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ABSTRACT

Pre-mRNA splicing in plants, while generally similar to
the processes in vertebrates and yeast, is thought to
involve plant specific cis -acting elements. Both mono-
cot and dicot introns are typically strongly enriched in
U nucleotides, and AU- or U-rich segments are thought
to be involved in intron recognition, splice site selec-
tion, and splicing efficiency. We have applied logit-
linear models to find optimal combinations of splice
site variables for the purpose of separating true splice
sites from a large excess of potential sites. It is shown
that plant splice site prediction from sequence inspec-
tion is greatly improved when compositional contrast
between exons and introns is considered in addition to
degree of matching to the splice site consensus
(signal quality). The best model involves subclassifica-
tion of splice sites according to the identity of the base
immediately upstream of the GU and AG signals and
gives substantial performance gains compared with
conventional profile methods.

INTRODUCTION

An important aspect of eukaryotic genome research is scanning
functionally unknown sequences for potential split genes.
Because experimental capacity is small compared with the rate of
accumulation of genomic sequence data, the majority of new
sequences must be studied by statistical, computational methods.
Current approaches to finding genes and functional sites in DNA
sequences have recently been reviewed (1,2). Most algorithms
involve identification of potential splice sites (search by signal)
as a preliminary step to the task of parsing the sequence into
consistently ordered, translatable exons. Ideally, one would like
splice site prediction to be based on the same signals that are
recognized by the nuclear splicing machinery. Practically, most
methods are based on consensus motifs and weight matrices
scoring the degree of fit to some average signal pattern around
known splice sites in a learning set (e.g., 3–6). Neural network
applications were introduced by Brunak, Engelbrecht and
Knudsen (7). The construction of decision trees based on

categorical discriminant analysis by Sirajuddin et al. (8) has
recently promised improved donor site recognition.

The general features of splicing appear to be conserved
throughout all eukaryotes. The failure of accurate splicing of
heterologous introns in transformed plant cells suggested that
particular features of plant introns are essential for accurate
pre-mRNA processing (for reviews, see 9,10). In particular,
several studies have demonstrated that U-rich segments within
plant introns influence splice site selection (e.g., 11–13). Most
recently, it was shown that the relative contrast in U and G+C
content between introns and their flanking exons correlates with
splicing efficiency (Carle-Urioste, Brendel and Walbot, sub-
mitted). Contrast-enhancing changes within either introns or
exons improved splicing efficiency. It was suggested that
evaluation of compositional contrast could improve prediction of
splice sites.

Here we present a novel algorithm for the prediction of splice
sites in higher plants based upon the two variables of splice site
signal strength and compositional contrast. Our model seeks to
incorporate a minimal set of local sequence properties accessible
to the nuclear splicing machinery, and, in particular, does not
explicitly consider reading frame and codon usage information.
In this way, analysis of false positive as well as false negative
predictions may point to missing variables (e.g., branch point
consensus, specific sequence motifs; Brendel, Kleffe and Walbot,
manuscript in preparation). On the other hand, for the practical
task of identifying split genes, incorporation of global coding
potential assessment greatly reduces the number of falsely
predicted splice sites, as demonstrated in the recent comprehen-
sive study of splice site prediction in Arabidopsis thaliana by
Hebsgaard et al. (14). From a statistical standpoint, our method
is a standard application of logitlinear models. We provide a
rationale for the applicability of such models for a wide variety
of sequence analysis problems.

MATERIALS AND METHODS

Gene collections

Genomic sequences from Zea mays and A.thaliana were retrieved
from GenBank and compiled into specifically annotated
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non-redundant databases (redundancy as a result of significant
sequence similarity was assessed as described in ref. 15). Only
completely sequenced genes were included, i.e. those genes for
which all introns between the start codon and the stop codon are
available. For Z.mays, our database contains 46 genes that encode
distinct proteins and comprise a total of 250 exons and 204 introns
(this database denoted GBEzm). Obvious annotation errors in
GenBank entries were corrected. For Arabidopsis, a database of
131 distinct genes was obtained with a total of 709 exons and 578
introns (GBEat). In this case, because many genes are available,
we simply excluded GenBank entries with likely erroneous
annotation. Korning et al. (16) offer a detailed account of
problems with GenBank entries and provide a cleaned Arabidopsis
gene set of similar size.

Splice site collections and control sets

Databases for donor and acceptor sites and respective control sets
were derived from our gene collections in the following way.
Identification of splice and control sites was restricted to the
pre-mRNA portions between the known start and stop codons of
each gene. This restriction accomplishes several goals. First, it
limits the number of control sites, which is already large even
prior to scanning the flanking regions and the opposite DNA
strand. Second, correct identification of splice sites in this
restricted region is of practical interest, because there are now
several independent promising methods for predicting eukaryotic
promoters and terminators (17–19). These methods, if applied
successfully, would similarly limit the search space. Third, in
terms of understanding the cellular splicing machinery, the task
is, of course, to distinguish true splice sites from non-sites in
pre-mRNA, not in genomic DNA.

Our donor site and corresponding control sets consist of all GU
dinucleotides occurring within the prescribed sequence bounds
and including 50 nt on each side. For each such site, we record the
signal sequence and the percent nucleotide composition evalu-
ated separately for the 50 nt in the 5′ and 3′ flanks. The donor
signal sequence was chosen to cover the 3 nt 5′ and the 4 nt 3′ to
the GU. The donor site data sets comprise 201 true sites plus 6305
control sites for Z.mays and 577 true sites plus 14 964 control sites
for Arabidopsis. In three of the 204 maize introns the donor site
consensus GU is replaced by GC. These exceptional sites were
not considered for the purposes of this study.

