Operator S: f(x k) → min (max)

1. The heuristic also defines a set of removing rules R rithm provides quality solutions and is faster than other
adaptive algorithms (GLS, SA, and TS).(to take out specific parts of x k or the full vector). At

Multipoint marker ordering as a TSP problem: Thethis mutation stage, the solution vector xk is divided into
proposed algorithm of multipoint ordering employstwo subvectors: xk

remainder and xk
reject. Another common

two-point linkage data (see also Press et al. 1986; Weeksheuristic, insert, defines a set of rules I to insert, conse-
and Lange 1987; Falk 1992; Schiex and Gaspin 1997).quently one by one, all x i � xk

reject into xk
remainder. This is

Although this approach is usually considered as “prelim-the construction phase of the mutator, which builds some
inary ordering,” the good quality of the maps producednew solution vectors x k�1 using the variation of the prob-
by our version of the ES algorithm (see below) allowslem-specified criterion (Mole and Jameson 1976; Or
us to consider it not only as a complement to the more1976; Osman 1993; Mester 1999).
sophisticated multilocus maximum-likelihood (ML) or-At the mutation stage, mutator M(R, I, 
, xk) produces
dering, but also, to some extent, as a competitor to MLan offspring xk�1 from the parent xk. If the first offspring
algorithms (especially for a large number of marker lociappears to surpass the parent, the mutator with the
and various complications like missing data, misclassifi-same parameters is applied again to the new parent,
cation, etc.). We consider n markers enumerated arbi-and so on. If the offspring does not surpass the parent,
trarily by n coordinates x i � x and, for each n 	 1then to generate the new offspring, the algorithm uses
marker pairs (x i, xj), a “distance” �ij. As �ij, either pairwisethe mutator with other parameters. After mutation, the
recombination fractions rij or map distances dij (e.g., invector x k�1 “is improved” by standard combinatorial pro-
Haldane or Kosambi metrics) are employed.cedures of order O(n2): (1) 2-Opt (Lin and Kernighan

Different criteria can be used to discriminate between1973), (2) Or-Opt (Or 1976), and (3) 1-interchange
competitive orders, for example, total distance mea-(Osman 1993).
sured as a sum of distances between consecutive adja-This two-phase approach (mutation-improving) re-
cent markers or the total number of recombinationflects the principles of solution diversification and up-
events. These criteria are founded on a biologically rea-grading (Rochat and Taillard 1995). We combine
sonable assumption that the true order of a set of linkedthe last three improving procedures into one composite
loci will be the one that minimizes the total length ofprocedure (Composite). At the initial solution phase,
the chromosomal map (Press et al. 1986; Weeks andComposite is applied five times. We refer to such an
Lange 1987; Falk 1992; Schiex and Gaspin 1997). Inalgorithm (multiple application of the Composite pro-
our model, the minimum of sum of distances betweencedure starting from random initial points) as the Multi-
adjacent markers was applied as optimization criterionStart procedure. In Table 2 we compare the solutions
(OC),of standard TSP obtained by four different powerful

heuristics: guided local search (GLS), simulated anneal-
OC � �

n

ij
�ij�ij , (1)ing (SA), tabu search (TS; for the comparison of these

three algorithms, see Voudoris and Tsang 1999), and
the ES-MPM algorithm proposed by Mester (1999, where �ij � 0 or �ij � 1 represents in the criterion only
2000, and unpublished results). In addition, we present u � n 	 1 distances out of all n(n 	 1)/2 pairwise
for comparison also three simple heuristics: 3-OPT of distances; �ij�ij � 0, i � 1,n 	 1; j � 2, n.
Lin and Kernighan (1973), the Composite, and the The program for simulations was written in Visual
Multi-Start (Table 2). ES-MPM is a two-phase algorithm Basic 6.0. Monte Carlo testing experiments were con-
that first produces an initial solution using the simple ducted on a double-processor Pentium 3 (800 Mhz).
Multi-Start procedure and then moves to a more power- To compare different situations, the following coeffi-
ful, albeit less fast, ES-search (ES-phase). The presented cient of restoration quality [proximity between the “true”

(simulated) and estimated orders] was employed,benchmark clearly demonstrates that the ES-MPM algo-
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TABLE 2

Comparison of different heuristics and the ES-MPM algorithm on standard (51–318 points) TSP

Inaccuracya (I, %) and executing time (T, sec)
Best of the TSP solutions

GLS
Problem published

N name solutions ES-MPM SA TS 3-Opt Multi-Start Composite

1 Ei1-51 426 I 0 0 0.73 0 5.9 2.0 3.4
T 1.3 0.1 6.3 1.1 0.2 0.04 0.01

2 Eil-101 629 I 0 0 1.76 0 4.8 5.0 5.0
T 5.0 1.3 33.3 61.4 0.2 0.2 0.04

3 Eil-76 538 I 0 0 1.21 0 3.5 4.3 4.7
T 2.3 1.1 18 5.2 0.1 0.08 0.01

4 KroA-100 21,282 I 0 0 0.42 0 0 0.2 6.5
T 0.7 0.6 37.4 21.4 0.12 0.3 0.06

5 KroA-150 26,524 I 0 0 1.86 0.03 8.4 5.2 4.8
T 24 103.3 413 0.8 0.35 0.27

6 KroA-200 29,368 I 0 0 1.04 0.72 4.6 4.8 6.6
T 187 34 229.4 776 4.3 0.3 0.9

7 KroC-100 20,749 I 0 0 0.8 0.25 4.5 4.3 7.7
T 1.8 1.5 36.6 4.8 0.3 0.2 0.07

8 Lin-318 42,029 I 0 0 1.34 1.31 4.0 4.2 5.6
T 335 245 829 2672 13.8 7.6 0.8

a Inaccuracy is employed as a score of the quality of the solution; it is presented as a deviation (%) of the
obtained result (by the inspected method) from the best-known solution.