For acceptor sites and their controls, we selected all AG
dinucleotides with 50 nt flanks and created corresponding data
sets comprising a total of 204 true sites plus 6290 control sites in
maize and 577 true sites plus 15 712 control sites in Arabidopsis.
The acceptor signal sequence was defined to cover 13 nt to the left
of AG and 2 nt to the right.

Logitlinear models for splice site recognition

As evident from the sizes of the data sets described above, for
every true splice site within a particular pre-mRNA there are on
the order of 30 non-sites conserving the consensus GU for donors
or AG for acceptors. We wish to derive rules that distinguish the
real sites from the bulk of non-sites on the basis of local sequence
properties. From a practical standpoint, any such rules would
suffice if their general applicability could be demonstrated on a
set of new sequences not involved in the derivation of these rules.
Beyond this practical goal, we advocate a modeling approach that

also seeks to incorporate known and presumed properties of the
biochemistry underlying splice site recognition. In this way, the
modeling results provide a consistency check on possible factors
contributing to splice site recognition by evaluating the predictive
usefulness of these factors individually and in various combina-
tions.

The in vivo mechanisms of splice site selection are undoubtedly
quite complex and details are still largely unknown. Thus, any
modeling attempt will necessarily involve considerable simpli-
fications. Here, we consider splice site recognition in terms of a
classical dose-response assay. In this case, ‘dose’ refers to
measurable characteristics of a site (degree of matching to the
extended signal consensus, compositional contrast between the
upstream and downstream signal flanking regions, possibly other
features). The response is whether or not splicing occurs at that
site under standard conditions.

For a given site, let P denote the probability that splicing
succeeds. Experimentally P could be measured in terms of
splicing efficiency expressed as the proportion of pre-mRNA
transcripts that are spliced at that site. All other things being equal,
we assume that P depends only on the dose of measured sequence
characteristics. For simplicity, first assume that splice site
sequence characteristics can be measured in terms of a single
variable, x, such that high positive values of x correspond with
P-values close to 1 and low negative values of x correspond with
P-values close to 0. It is convenient and customary in this case to
utilize a sigmoidal curve of the explicit form:

P(x) � e��x

1� e��x 1

where x = –α is the dose that gives half-maximal response. More
generally, various characteristics of a site are measured simulta-
neously such that a specific site, i, is represented by the vector x�i�
= (1, xi1, xi2, ......, xik) of observables, and, in the simplest
generalization of 1, α + x  is replaced by the linear combination

x�i��
�

, where �
�

 = (α, β1, β2, ....., βk)′ is a set of parameters to be
estimated. Parameter estimation for this logitlinear model can be
carried out in standard fashion as follows (e.g., 20,21). Let Y be
the indicator variable, set to 1 for true splice sites and to 0 for
non-sites. Let y� be the vector of observed Y values, consisting of
AP ones for true sites and AN zeros for false sites in a given
training set (AP and AN stand for actual positives and actual
negatives, a notation also used below). Then the joint loglikeli-
hood of the observations y� is given by

L � L(�
�
) ��

N

i�1

�yi ln P(x�i��
�
)� (1� yi) ln(1� P(x�i��

�
)� 2

where N = AP + AN is the total number of sites in the training set.
The maximum likelihood estimator for β is found numerically as
the unique solution to the system of non-linear equations

X(y�� P
�
) � 0

�
, where X is the (1 + k) × N matrix with columns

equal to the vectors x�i (X is assumed to be of full rank), and P
�

 is

the vector of probabilities P(x�i��
�

). Many computer programs are
available to obtain such parameter estimates numerically, e.g., by
application of the Newton–Raphson algorithm (20,21). We used
corresponding functions from StatUnit by Tue Tjur (22) as
implemented in our freely distributed DNASTAT package (23).
Convergence was always achieved after a few steps, but the
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Figure 1. Definition of donor site variables. The signal sequence is taken to extend 3 nt upstream and 4 nt downstream of the consensus GU. δib is an incidence variable,
set to one if the nucleotide at position i is b and zero otherwise. fib is the frequency of nucleotide b in signal position i in the training set of true donor sites. The lib
are signal sequence weights that are estimated as discussed in the text. Base compositional contrast is measured in terms of percent U (XU) and percent G+C (XGC)
usage difference over 50 base flanks upstream and downstream of the GU. Variables for true acceptor sites and for non-sites were assessed similarly as discussed in
the text.

calculations were lengthy due to the large number of observations
and parameters.

A cautionary note concerning interpretation of the model is in
order. Assuming the validity of the model, P would truly be an
estimate of splicing efficiency if the training data consisted of
repeated observations for each particular combination of site
characteristics. In other words, the indicator variable Y would
have to be observed repeatedly for each site, and P is simply the
estimated success probability for this binomial variable. Such
data are commonly not available. Instead, we sample over distinct
sites in the pre-mRNA and make only one observation per site
(true splice site or non-site). The validity of this sampling scheme
as an approximation to the repeated observations sampling
scheme rests on the continuity of the P function in its dependence

on x���
�

. Thus, we replace sampling of repeated experiments on
the same site by sampling of other sites with similar characteris-

tics x�. Sites with scores x���
�

 similar to those of many non-sites are
considered poor splice sites; sites with exceptionally high scores
are considered efficient splice sites.

There is experimental evidence in support of these modeling
assumptions for our choice of independent variables. Thus, it is
well documented that improved matching of the splice site
consensus increases splicing efficiency and that base composi-
tional changes in both introns and exons affect splice site selection
and splicing efficiency in the predicted manner (e.g.,
11–13,24–26).

Selection of independent variables

In this paper we consider the prediction of splice sites on the basis
of three local sequence properties: (i) the signal sequence, (ii) the
U content of 50 nt sections upstream and downstream of the
consensus donor GU or acceptor AG, and (iii) the G+C content
of these sections. The latter two properties were quantified as the
difference in percent nucleotide content and denoted by XU and
XGC, respectively (Fig. 1). These variables are clearly not

independent but emphasize different aspects of a potential splice
site and its context.

The signal information was evaluated in several alternative
ways. First, a nucleotide frequency profile was derived in the
usual way from all true donor (acceptor) sites. For a given site, the
variable Ws was defined as the sum of log-frequencies taken from
the profile, where summation extends over the entries associated
with the nucleotides occurring in the given site (Fig. 1). A similar
variable Wn was constructed using the profile derived from all
non-sites. A logitlinear model based on the four measurements
Ws, Wn, XU and XGC is given by

ln P
1� P

� �� �Ws� �Wn� �XU� �XGC 3

where α, β, γ, δ and µ are the components of the parameter vector

�
�

 in the general formulation given above. A special case is γ =
–β in which case the signal variable is the log-likelihood ratio Wsn
= Ws – Wn.

Alternatively, the variables Ws and Wn were replaced by a set
of individual factor variables L1,..., Lm, one for each signal
position. Each of these factor variables assumes one of the four
levels liA, liC, liG or liU  depending on the observed nucleotide in
signal position i. The corresponding logitlinear model is

ln P
1� P

� �� L� �XU� �XGC,    L��
m

i�1

Li 4

The values lib are unknown parameters to be estimated. In each
of the positions i, one of the lib must be set to some arbitrary value
(different choices of this level are easily seen to be equivalent
after commensurate changes in the constant α). We initially set liU
= 0, calculated the remaining parameters, and then re-parame-
trized by adjusting the largest parameter in each position to zero.
In this way, the consensus residue in each position may be
interpreted as a standard, with alternative residues assigned
penalties lib < 0. Note that the apparently simpler model 3 based
on the variables Ws and Wn actually involves a similar number of
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parameters, because in this case the profile frequencies are also
derived from the training data and thus should be counted among
the parameters.

Splice site prediction and evaluation of models

Given the above interpretation of P, prediction of splice sites may
be based on the following simple rule:

decision: true site if P > c
decision: non-site if P ≤ c 5

where c is an appropriately chosen constant between 0 and 1. The
problem of splice site prediction then consists of optimal choices
for P as a function of a set of observed site characteristics and for
c given P in order to minimize prediction errors. For any
particular function P and threshold c, the described classification
splits a sample of splice sites S into the two sub-samples S>c and
S≤c of sites with score >c or ≤c, respectively. In general, both
sub-samples contain true sites and non-sites. The prediction
method is better the more the distributions of true sites and
non-sites are biased towards true sites in S>c and non-sites in S≤c.

Our evaluation of the performance of the various models
follows the treatment of Brunak et al. (7), using the notation of
Snyder and Stormo (5). Thus, let the number of sites in S>c be
predicted positives (PP), consisting of TP true positives (real
sites) and FP false positives (non-sites). Let S≤c consist of FN
false negatives (real sites of low score) and TN true negatives
(non-sites), adding up to a total of PN predicted negative sites. Let
AP = TP + FN be the number of actual positives (true sites), and
let AN = FP + TN be the number of actual negatives (non-sites).
Then Sn = TP/AP measures the sensitivity of the method: what
fraction of the real sites are correctly predicted? Sp = TP/PP
measures the specificity of the method: what fraction of the
predicted positives are real sites? An overall measure of the
quality of the method is given by the Kendall tau rank correlation
coefficient for dichotomous classifications (e.g., 27),

��
(TP)(TN)� (FP)(FN)

(PP)(PN)(AP)(AN)� 6

τ is 1 for a completely accurate prediction and –1 for a completely
erroneous prediction.

High specificity is important for gene prediction programs
based on signal identification. Each false positive splice site
prediction may generate a large number of false exon–intron
structures. However, high sensitivity may be even more import-
ant. Each true site in S≤c that is discarded by the gene prediction
algorithm causes it to miss the true parsing of the gene. We
therefore focused in this study on site prediction methods that
keep the rate of false negative predictions very low while
minimizing the rate of false positive predictions. For each model
we report sensitivity, specificity, and τ for three choices of c
(relative to the training set): (i) the highest response value P for
non-sites giving Sn = 1 (predicting all true sites correctly), (ii) the
highest response value P for non-sites giving Sn ≥ 0.95 (allowing
5% of real sites to be missed), and (iii) the smallest value of c that
maximizes τ. Note that there are always different choices of c
giving the same predictor performance for the training sample. In
each case the response value close to an appropriately chosen true
site value would work as well. Restriction to response values of
non-sites as candidates for the threshold c gives more reliable

results, because the sample of non-sites is much larger than the
sample of true sites.

When comparing the performance of different models it is

convenient to employ the monotonicity of P(x�i��
�

) and re-scale
the P-values such that the decision threshold is at a fixed value.
For example, changing the constant α to α – ln[c/(1–c)] adjusts
the decision threshold to 0.5.

RESULTS

Splice site profiles

All true splice sites were initially aligned with respect to the
consensus GU or AG, respectively, and the nucleotide distribu-
tion was determined for each column of this alignment. Let fib
denote the frequency of nucleotide b in position i, where i extends
over all signal positions. The entropy values I(i) = –Σbfiblnfib
provide a means of defining the extent of the signal sequence (28).
I(i) attains its minimal value 0 in the extreme case that one of the
bases b in position i is completely conserved and its maximal
value –ln 0.25 = 1.386 in the uniform case fib = 0.25. Selecting the
region around the splice sites with significantly lower than base
level entropy, we defined the extent of the donor signal from –3
to +6 (negative integers extending into the exon, positive integers
extending into the intron) and the acceptor signal from –15 to +2
(negative integers extending into the intron, positive integers
extending into the exon). The donor site signal corresponds to the
well known region of complementarity to U1-snRNA, and the
acceptor site signal contains the conserved U-rich tract upstream
of position –4 (for recent reviews see 9,10).