2. defined proportion of dominant vs. codominantK r � (n 	 1)/ �
n	1

i�1

�xi 	 xi�1 � , (2)
markers;

3. chosen proportion of missing data;
where xi is the digit code of the ith marker in the currently

4. chosen proportion of markers with erroneous classi-
ordered marker sequence. Figure 1 illustrates a typical

fication and level of errors; and
dependence of K r on executing time using different

5. chosen mode of recombination interference for adja-
heuristics.

cent markers, Haldane, Kosambi, or arbitrary inter-
ference. In the last case, we define a few ranges of
coincidence values and the probabilities to sampleSIMULATED DATA SETS
the coincidence values from these ranges (with even

The data for analysis were produced using a pseudo- distribution of the coincidence values from the cho-
random generator. The simulation algorithm repeat- sen range).
edly generated a single-chromosome mapping popula-

The following are the numerical values (ranges) oftion, F2, for a chosen number of markers with:
the main parameters in the majority of experiments:

1. Variation of recombination rates between adjacent
markers along the chromosome; 1. The number of markers per chromosome: m � 80.

Figure 1.—Typical dependence of
order quality (K r ) on executing time
using Composite, Multi-Start, and ES
algorithms (100-markers problem).
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TABLE 32. Probability distributions for distances between adja-
cent markers: Effect of negative interference on the quality of
P(3 
 d (cM) 
 5) � 0.8, P(5 
 d (cM) 
 10) � multilocus ordering
0.15, P(10 
 d (cM) 
 20) � 0.05, with even distribu-
tion within each of the three ranges. Initial solution

by Multi-Start Improved solution by ES-phase3. Proportions of codominant and dominant markers
(in coupling phase, unless noted otherwise): 0.5 and Ic Kr �Kr Kr �Kr NES(%)
0.5, respectively.

5 0.944 0.150 0.993 0.013 94. Three levels for missing data: 0, 10, and 20%.
10 0.926 0.160 0.985 0.018 105. Two levels for the proportion of loci with classifica-
20 0.900 0.129 0.937 0.043 11tion errors, 0 and 40%, and in the last case, two levels 40 0.866 0.125 0.901 0.056 14

of misclassification, 10 and 20%.
Ic is the maximum value of the coincidence coefficient for6. In the case of arbitrary interference, the distributions

cases of negative interference; as noted in the description ofof coincidence coefficients: P(0 
 c 
 1) � 0.6 (posi-
the simulation procedure, P(2 
 c 
 Ic) � 0.2 (moderate-tive interference), P(1 
 c 
 2) � 0.2 (slight- to-strong negative interference; in more detail, the analyzed

to-moderate negative interference), and P(2 
 c 
 situations are described in simulated data sets). Note the
Ic) � 0.2 (moderate-to-strong negative interference), increased stability of ordering owing to application of the ES-

phase of the ES-MPM algorithm (displayed in a substantialwhere Ic � 5, 10, 20, and 40.
reduction in the standard deviation, �Kr, of the coefficient of
restoration quality, Kr. Here and in the following tables, NESTherefore, the efficiency of the preliminary multilocus
is the proportion of cases (Monte Carlo runs) where applica-ordering was considered upon complications caused by
tion of the ES-phase after the Multi-Start procedure improvednegative interference, erroneous marker scoring, and
the solution.

incomplete mapping information due to dominant
markers and missing data, known to affect the quality of
multipoint ordering. Motivation to consider such compli- repulsion phase, the lower the quality of multilocus
cations derives from the simple fact that in real mapping ordering (Mester et al. 2003). The employing of the
work no one can guarantee that the data are free of ES-phase of the ES-MPM algorithm (see above, Peculiari-
such complications. Moreover, in numerous previous ties of the combinatorial version of ES) after getting some
attempts at building efficient multilocus ordering tools, initial solution through Multi-Start positively affected
some of these problems were usually ignored. the quality of the final solution. It is noteworthy that

the application of ES-phase also stabilizes the ordering
results (as displayed by the reduction of �Kr, the standard

RESULTS
deviation of K r between the Monte Carlo experiments).
High precision of ordering in the coupling-phase dataThe considered types of disturbances (see the end of

simulated data sets) proved to affect the quality of and low precision in the repulsion-phase data justify
splitting the data into two sets, each with coupling-phaserestoration of the true order of markers. These distur-

bances mainly caused local distortion of the order, e.g., markers only and generating two complementary maps
for each linkage group (Knapp et al. 1995; Peng et al.interchanging of two to three neighboring markers (re-

ferred to as “local disturbances”). There could be several 2000; Mester et al. 2003). Clearly, the next step should
be integration of the two maps. The last step may en-inverted islands per linkage group. As expected, the

number of these islands increases with the percentage counter difficulties caused by local and global map dis-
turbances affecting codominant markers common forof missing data, classification errors, and the level of

negative interference. Less frequent were violations both maps, if the density of such codominant markers
is relatively low (e.g., in cases when codominant markerscaused by excision of a large segment and its transposi-

tion to another place with or without inversion within serve as anchors). In fact, the availability of shared co-
dominant markers enables mutual control during multi-the segment (“global disturbances”). Clearly, such viola-

tions result in an appreciable reduction of the coeffi- locus ordering, which, together with computing-inten-
sive jackknife and bootstrap techniques (Efron 1979),cient of restoration quality (Equation 2).

Dominance: When all dominant markers were in cou- significantly improves the quality of the resulting map
(Mester et al. 2003).pling phase, the proportion of dominant and codomi-

nant markers had no effect on the quality of marker Negative interference: As expected, negative interfer-
ence complicates the ordering problem that is mani-ordering. For three proportions of dominant markers

(50, 66, and 100%) with Kosambi, Haldane, and a slight fested in reduction of K r (Table 3). However, the decline
in K r with an increase in the maximum value Ic of coeffi-negative interference, nearly full recovery of marker

order was reached (K r � 0.997 � 0.999). A different cient of coincidence c is unexpectedly slow, pointing
to robustness of the employed ordering procedure. Aresult was obtained with dominant markers in repulsion

phase. It appears that the higher the proportion of detailed anatomy of misordered situations shows that
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Figure 2.—Local disturbances of the
order due to negative interference.

deviations from the true order in such cases are due 20%) show the same tendencies as those found for com-
mainly to interchanges of adjacent markers. The rela- plicating factors considered above. Thus, participation
tively low effect of negative interference can be ex- of the ES-phase in the optimization procedure increased
plained by a stabilizing role of the neighboring intervals. the precision of ordering (reducing the deviation of Kr

This can be illustrated by the following example (Figure from unity) and stabilized the ordering among Monte
2), in which recombination rate between the flanking Carlo runs (as displayed in reduction of �Kr).
markers M1 and M3 is smaller than that for the subinter- Comparison with multilocus algorithms: The forego-
val M2–M3 (see Figure 2a). ing results illustrate the advantages of the ordering pro-

Without taking into account the information from cedure on the basis of minimization of the total length
neighboring intervals, the criterion “minimum of total of the map (sum of recombination rates or distances
distance between markers” will give the local order M2– between consecutive pairs of markers). Combined with
M1–M3 (Figure 2b) that differs from the true one. The our novel, highly efficient method of discrete optimiza-
stabilizing effect of the neighbor M0 allows us to obtain tion, a unique performance and rather high robustness
the true order. Indeed, the optimization criterion value with respect to various disturbances (like classification
for the true order (Figure 2c) is OC � 0.048 � 0.024 � errors, negative interference, and missing data) are pro-
0.059 � 0.131, whereas the order corresponding to the vided. It is noteworthy that ordering 100, 200, 400, and
foregoing inversion between M1 and M2 (Figure 2d) 800 markers takes �1.3 sec, 14 sec, 2 min, and 9 min
caused by negative interference results in OC � 0.072 � on a Pentium-4 2.0-GHz computer in the most compli-
0.024 � 0.052 � 0.148. Therefore, despite high negative cated of the aforementioned situations. Note that even
interference on interval M1–M2–M3 (c � 15.8), which better performance was found in the first trials of our
violates the rule that “the entire entity is supposed to new optimizer based on guided evolution strategies
be larger than its parts,” the algorithm recovers the true (GES): on the same computer, map ordering for the
order. foregoing variants proved fivefold (!) faster (Mester

Misclassification: Errors in marker scoring inflate re- and Braysy 2003). It would be of interest to compare
combination distances and can also violate the princi-
ple, the entire entity is supposed to be larger than its
parts by imitating “negative interference.” This is why TABLE 4
some mapping packages allow for error filtration by

Effect of marker misclassification (fm) on theselecting out double recombinants. Our simulations
quality of multilocus ordering

showed that in the majority of such local violations the
true order could be recovered due to the stabilizing Initial solution Improved solution by
effect of the neighboring markers (Table 4). by Multi-Start ES-phase

In a typical example (Table 5) with a maximum level
fm (%) K r �K r K r �K NES (%)of noise (20% of marker scoring errors were simulated

for 40% of marker loci), there were 14 pairs of adjacent Haldane mapping function
0 0.938 0.162 0.997 0.008 8intervals (out of 49 possible pairs) in which either ri,i�1

10 0.908 0.153 0.966 0.027 23or ri�1,i�2 was larger than ri,i�2, but in only 4 of these
20 0.764 0.144 0.843 0.058 66pairs the true order could not be recovered. We con-

clude from the obtained results that despite the biases
Kosambi mapping function

in pairwise estimates of recombination rates and infla- 0 0.915 0.187 0.999 0.004 9
tion of the map length, the employed criteria of order- 10 0.901 0.167 0.970 0.026 15
ing are fairly robust to errors in marker scoring, unless 20 0.772 0.157 0.860 0.069 57
the errors occur on a catastrophic level (say, at half of

Note that the proportion of cases in which application ofthe loci and with a rate �20%). the ES-phase after the Multi-Start procedure improved the
Missing data: The results presented in Table 6 for solutions (NES) increased severalfold for the nonzero level of

misclassification.several levels of missing marker scores (m � 0, 10, and
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TABLE 5

Effect of violations of the principle “entire is larger than its parts” caused by typing errors (20% at 40% of
loci) and “self-correction” of the order owing to the stabilizing role of adjacent markers