None of the 204 sequences in the maize acceptor site set has a
G in position –3. If regarded as an absolute requirement, then the
search algorithm for potential acceptor sites would have to
discard any GAG/.. triplet site, no matter how well the other
positions of the consensus are matched. A more sanguine
approach would consider the complete lack of G as reflecting the
relatively small sample size of the training set and allow for a
small proportion of GAG/.. sites for consideration. We opted for
the latter (particularly because in the Arabidopsis set of 578 sites
there are three sequences with G in position –3) and replaced the
observed frequencies in the profiles with probabilities estimated
from pseudocounts derived as in (29) based on a Bayesian
principle with uniform prior distribution.

Signal site extent and the derived profile frequencies do not
differ significantly from previously published tabulations
(9,28,30) and are therefore not shown here. The most frequent
nucleotides in each position yield the familiar (A or C)AG/
GUAAGU donor site and U11GCAG/GU acceptor site consen-
suses. The control set profiles in each position closely reflect the
average genomic base composition, as expected, because the
non-sites are sampled equally from exons and introns.

Compositional contrast

The average mononucleotide composition in windows of length
50 nt flanking both sides of the donor GU and acceptor AG signals
is displayed in Table 1. The intron internal flanks display a U
percentage ∼13.5 and 16.5 points higher than that in the exons
around the donor and acceptor sites, respectively. The exon parts
are 8–10.5 percentage points higher in G content, and to a lesser
extent higher in C and, for acceptor sites, also in A. The Wilcoxon
signed-rank test for comparison of matched pairs was used for
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testing the statistical significance of the content differences (31).
The contrast in C, G and U content is statistically significant for
both donor and acceptor sites, whereas the A content differs
significantly only for acceptor sites. Note that we cannot similarly
specify a typical compositional contrast for the set of non-sites,
because this set contains sites with flanking regions entirely within
exons, or entirely within introns, or involving exons and introns in
either order. In particular, the AG immediately upstream of the GU
in the donor site consensus gives rise to a fair proportion of
non-acceptor sites with donor-like contrast. Similarly, the GU
immediately downstream of AG in the acceptor site consensus
gives rise to non-donor sites with acceptor-like contrast.

Splice site prediction

We initially studied 12 different models for the prediction of splice
sites. Results for the maize data are shown in Table 2; the
Arabidopsis set gave similar results (not shown). For each model, the
sensitivity, specificity, and τ value were derived for different levels
of the threshold c in equation 5. The models are represented by their
defining sets of variables given in column one of Table 2. For
instance, the set of variables Ws, Wn, XU, XGC denotes model

equation 3, and the set Ws, Wn, XU denotes model equation 3 without
considering the variable XGC, i.e., setting the parameter µ = 0.

Table 1. Compositional contrast around maize and Arabidopsis splice sites.

Donor sites Acceptor sites
exon intron ∆ intron exon ∆

Maize

U 21.1 34.5 –13.4 37.6 21.5 16.1

A 24.0 23.7 0.3 21.5 25.0 –3.5

G 26.9 18.9 8.0 19.2 29.5 –10.3

C 28.0 22.9 5.1 21.7 24.0 –2.3

Arabidopsis

U 27.3 41.0 –13.7 43.4 26.0 17.4

A 26.9 27.0 –0.1 24.5 29.0 –4.5

G 23.0 14.6 8.4 16.9 26.4 –9.5

C 22.8 17.4 5.4 15.2 18.6 –3.4

Displayed are the average percent base frequencies in 50 nucleotide flanks up-
stream and downstream of the conserved donor GU and acceptor AG, respect-
ively. For convenience, the differences between upstream and downstream
percentages are given in columns 4 and 7.

Table 2. Prediction of splice sites in maize pre-mRNAs

FN = 0, Sn = 100% FN = 10, Sn = 95% tau maximal
Variables FP Sp (%) tau FP Sp (%) tau FN Sn (%) FP Sp (%) tau