True Resulting
order c or d r12 r23 r13 order Sign

3–4–5 c-c-c 0.125 0.197 0.123 3–4–5 �
5–6–7 c-c-c 0.163 0.114 0.086 5–7–6 	
12–13–15 c-c-d 0.127 0.291 0.247 12–13–15 �
13–15–16 c-d-c 0.291 0.227 0.254 13–15–16 �
17–18–19 c-c-c 0.174 0.148 0.092 17–18–19 �
23–24–25 c-d-c 0.196 0.190 0.131 23–24–25 �
25–26–28 c-c-c 0.145 0.157 0.078 25–26–28 �
32–33–34 c-d-c 0.249 0.216 0.216 32–34–33 	
35–36–37 c-c-d 0.270 0.196 0.166 35–37–36 	
39–40–41 d-c-d 0.184 0.274 0.258 39–40–41 �
40–41–42 c-d-c 0.274 0.240 0.265 40–41–42 �
42–43–45 c-d-c 0.178 0.300 0.210 42–43–45 �
43–45–46 d-c-d 0.300 0.119 0.231 43–45–46 �
50–51–53 c-c-c 0.152 0.259 0.188 51–50–53 	

c and d denote codominant and dominant markers, respectively; r12, r23, and r13 are recombination rates
between markers within a triad 1, 2, and 3; recovering of the true order despite violation is denoted by “�,”
whereas “	” denotes distorted order.

our algorithm with other procedures, like those of Ott To compare the efficiency of the OC criterion (Equa-
tion 1) with the multilocus-likelihood method, Map-(1991) and Lander and Green (1987). Ott (1991)

proposed a criterion on the basis of sliding summation Maker 3.0 software was employed in a simulated data
set of 200 markers with high negative interference inof three-locus LODs along the chromosome. This crite-

rion was compared with the foregoing OC criterion (see several regions. First, we revealed on the simulated map
all islands where for three consecutive markers i, i � 1,Equation 1), using our optimization tools, on the basis
and i � 2, either ri,i�1 or ri�1,i�2 was larger than ri,i�2. Forof 10 Monte Carlo samples. The simulated F2 data were
each such island, three “windows” involving 5, 7, and 9for a 100-marker map (total length 500–600 cM), popu-
markers, respectively, were analyzed using MapMaker.lation size n � 200 with a very high noise caused by
Simultaneously, the entire set of 200 markers was or-misclassification (40% of markers were simulated with
dered with our program. Despite the fact that a local20% of typing errors!). The pairwise comparison shows
order that one could derive by comparing multilocus(Table 7) that OC does invariably better than SLOD

likelihoods for all possible candidate orders of such(higher values of the coefficient of restoration K r were
local neighborhoods (of 5, 7, or 9 markers) cannot beobtained for OC).
considered as a final solution, it makes sense to compare
the local properties of the MapMaker solutions and

TABLE 6 those of the OC-based procedure (with OC defined by
Effect of the missing data proportion (m) on the efficiency Equation 1). This is especially important for situations

of multilocus ordering in which the natural condition ri,i�1 and ri�1,i�2 
 ri,i�2 is

Initial solution Improved solution
by Multi-Start by ES-phase

TABLE 7
m (%) Kr �Kr Kr �Kr NES (%)

Pairwise comparison of the ordering criterion OC and
Haldane mapping function SLOD for 10 Monte Carlo samples

0 0.938 0.162 0.997 0.008 8
10 0.953 0.143 0.992 0.013 16 Nrun 1 2 3 4 5 6 7 8 9 10
20 0.917 0.158 0.974 0.023 17

K r (OC) 0.81 0.89 0.82 0.92 0.82 0.68 0.83 0.85 0.96 0.95
Kosambi mapping function K r 0.55 0.31 0.42 0.78 0.71 0.64 0.76 0.62 0.71 0.75

0 0.915 0.187 0.999 0.004 9 (SLOD)
10 0.927 0.172 0.996 0.009 14

K r is the coefficient of restoration, whereas OC and SLOD20 0.926 0.154 0.981 0.020 14
denote our criterion (Equation 1) and the criterion based on
sliding summation of three-locus LODs.m (%), percentage of missing data.
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violated, causing the highest instability of the result un-
der sampling variation, e.g., by using jackknife or boot-
strap procedures. It should be noted, however, that ap-
plication of these last techniques seems impossible with
MapMaker for �100 and more markers because of CPU
limitations. The following are the details of this compari-
son. The simulated data of 200 markers included (a)
for 95% of intervals L � 0.75 cM, for 2.5% L � 30 cM,
and for the remainder 2.5% L � 60 cM; (b) 80% of the
markers dominant in coupling phase, and 20% codomi-
nant; (c) population size N � 400; and (d) interference,
with probability P � 0.6, c � (0, 1), with P � 0.2, c �
(1, 2), with P � 0.2, c � (2, 20).

This example included 10 3-marker islands with viola-
tion of the condition {ri,i�1 and ri�1,i�2 
 ri,i�2}. In addition
to negative interference or classification errors, such a
violation may derive from sampling fluctuations, espe-
cially when two adjacent intervals are of very different
lengths. At 8 out of 10 such islands, our algorithm recov-
ered the true order (the entire solution for 200 markers
took 
1 sec). MapMaker recovered the true order in 5
out of 10 islands on the basis of the 5-marker window;
the remaining 5 islands were treated using the 7-marker
window and recovered the true order in an additional
3 islands, and the last 2 were treated using the 9-marker
window with a 50% success. The last two tasks took 6 hr.