Donor sites

Wsn 2945 6 0.18 629 23 0.44 46 77 171 48 0.59

Wsn, XU 2108 9 0.24 289 40 0.60 55 73 72 67 0.69

Wsn, XGC 2479 8 0.21 384 33 0.54 56 72 60 71 0.71

Wsn, XU, XGC 2342 8 0.22 298 39 0.59 52 74 67 69 0.71

Ws, Wn 2926 6 0.19 627 23 0.44 47 77 165 48 0.59

Ws, Wn, XU 2094 9 0.24 292 40 0.60 61 70 62 69 0.69

Ws, Wn, XGC 2518 7 0.21 383 33 0.54 57 72 58 71 0.71

Ws, Wn, XU, XGC 2375 8 0.22 293 39 0.60 53 74 65 69 0.71

L 2983 6 0.18 590 24 0.46 44 78 164 49 0.60

L, XU 1382 13 0.31 306 38 0.59 52 74 59 72 0.72

L, XGC 1900 10 0.26 346 36 0.56 39 81 80 67 0.73

L, XU, XGC 1497 12 0.30 284 40 0.60 38 81 70 70 0.74

Acceptor sites

Wsn 3197 6 0.17 1373 12 0.30 100 51 127 45 0.46

Wsn, XU 2597 7 0.21 923 17 0.37 75 63 75 63 0.62

Wsn, XGC 2471 8 0.22 731 21 0.42 82 60 83 60 0.58

Wsn, XU, XGC 2716 7 0.20 689 22 0.43 70 66 68 66 0.65

Ws, Wn 3195 6 0.17 1340 13 0.30 94 54 134 45 0.48

Ws, Wn, XU 2699 7 0.20 610 24 0.45 58 72 109 57 0.63

Ws, Wn, XGC 2536 7 0.21 653 23 0.44 66 68 102 57 0.61

Ws, Wn, XU, XGC 2836 7 0.19 493 28 0.49 63 69 74 66 0.66

L 2533 7 0.21 1225 14 0.32 88 57 134 46 0.50

L, XU 1506 12 0.30 529 27 0.48 55 73 86 63 0.67

L, XGC 1526 12 0.30 502 28 0.49 64 69 94 60 0.63

L, XU, XGC 1516 12 0.30 411 32 0.53 33 84 133 56 0.67

Predictions are based on 201 true and 6305 false donor sites and on 204 true and 6290 false acceptor sites. FN, number of false negatives; FP, number of false positives;
Sn, sensitivity; Sp, specificity; tau, correlation coefficient, equation 6. The 12 different models are based on equations 3 and 4 of the text with only the indicated
variables included. For example, Ws, Wn, XGC refers to model equation 3 with δ = 0. Numbers that highlight performance differences between selected models appear
in bold face.
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As a standard model for comparisons we chose prediction
based on the usual profile scores, Wsn. Requiring 100% sensitivity,
such that no true splice sites are overlooked, forces choice of the
predictor threshold c of equation 5 below the level of the weakest
true site in the training set. This strict requirement results in a very
large number of false splice site predictions. In the case of the
standard model, falsely predicted splice sites outnumber the true
ones in a ratio of about fifteen to one. Allowing 5% of true sites
to be missed greatly reduces the number of false positive
predictions. Specificity improves about 4-fold to 23% for donor
sites and ∼2-fold to 12% for acceptor sites in the standard model
(Table 2).

Inclusion of the contrast variables XU and XGC significantly
improves prediction quality. For example, for the standard model
at 95% sensitivity the number of false positive donor sites
decreases from >600 to <300 when either XU alone or both XU and
XGC are considered in the model. Similarly, the number of false
positive acceptor sites drops from nearly 1400 to <700 upon
inclusion of both contrast variables.

Replacing the Wsn variable by the separate terms Ws and Wn for
the most part does not change the predictor performance very
much. An exception are the acceptor site models involving XU,
for which the Ws, Wn models are clearly superior to the models
at the 95% sensitivity level (but not in terms of comparing the τ
values). A much stronger and consistent improvement is obtained
with the L models involving the contrast variables. Specificity at
the 95% sensitivity level is up to 40% for donor sites and 32% for
acceptor sites for the L, XU, XGC model.

It is noteworthy that, at the 100% sensitivity level, the gains
obtained with the L models compared with the standard profile
models are at best slight when the contrast variables are not
considered. However, the improvements are substantial for the
full models including the contrast variables: donor site specificity
increases from 6% to 12% for the L model as a result of adding
the variables XU and XGC compared with an increase from 6% to
only 8% for the profile models, and acceptor site specificity
increases from 7% to 12% compared with an increase for the
profile models from 6% to 7%. A distinction between the L
variable and the profile variables Wsn or Ws and Wn is that, for the
former, weights in each signal position are derived ab initio
during the training, whereas for the latter the positional weights
are fixed as log-frequencies and only the relative contribution of
their overall sum per site is estimated in the regression model. The
greater flexibility of the L variable appears advantageous.

Moreover, the large performance differences between the models
upon inclusion of the contrast variables suggests that signal
strength and compositional contrast do not contribute indepen-
dently to splice site recognition. This apparent correlation is
obvious for acceptor sites, because the U-rich section of the
acceptor signal sequence clearly contributes to the U-content of
the upstream flank, but it is less obvious for donor site prediction.

To further investigate these issues, we categorized the splice
sites according to presence or absence of the most conserved
signal residue apart from the donor GU and acceptor AG. For
donor sites this residue is G in position –1 immediately upstream
of the GU. Eighty-six percent of the donor sites in the maize set
and 79% in the Arabidopsis set conserve this G. For acceptor
sites, signal position –3 immediately upstream of the AG is C in
77% of the maize introns and in 68% of the Arabidopsis introns.
Table 3 and Table 4 display the predictor performance of the L,
XU, XGC model trained separately on the respective subsets of
splice sites. For maize donor sites, great improvement is obtained
at the 100% sensitivity level: compared with the non-categorized
model, the number of false positive predictions is reduced nearly
3-fold. Improvement is also substantial for Arabidopsis donor
sites at 100% sensitivity. A small but consistent improvement is
evident for acceptor sites in both species, and for all comparisons
with the 95% sensitivity and maximal τ criteria.

While 100% sensitivity is a desired goal for splice site
prediction in gene finding algorithms, this is met with consider-
able difficulty for methods based entirely on local sequence
characteristics. This is particularly evident for Arabidopsis
acceptor site prediction. There are three sites in our training set
which score so low in all models that their inclusion forces
acceptance of an exceedingly large number of false sites (data not
shown). One of these sites precedes a nine base exon (exon 2 of
Atbfruct1, GenBank accession number X74515) and accordingly
displays atypical compositional contrast as the downstream 50
base flank is essentially all intron. The second site occurs in the
second intron of the cytochrome c gene (GenBank accession
number M85253). This intron is very short (59 bases) and only
13.6% U, resulting in poor profile and contrast scores. The third
site (intron 10 of GenBank accession number U05599) is one of
only three Arabidopsis acceptor sites featuring G in position –3
and there are only two U nucleotides in the –15 to –5 region.
Exclusion of these troublesome sites from the training set restores
normal levels of predictor performance (Table 4), thus clearly
identifying these sites as outliers.

Table 3. Prediction of splice sites in maize pre-mRNAs upon subclassification of splice sites according to extended consensus

Set FP Sp (%) tau FN Sn (%) FP Sp (%) tau FN Sn (%) FP Sp (%) tau

5′ GGU 361 32 0.49 8 95 166 50 0.64 53 69 24 83 0.73

HGU 148 16 0.40 1 97 119 19 0.42 5 83 11 69 0.75

combined 509 28 0.51 9 96 285 40 0.60 58 71 35 80 0.75

CAG 857 15 0.27 7 96 232 39 0.56 32 80 61 67 0.70

DAG 453 9 0.29 2 96 69 39 0.61 12 74 5 88 0.81

combined 1310 13 0.33 9 96 301 39 0.60 44 78 66 71 0.74

Results are shown for the L, XU, XGC model, trained separately on the indicated subsets of donor and acceptor site samples. Notation is as in Table 2. Prediction criteria
were set to 100% sensitivity (columns 2–4), ≥95% sensitivity (columns 5–9), and maximal tau (columns 10–14). The set 5′ GGU consists of 172 true and 1466 false
donor sites, all with G preceding the GU donor consensus. H denotes non-G. 5′ HGU consists of 29 true and 4839 false donor sites. D denotes non-C. The set 3′ CAG
consists of 157 true and 1645 false acceptor sites, and 3′ DAG consists of 47 true and 4645 false acceptor sites. The combined sets show improved prediction compared
with the non-categorized models (cf. corresponding bold face entries in Table 2).
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Table 4. Prediction of splice sites in Arabidopsis pre-mRNAs

Set FP Sp (%) tau FN Sn (%) FP Sp (%) tau FN Sn (%) FP Sp (%) tau

5′ all 3594 14 0.32 28 95 819 40 0.60 101 82 205 70 0.75

5′ GGU 1509 23 0.37 22 95 395 52 0.66 52 89 158 72 0.77

5′ HGU 1011 11 0.31 5 96 362 24 0.47 31 74 38 70 0.72

combined 2520 19 0.39 27 95 757 42 0.61 83 86 196 72 0.77

3′ all 4417 12 0.29 28 95 754 42 0.61 122 79 216 68 0.72

3′ CAG 1855 17 0.27 19 95 323 53 0.67 79 80 102 75 0.75

3′ DAG 2289 8 0.25 9 95 305 37 0.58 56 70 72 65 0.67

combined 4144 12 0.30 28 95 628 47 0.65 135 76 174 72 0.73

Results are shown for the L, XU, XGC model, trained separately on the indicated subsets of donor and acceptor site samples. Notation is as in Table 2. Prediction criteria
were set to 100% sensitivity (columns 2–4), ≥95% sensitivity (columns 5–9), and maximal tau (columns 10–14). The 5′ all set consists of 577 true and 14 964 false
donor sites. 5′ GGU consists of 458 true and 3729 false donor sites, all with G preceding the GU donor consensus. H denotes non-G. 5′ HGU consists of 119 true
and 11 235 false donor sites. The 3′ all set consists of 574 true and 15 712 false acceptor sites. Three poorly scoring true acceptors were excluded as discussed in
the text. D denotes non-C. The set 3′ CAG consists of 387 true and 3240 false acceptor sites, and 3′ DAG consists of 187 true and 12 472 false acceptor sites. The
rows labeled ‘combined’ give the overall values for prediction based on the subclassifications.

Interpretation of model parameters

The parameter values estimated in the wake of fitting the models
to the training sets should reflect the relative importance of the
different variables and thus may guide future modeling as well as
interpretations in terms of the underlying splicing process. We
discuss these possibilities for the Arabidopsis donor site model
with subclassification. The estimated model parameters are given
in Table 5. Several observations stand out: (i) The constant term
α is ∼9-fold higher for the GGU sites than for the HGU sites.
Inserting into equation 4 we calculate a P-value of 0.97 for a
perfectly matching GGU donor site L = 0 assuming no effect of
compositional contrast XU = XGC = 0, compared with a P-value
of only 0.59 for a perfectly matching HGU donor site. Thus, our
model predicts that splice site quality is considerably reduced if
the consensus G in position –1 is replaced. (ii) From Table 1, the
expected contrast values are –XU ≈ XGC ≈ 0.14. Inserting these
values (with L remaining zero) results in P-values of 1.00 and
0.97 for GGU and HGU sites, respectively. Thus, the model
predicts that average or better compositional contrast can fully
restore splice site quality in the HGU class of sites. (iii) The most
negative weights occur in positions –2, 1 and 3 for GGU sites, and
in positions 1–3 for HGU sites (positions counted relative to GU,
cf. Fig. 1). Note that the penalties in positions 1–3 are more severe
for the HGU set compared with the GGU set, indicating that
further mismatches to the consensus are probably ill tolerated in
the former set. The importance of G at position 3 was also
confirmed by Hebsgaard et al. (14) and likely reflects a
requirement of hybridization by U1-RNA (9,10).