Possibilities to validate the solution: Clearly, the fore-
going comparisons using simulated data are only to
illustrate the quality of the solution provided by the
simple OC-based procedure. In dealing with real data,

Figure 3.—Scheme of the algorithm for map verification.one needs some tools to validate the obtained order, and
it is hard to choose the solution from several (sometimes
dozens) candidate solutions (like those provided by
MapMaker). To cope with this problem, some authors the putative causal factor of instability: (a) double re-
proposed computing-intensive procedures based on var- combinants in adjacent intervals (resulting from nega-
ious combinations of jackknifing and bootstrapping tive interference or misclassification) and (b) sampling
(Efron 1979; Mott et al. 1993; Wang et al. 1994; Liu variation of recombination in large intervals. The first
1998). With a sufficiently large number of markers, the problem can be treated by taking out marker scores
feasibility of such analysis strongly depends on the per- qualified as “double recombinants” (without affecting
formance of the ordering algorithm employed and the the scores of other markers of the same individual).
quality of solution. We believe that our algorithm per- The revised data set is reanalyzed by a repeated ordering
fectly fits both of these demands: its high performance procedure using the same jackknife approach. If the
allows us to conduct the ordering procedure many times instability was caused by the second problem, one could
under different jackknife or bootstrap iterations of the split the map into two linkage groups until additional
initial sample (Figure 3). markers are available for the revealed gap. The follow-

The first step is ordering of markers using the whole ing simulated example illustrates the application of the
set of data. To validate (or correct) the obtained map, algorithm. The simulated data of 100 codominant mark-
the following analysis is conducted on the basis of a ers included: (i) for 80% of intervals, L � (5, 10) cM,
large series of jackknife runs (e.g., 1000–10,000). In each and for 20% L � (10, 20) cM; (ii) population size N �
run based on a subsample of individuals (e.g., 90%), we 300; and (iii) interference, with P � 0.6, c � (0, 1); with
first order the markers and for each marker determine P � 0.2, c � (1, 2); and with P � 0.2, c � (2, 20).
its two (left and right) neighbors. Then, for each Each jackknife run employed 275 (92%) individuals
marker, the frequency distribution of its closest left and at both steps: initial ordering and validation were based
right neighbors is calculated and the unstable neighbor- on a revised data set. One thousand runs were analyzed.
hoods are detected using the entire set of generated A typical fragment of the matrix characterizing the sta-

bility of neighborhoods is shown in Table 8a. It can bejackknife runs. Such cases are classified according to
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TABLE 8

A fragment of the matrix of neighborhood frequencies based on the jackknife procedure

Marker 65 66 67 68 69 70 71 72 73 74

a. Initial data set
64 1
65 1
66 1 1
67 1 0.737 0.263
68 0.737 0.993 0.263 0.007
69 0.263 0.993 0.744
70 0.263 0.774 0.993
71 0.007 0.993 1
72 1 1
73 1 1
74 1

b. After removing marker 69
64 1
65 1
66 1 1
67 1 1
68 1 1
70 1
71 1 1
72 1 1
73 1 1
74 1

c. After removing marker 69; scores qualified as double recombinants
64 1
65 1
66 1 1
67 1 0.974 0.026
68 0.974 0.999 0.026 0.001
69 0.026 0.999 0.975
70 0.026 0.975 0.999
71 0.001 0.999 1
72 1 1
73 1 1
74 1

Multilocus ordering was conducted using the sum of recombination rates along consecutive pairs of adjacent
markers.

easily seen from this fragment that two local orders are OC(s1), but it is clear that for another sample OC(s2)
may be selected as well, due to sampling variation ofpossible for this part of the map, s1 � (67, 68, 69, 70) and

s2 � (67, 68, 69, 70), with probabilities P(OC(s1) � recombination rates. This is why it is important not only
to detect such questionable neighborhoods, but also toOC(s2)) � 0.737 and P(OC(s1) 
 OC(s2)) � 0.263. The

recombination rates for the two orders calculated on evaluate the probabilities of the local competitive or-
ders. The same is true for any other ordering criterion,the initial data set are shown in Figure 4. Thus, the OC

values are OC(s1) � 0.099 � 0.082 � 0.069 � 0.250 and e.g., maximum likelihood, because P(L(s1) � L(s2)) is
also a priori unknown. For our numerical example, theOC(s2) � 0.143 � 0.082 � 0.029 � 0.254. Therefore, on

the basis of OC values, one will choose the true order probabilities of the compared alternative orders do not

Figure 4.—Two most probable local orders for
markers 67, 68, 69, and 70 of the simulated exam-
ple with negative interference (see Table 8).
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differ significantly, so that further steps are needed to “natural” marker numbers as they are represented in
the Excel data file (see also Lee et al. 2002) were usedobtain a solution with higher confidence.

The simplest way to improve the quality of the solu- as a reference ordering. To address the foregoing ques-
tions (a–e), we employed our ordering algorithms fortion is to remove the questionable marker (Mott et al.

1993; Liu 1998). In our example, the source of the map construction and jackknife resampling procedure
to test the reliability of the resulting orders (using 100difficulties in the island 67–70 was marker 69 that in-

flated fivefold the size of the spanning interval 68–70. jackknife runs with sampled proportion of 90% of geno-
types at each run). Following are the obtained results.After removing marker 69, the jackknife procedure was

applied 1000 times again with results shown in Table First, marker 24 showed no close linkage with any of
the remaining 230 markers; hence it was excluded from8b. Thus, by deleting the problematic marker, one can

obtain an unequivocal local ordering. the map. The remaining marker groups were classified
A more complex approach is based on temporal ex- with respect to the jackknife test of neighborhood sta-

clusion of marker scores considered as double recombi- bility:
nants (without affecting other markers of the same indi-

1. Regions with stable (P � 1) neighborhoods that fullyviduals; see Figure 3). This increases the probability of
coincide with the published IBM map were: 1–14,recovering the true order by excluding (albeit artifi-
37–48 (without marker 39 that was linked closer tocially) the local violations of the condition ri,i�1 and
other markers of chromosome 1; see below), 52–60,ri�1,i�2 
 ri,i�2. After such editing of the data, we again
81–84, 89–91, 112–115, 120–125, 128–133, 140–153,applied the jackknife procedure. In the above example,
205–208, and 218–221.after 1000 runs we obtained the result shown in Table

2. Segments with neighborhood probability �P � 0.908c. Thus, as expected, removing double recombinants
that coincide with the published map were: 18–25resulted in an increased stability of the derived ordering:
(but without marker 24), 28–33, 63–75, 160–165,the weakest connection between the neighbors in the
168–174, and 221–231.locality 67–68–69–70 increased from P � 0.737 up to P �

3. Segments with neighborhood probability �P � 0.90.974. Note that after removing double recombinants,
that did not coincide with the published map; ther68–69 and r69–70 decreased from 0.082 and 0.069 to 0.025
revised orders were: (1) 174–176–175–177; (2) 179–and 0.011, respectively, and r68–70 � 0.029. Therefore,
181–180, 184–185–186–188; (3) 204–202–201–205;the condition ri,i�1 and ri�1,i�2 
 ri,i�2 is not violated any-
and (4) 214–216–215–217.more. The same procedure could be applied to test the

4. Islands with simple unresolved alternatives; for reso-second local order, namely 67–69–68–70.
lution (i.e., to reach the foregoing conditions b orAn example of application to real data: We employed
c) it is necessary to exclude 1–2 markers:the proposed approach to recently published mapping

i. 15–16–17–18 with P(15–16) � 0.62 vs. 15–17–data on the maize Intermated B73 � Mo17 (IBM) popula-
16–18 with P(15–17) � 0.38: after marker 17 istion (Lee et al. 2002). For demonstration, the first chro-
excluded, we obtain P(15–16) � P(16–18) � 1.mosome (with 231 markers) was chosen from the Map

ii. 25–27–26–39–28 with P(25–27) � 0.72 vs. 25–database (www.maizemap.org/ibm_frameworkmaps.htm,
26–27–39–28 with P(25–26) � 0.28: afterframework_302.xls file). In our treatment of this data
marker 27 is excluded, we obtain P(25–26) �set, several questions that could be addressed during
p(26–39) � p(39–28) � 1. Resolving this situa-the map construction and its validation based on jack-
tion has also improved the stability of the forego-knife were of interest: (a) to reveal the map segments
ing group 28 � 33 that can be moved now fromwith stable neighborhoods (P � 1 for each pair of adja-
the set of groups with P � 0.9 to the set of fullycent markers) that fully coincide with the published
stable ones with P � 1.map (Lee et al. 2002); (b) to reveal the map segments

iii. Stabilization of group 28 � 33, in its turn, causedwith neighborhood probability higher than some
an improvement for group 33 � 36. Instead ofthreshold (e.g., P � 0.90 or 0.95) that coincide with the
the initial dichotomy, 33–34–35–36 with P(33–published map; (c) to reveal the map segments with
34) � 0.78 vs. 33–35–34–36 with p(33–35) � 0.22,neighborhood probability higher than some threshold
we obtained P(33–34) � 0.96, P(34–35) � 1, and(P � 0.90 or 0.95) that do not coincide with the pub-
P(35–36) � 0.96.lished map; (d) to demonstrate alternative (competi-

iv. 48–49–51–50–52 with P(48–49) � 0.84 vs. 48–tive) orders of the same region with unreliable neigh-
50–51–49–52 with P(48–50) � 0.16. By exclud-borhoods (i.e., with neighborhood probability lower
ing marker 51, we can get P(48–49) � 0.93,than the threshold) that could be resolved by excluding
P(49–50) � 1, and P(50–52) � 0.93.1–2 markers to fit the conditions b or c; and (e) reveal-

v. 60–62–61–63 with P(60–62) � 0.62 vs. 60–61–ing the segments of the map for which an exclusion of
62–63 with P(60–61) � 0.38. By excluding markera larger group of markers (e.g., �2) is needed to fit the
61, we obtain P(60–62) � P(62–63) � 1.conditions b, c, or d for the remaining subgroups.

For simplification of presentation of the results, the vi. 75–78–77–76–79–80–81 with P(75–78) � 0.6 vs.
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75–79–80–76–77–78–81 with P(75–79) � 0.4. 92–93, 96–97, 97–98, 98–100, 100–102, 102–103,
103–106, 106–105, 105–107, 107–108, 108–110,After excluding markers 76 and 77, we obtain

P(75–78) � 0.95, P(78–79) � 0.99, P(79–80) � and 110–111, and P � 0.99 for 93–96.
ii. In the second group, P(187–188) � 0.47,1, and P(80–81) � 0.95.

vii. 84–85–86–88–87–89 with P(84–85) � 0.5 vs. 84– P(188–189) � 0.61, P(189–190) � 0.9, P(190–
191) � 0.99, P(191–192) � 0.41, P(192–193) �86–85–88–87–89 with P(84–86) � 0.5. Exclud-

ing markers 86 and 87 results in P(84–85) � 1, P(193–194) � 0.66, P(194–195) � 0.5, P(195–
196) � 1, P(196–197) � 0.75, P(197–198) � 0.5,P(85–88) � P(88–89) � 1.