Validation tests for the splice site predictor

We tested in several ways how well the prediction rule 5 works
to identify true splice sites in genomic DNA. Standard cross-
validation techniques proved all models robust so that over-fitting
during training could be ruled out (data not shown). For an
additional test, we compiled independent test sets consisting of
five maize genes (originally excluded from our training set as a

result of missing sequence information for one intron in each
case) and for Arabidopsis comprising 65 sequences contained in
the Korning et al. (16) set, but not in our training set. Splice sites
in these sets were predicted with the predictor threshold c set to
the values derived in the training. As shown in Table 6, the
prediction quality on the test sets is entirely comparable with the
results obtained for the training sets (Table 3 and Table 4).
Prediction with the thresholds that maximize the τ correlation
measure on the training sets is the least stable. However, this is of
little concern because in typical applications the threshold will be
set to the more stable extremes that give either high sensitivity or
high specificity. It is of particular significance to note that the L,
XU, XGC model with subclassification outperforms the other
models on the test sets as it did on the training sets. Thus, the
displayed performance values seem to reflect the best possible
accuracy for splice site prediction based on the scope of models
we investigated.

Table 5. Arabidopsis donor site model parameters

Parameter GU set (458 sites) HGU set (119 sites)

α 3.46 0.37

δ –9.71 –8.87

µ 13.68 13.09

A C G U A C G U

l–3 0 0.32 –1.20 –0.80 0 0.20 –0.79 –0.91

l–2 0 –3.22 –3.05 –2.74 0 –0.71 –1.29 –1.26

l–1 0 0 0 0 –0.17 –0.11 0 0

l1 0 –3.01 –2.99 –2.87 0 –3.18 –2.67 –5.21

l2 0 –1.08 –2.11 –1.78 0 –2.13 –4.52 –2.71

l3 –2.53 –2.82 0 –2.72 –3.98 –5.56 0 –3.73

l4 –1.35 –0.82 –1.80 0 –1.17 –0.90 –1.54 0

Parameters are given for the L, XU, XGC model (equation 4) with subclassification.
Parameters set to 0 correspond to the consensus donor site residues.
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Table 6. Validation test of the splice site predictor

c (Sn = 100%) c (Sn = 95%) c (tau maximal)

Set FN Sn (%) FP Sp (%) tau FN Sn (%) FP Sp (%) tau FN Sn (%) FP Sp (%) tau

Maize

Donor sites

Wsn 0 100 444 7 0.2 3 91 90 26 0.46 13 63 25 47 0.52

Wsn, XU, XGC 0 100 349 9 0.24 5 86 41 42 0.58 13 63 11 67 0.63

L, XU, XGC 0 100 216 14 0.33 3 91 45 42 0.60 10 71 9 74 0.71

GGU/HGU 1 97 70 33 0.54 3 91 39 45 0.63 17 51 4 82 0.64

Acceptor sites

Wsn 0 100 503 7 0.18 3 92 216 14 0.30 20 46 23 43 0.42

Wsn, XU, XGC 0 100 436 8 0.20 2 95 108 24 0.45 15 59 13 63 0.60

L, XU, XGC 0 100 216 15 0.34 4 89 68 33 0.51 11 70 27 49 0.57

CAG/DAG 0 100 185 17 0.37 6 84 51 38 0.54 12 68 18 58 0.61

Arabidopsis

Donor sites

L, XU, XGC 0 100 1389 17 0.36 14 95 315 46 0.64 57 79 74 75 0.76

GGU/HGU 0 100 969 22 0.43 14 95 289 48 0.65 46 83 78 75 0.78

Acceptor sites

L, XU, XGC 3 99 1710 14 0.31 19 93 301 46 0.64 63 77 84 72 0.74

CAG/DAG 3 99 1636 14 0.32 27 90 247 51 0.66 73 74 70 75 0.73

GGU/HGU and CAG/DAG denote the L, XU, XGC models with subclassification. The three levels of the predictor threshold were set in accord with the respective
training data (Tables 3 and 4). Notation is as in Table 2. The maize test set consists of 35 true and 951 false donor sites and 37 true and 933 false acceptor sites. The
Arabidopsis test set consists of 277 true and 6101 false donor sites and 280 true and 6022 false acceptor sites.

DISCUSSION

Elucidation of the trans-acting factors and cis-acting elements
involved in splice site selection and determination of splicing
efficiency in plant pre-mRNAs has been hampered by the absence
of a plant in vitro splicing system. Similarities to yeast and
vertebrates in terms of splice site consensuses and the sequences
of the small nuclear ribonucleic acids are juxtaposed by plant
specific features. Thus, plant introns generally lack a polypyrimi-
dine run upstream of the 3′ splice site, a feature that is conserved
in most yeast and vertebrate introns, nor do they contain a
characteristic branchpoint sequence. On the other hand, plant
introns are typically distinguished from the flanking exons by a
strong bias towards U bases (Table 1), and this bias plays a role
in accurate pre-mRNA processing (for reviews see 9,10).

Here we pursued the challenge of predicting splice sites in plant
pre-mRNA from local sequence inspection. A successful solution
to this problem would both suggest that our understanding of
splice site recognition variables is sound and also be of
considerable practical importance in the context of gene identifi-
cation algorithms. Specifically, we attempted to derive rules that
would distinguish true donor and acceptor splice sites from the
large excess of alternative sites that minimally conserve only the
characteristic GU and AG consensuses, respectively. For each site
we evaluated (i) the particular sequence in the signal positions
that are typically conserved in true splice sites, and (ii) the
compositional contrast between the flanking 50 bases upstream
and downstream of the sites (Fig. 1). We explored logitlinear
models to map linear combinations of the values of these

variables onto the [0,1] interval, where 1 indicates strong
prediction of a splice site and 0 indicates strong rejection of that
hypothesis.