viii. 115–116–117–118–119 with P(115–116) � 0.55 P(198–199) � 0.61, P(199–200) � 0.83. After
excluding markers 187 and 198 we obtainedvs. 115–117–118–116–119 with P(115–117) �

0.45. After 116 is excluded, P(115–117) � P(188–189) � 1, P(189–190) � 0.97, P(190–
191) � 1, P(191–192) � 0.96, P(192–193) �P(117–118) � P(118–119) � 1.

ix. 125–126–127–128 with P(125–126) � 0.56 vs. 0.98, P(193–194) � 0.97, P(194–195) � 0.96,
and P � 1 for pairs 195–196, 196–197, 197–199,125–127–126–128 with P(125–127) � 0.44; ex-

clusion of marker 126 gives P(125–127) � and 199–200.
P(127–128) � 1.

The results of these manipulations are presented inx. 133–134–135–136 with P(133–134) � 0.69 vs.
Figure 5. It is noteworthy that the obtained map differs133–135–134–136 with P(133–135) � 0.31; ex-
from the published one (see Lee et al. 2002). In theclusion of marker 134 gives P(133–135) �
new version of the map, which was recently presentedP(135–136) � 1.
in www.maizemap.org/ibm_frameworkmaps.htm, thexi. 136–138–137–139 with P(136–138) � 0.66 vs.
authors have deleted 40 markers, whereas in our version136–137–138–139 with P(136–137) � 0.34; ex-
only 28 markers are deleted. The foregoing analysisclusion of marker 138 gives P(136–137) �
allows us to suppose that our version is of a better qualityP(137–139) � 1.
compared to the revised map presented on the website.xii. 153–155–154–157–156–158–159–160 with P(153–

155) � 0.55 vs. 153–154–155–157–156–158–159–
160 with P(153–154) � 0.45; exclusion of mark-

DISCUSSION
ers 154 and 155 gives P(153–157) � 0.94,
P(157–156) � 0.97, P(156–158) � 0.97, P(158– This study is devoted to the problem of marker order-

ing in linkage groups with many dozens or hundreds159) � 0.97, and P(159–160) � 1.
xiii. 165–167–166–168 with P(165–167) � 0.55 vs. of markers. We considered situations complicated by

missing data, typing errors, high proportion of domi-165–166–167–168 with P(165–166) � 0.45; ex-
clusion of marker 166 gives P(165–167) � 1, nant markers, and high negative interference. The or-

dering problem belongs to the field of discrete optimiza-P(167–168) � 0.95.
xiv. 180–182–183–184 with P(180–182) � 0.56 vs. tion on a set of all possible orders (amounting to n!/2

for n loci). This formulation is quite similar to the well-180–183–182–184 with P(180–183) � 0.44; ex-
clusion of marker 183 gives P(180–182) � known challenging TSP, and several authors attempted

to employ the methods developed in the TSP for geneticP(182–184) � 1.
xv. 208–210–211–209–212 with P(208–210) � 0.65 mapping (Press et al. 1986; Weeks and Lange 1987;

Falk 1992; Schiex and Gaspin 1997). New ES-optimiza-vs. 208–209–210–211–212 with P(208–209) �
0.35; exclusion of marker 209 gives P (208– tion algorithms developed by Mester (1999, 2000, and

unpublished results) significantly improved the quality210) � 1, P(210–211) � 0.99, and P(211–
212) � 1. of solution in the TSP field (see Table 2). Our simula-

tion experiments showed that a need in optimization5. Segments of the map for which an exclusion of a larger
group of markers (�2 markers) is needed fit conditions power provided by these ES-algorithms usually begins

from ordering problems with �20 markers; with smaller-b, c, or d for the remaining subgroups: (i) 91–112 and
(ii) 187–200. size problems the Composite algorithm seems to be

sufficient. Composite is built from simple optimizationi. In the first group, P(92–93) � 0.7, P(94–95) �
0.54, P(95–96) � 0.3, P(96–97) � 0.72, P(97– procedures working faster than ES, but producing worse

solutions. On all tested sizes of the ordering problem98) � 0.45, P(98–99) � 0.39, P(99–100) � 0.83,
P(100–101) � 0.14, P(101–102) � 0.38, P(102– (50 and more), the ES algorithm provided the best

solution after one to six evolutionary cycles. These re-103) � 0.99, P(103–104) � 0.17, P(104–105) �
0.91, P(105–106) � 0.5, P(106–107) � 0.00, sults allowed us to define the threshold for the solution

time (not more than six cycles) for the ES algorithm atP(107–108) � 1, P(108–109) � 0.43, P(109–
110) � 0.95, P(110–111) � 0.55, and P(111– different sizes of the problem. The advantage of ES over

other selected algorithms of optimization, in particular112) � 0.88. By excluding markers 94, 95, 99,
101, 104, and 109, we obtained P � 1 for pairs simulated annealing (SA), as applied to combinatorial
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Figure 5.—Improving the reliability of
multilocus marker ordering on the basis of
results of jackknifing (example of maize
chromosome 1): (a) The new order of mark-
ers after detecting and removing 26 markers
that displayed unstable neighborhoods. The
arcs represent stable ordered groups with P � 1
(not marked) or P � 0.9 (the estimated P is
indicated above the arc), with the beginning
and the end of the group marked by the
marker number (the broken arc with marker
numbers separated by “. . .” is to show a con-
tinuous series of markers with P � 1 for each
pair of adjacent markers within the series;
the numbers under the arcs are for deleted
markers). (b and c) Fragments of the map
(before and after removing problematic
markers) for the group of markers 91–112
(for additional detail see description of this
example in the text).

problems, can be clearly seen from Table 2. Therefore, pecially simple if, instead of multilocus likelihood, a
faster criterion based on minimization of the total mapit was quite natural to apply this fast and efficient ap-

proach for multilocus ordering. Applying the TSP-ori- length is employed. Combined with high performance
of the optimization algorithm, this simplification allowsented methodology to mapping problems would be es-
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us to treat the problem systematically with verification dependent studies than a related effort based on map
position in centimorgans. This is especially clear whenof the obtained multilocus order on the basis of comput-

ing-intensive bootstrap and jackknife approaches. the results of fine mapping serve as a starting point
for map-based cloning. In such a case, what is reallyTo analyze the properties of derived maps under vari-

ous complications (dominant vs. codominant markers, important is the information about close markers rather
than precise map position.marker misclassification, alternating negative and posi-

tive interference, and missing data), simulated data with There is also a technical advantage of using the marker
orders rather than marker map positions (centi-�50–400 markers were employed, and the quality of the

map was evaluated using a “coefficient of restoration” morgans) as final mapping results. Our verification pro-
cedure based on jackknife and bootstrap techniques(based on comparison between the simulated and recov-

ered orders). It appeared that the employed optimiza- reveals neighborhoods of questionable local ordering
and enables us to detect the “weak connections” in thetion criterion enabled us to achieve a very close proxim-

ity of the calculated orders to the simulated ones, marker chain. If such a local “weakness” was caused by
low marker density, one can split the map into twodespite missing data or misclassification. Two types of

deviations from the true order were revealed: (i) local linkage groups and/or attempt to add new markers to
fill the gap. In the case of an excess of double recombi-“inversion” usually involving adjacent markers and (ii)

“excision” of a map fragment and its “insertion” (with nants, the detected questionable marker scores can be
removed from the data (without having to delete theor without inversion) to another map region. The first

type of error is caused by violation of the condition ri,i�1 marker entirely) with a subsequent reanalysis of the
map, as in similar options available in other mappingand ri�1,i�2 
 ri,i�2 due to high negative interference

or marker misclassification. The second type of error tools (e.g., MapMaker). This purifying operation may
be sufficient to stabilize the resulting map, and it isoccurs mainly due to large gaps along the map (caused

by low density of markers in some chromosomal re- reasonable if the questionable score derives from typing
error (that can be tested by a repeated typing). However,gions).

To detect unreliable segments of the map, bootstrap there is some evidence that an excess of double recombi-
nants may result from negative interference (Peng etand jackknife techniques could be employed. Unless

the optimization procedure is highly efficient, the appli- al. 2000; Boyko et al. 2002; Esch and Weber 2002).
Even then, such a treatment is useful as a diagnosticcation of these approaches should be constrained to a

relatively small number of markers due to CPU limita- step, and after getting an idea of what factors caused
the local problem, one may continue the analysis. Fortions. This is not the case with our ES-optimization algo-

rithm: ordering of 100 markers takes �0.2–1.5 sec on instance, it makes sense to deal with two versions of the
defined region: one (purified) for mapping needs onlya Pentium 2-GHz computer. A further severalfold im-

provement in performance is expected by using our new and the other one for further in-depth study of the
putative negative interference. Unlike many other pro-optimizer based on guided evolution strategies (Mester

and Braysy 2003). The diagnostic approach for de- cedures that remove double recombinants and con-
clude the analysis by recalculating the orders, in ourtecting unreliable map regions, proposed in this article,

differs in some aspects from other procedures [e.g., from case this step is complemented by reanalysis of the prob-
abilities P(OC(s1) � OC(s2)) and P(OC(s1) 
 OC(s2)),the bootstrap procedure described by Liu (1998)]. We

employ an invariant description of marker orders on thereby providing a direct tool for statistically justified
decisions.the basis of the notion of marker neighborhoods rather

than marker map positions. Actually, such a consider- We should recall another reason to deal with two map
versions simultaneously, which is related to the linkageation is closely related to our method of evaluation of

restoration quality in simulated experiments, i.e., prox- phase of dominant markers, i.e., coupling vs. repulsion.
As shown above, higher precision of ordering coupling-imity between the “true” (simulated) and recovered or-

ders, which is independent of the specific coordinate phase dominant markers compared to repulsion-phase
data justifies splitting the dominant marker data intosystem (e.g., recombination rates or map positions). We

believe that marker order is a much more objective two sets, each with the coupling phase only, and generat-
ing two maps for each linkage group (Knapp et al. 1995;indicator for comparison multipoint maps than map

positions. Indeed, even with strict constancy of gene Peng et al. 2000). Clearly, such a procedure should be
followed by integration of the two maps. The availabilityorder within species, recombination rates (hence map

positions) may widely fluctuate from experiment to ex- of shared codominant markers enables mutual control
during multilocus ordering (Mester et al. 2003), facili-periment due to sampling variation, dependence on

ecological conditions, sex, genotype, and age (Korol et tating the integration that can be conducted by a proper
algorithm (e.g., Lalouel 1977; Stam 1993; Mester etal. 1994). Consequently, genetic mapping of any target

trait, either qualitative or quantitative, through de- al. 2003). Parallel calculation technology can easily be
adopted for further expedition of the proposed algo-termining the marker brackets, will be less dependent

on these fluctuations and more comparable across in- rithm.
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