Profile methods

The strongest evidence that the considered variables truly
determine splice site selection would derive from a clear
separation of the scores for true splice sites from those of control
non-sites in both training and test sets. The degree of separation
is most stringently assessed by how many false positive
predictions are made when the predictor is trained to 100%
sensitivity, i.e., not to reject any true site. For example, just
defining the splice sites by the consensus GU and AG dinucleo-
tides leads to ∼30 false positive predictions for every truly
identified site. Our results (Table 2) show that discrimination
based on the usual profile scores Wsn decrease the number of false
positive predictions only ∼2-fold. For every true donor site in the
maize training set the model would also accept an average of 15
false sites, and for every true acceptor site it would include ∼16
non-acceptor sites.

One hundred percent sensitivity is, of course, a very strict
requirement, and one that is easily foiled by a few exceptional
sites in the training set, including possible cases of erroneous
splice site determinations or annotations. Some such problems
occurred with our original Arabidopsis acceptor site training set
(Table 4). But even allowing 5% of true sites to be overlooked by
the predictor (i.e., training the predictor to 95% sensitivity), the
profile method would still accept an average of three or seven
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Figure 2. Donor site prediction for the maize actin gene sequence (GenBank accession no. J01238). The four exons and three introns are drawn to scale. Each unit
on the scale on the bottom represents 100 nt. Small triangles from below indicate positions at which GU is found in the sequence. Arrows from below mark GU locations
which are accepted as donor sites by the standard donor site profile model Wsn. Arrows from above indicate GU positions accepted by the logitlinear model L, XU,
XGC with sub-classification. For each model, the prediction threshold was set at the 95% sensitivity level as derived from the training set. All true donor sites are strongly
predicted. Note the false positive donor site prediction caused by the AG/GU intron 2/exon 3 boundary which in this sequence is not distinguished by compositional
contrast.

false sites for every correctly predicted maize donor or acceptor
site, respectively (Table 2).

Improved methods

The above numbers demonstrate the need for improved splice site
prediction methods. We showed that including compositional
contrast variables and modeling the signal sites by the more
general weights L (Fig. 1) greatly enhanced the performance of
the predictor: at 100% sensitivity, the ratio of false positive sites
to correctly identified sites decreased to ∼7, and at 95%
sensitivity, this ratio decreased to 2 or less (Table 2).

The result that the logitlinear models involving L instead of the
usual profile scores performed so much better was initially
surprising. Our interpretation is that the equal weighting of the
different signal positions in a common profile application is
inadequate. For example, in the maize donor sites the position
immediately upstream of GU is 86% G. However, in the non-sites
exceeding the minimal profile score of the true sites this position
is only 33% G. Thus, the majority of these non-sites compensate
for the lack of this G with a more favorable match to the consensus
in other positions. But the compensation in terms of scoring
apparently does not reflect splice site functionality.

As a refinement of the model, we therefore subclassified true
splice sites and control non-sites according to the presence or
absence of the most strongly conserved splice site bases apart
from the characteristic GU and AG. This approach succeeded in
further lowering the numbers of false positive predictions, both
in the training sets (Table 3 and Table 4) and in independent test
sets (Table 6). The improvements in splice site prediction are

illustrated for a typical gene in Figure 2. The best model (L, XU,
XGC with subclassification) is built into our SplicePredictor
program.

We would note that our performance statistics are conservatively
estimated by disregarding the relative location of the false
positive predictions with respect to the known or potential splice
products. For example, the intron 2/exon 3 boundary in the maize
actin gene is AG/GU and results in both a correct acceptor site
prediction and a false positive donor site prediction (cf. Fig. 2).
However, as long as the splicing machinery efficiently recognizes
the upstream true donor site, this false positive site is irrelevant.
Hebsgaard et al. (14) recently demonstrated that incorporation of
this type of global coding potential assessment drastically
improves exon/intron prediction.

Perspective

Despite the substantial improvements in splice site prediction
with the refined models, the success rate of the predictor is not
entirely satisfactory. This may reflect inherent limitations within
the current framework. First, there are other factors influencing
splice site selection that have not been considered. For example,
recent studies have identified branchpoints in some plant
pre-mRNAs (32,33). The exact sequence requirements for plant
branchpoints are unclear, but, when present, the branchpoint
likely has a role in 3′ splice site selection. There are also
suggestions of specific intron and exon recognition factors (9,10),
which may actively contribute to true splice site selection or
otherwise mask high scoring non-sites by binding to pre-mRNA.
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Also not considered in our current model are changes in the
local site attributes during the sequential process of splicing. For
example, the splice sites delineating very short exons would
typically display poor compositional contrast. Once one of the
introns is removed, the remaining intron will be flanked by the
fusion of the short exon with its adjacent exon, which should
restore the typical compositional contrast. It is also possible that
relatively high scoring non-sites are locally suboptimal compared
with nearby true sites and are irrelevant because splice site
selection is accomplished by scanning for the locally best
matching site. Moreover, interaction of adjacent splice sites in
either 5′ to 3′ (‘intron definition’) or 3′ to 5′ polarity (‘exon
definition’; 34) may indicate selection of splice sites in pairs
rather than individually.

The above issues will have to be addressed by further modeling
studies. The logitlinear modeling approach provides a very
flexible tool in this context which is statistically very well
understood and, as discussed, thoroughly motivated for sequence
signal recognition problems.

PROGRAM AVAILABILITY

The databases and profiles used in this study as well as the
SplicePredictor program, which implements our current algorithm
for splice site prediction in plant genes, are available electronically
from either J. Kleffe (jkleffe@euler.grumed.fu-berlin.de) or V. Bren-
del (volker@gnomic.stanford.edu). SplicePredictor is also implem-
ented as a Web service at http://gnomic.stanford.edu/∼volker/
SplicePredictor.html.
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