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ABSTRACT

Pre-mRNA splicing in plants, while generally similar to
the processes in vertebrates and yeast, is thought to
involve plant specific  cis-acting elements. Both mono-
cot and dicot introns are typically strongly enriched in
U nucleotides, and AU- or U-rich segments are thought
to be involved in intron recognition, splice site selec-
tion, and splicing efficiency. We have applied logit-
linear models to find optimal combinations of splice
site variables for the purpose of separating true splice
sites from a large excess of potential sites. It is shown
that plant splice site prediction from sequence inspec-
tion is greatly improved when compositional contrast
between exons and introns is considered in addition to
degree of matching to the splice site consensus
(signal quality). The best model involves subclassifica-
tion of splice sites according to the identity of the base
immediately upstream of the GU and AG signals and
gives substantial performance gains compared with
conventional profile methods.

INTRODUCTION

categorical discriminant analysis by Sirajuddinal (8) has
recently promised improved donor site recognition.

The general features of splicing appear to be conserved
throughout all eukaryotes. The failure of accurate splicing of
heterologous introns in transformed plant cells suggested that
particular features of plant introns are essential for accurate
pre-mRNA processing (for reviews, s8d0). In particular,
several studies have demonstrated that U-rich segments within
plant introns influence splice site selection (el@=13). Most
recently, it was shown that the relative contrast in U and G+C
content between introns and their flanking exons correlates with
splicing efficiency (Carle-Urioste, Brendel and Walbot, sub-
mitted). Contrast-enhancing changes within either introns or
exons improved splicing efficiency. It was suggested that
evaluation of compositional contrast could improve prediction of
splice sites.

Here we present a novel algorithm for the prediction of splice
sites in higher plants based upon the two variables of splice site
signal strength and compositional contrast. Our model seeks to
incorporate a minimal set of local sequence properties accessible
to the nuclear splicing machinery, and, in particular, does not
explicitly consider reading frame and codon usage information.
In this way, analysis of false positive as well as false negative

An important aspect of eukaryotic genome research is scannifggdictions may point to missing variables (e.g., branch point
functionally unknown sequences for potential split gene§Onsensus, _specn‘lc sequence motifs; Brendel, Kleffe and Wal_bot,
Because experimental capacity is small compared with the ratgBRNUSCript in preparation). On the other hand, for the practical
accumulation of genomic sequence data, the majority of né@sk of identifying split genes, incorporation of global coding
sequences must be studied by statistical, computational methd{ential assessment greatly reduces the number of falsely
Current approaches to finding genes and functional sites in DNedicted splice sites, as demonstrated in the recent comprehen-
sequences have recently been reviewes).(Most algorithms ~ Sive study of splice site prediction Arabidopsis thalianay
involve identification of potential splice sites (search by signafjieébsgaaret al (14). From a statistical standpoint, our method
as a preliminary step to the task of parsing the sequence iffo? Standard application of logitinear models. We provide a
consistently ordered, translatable exons. Ideally, one would lik@tionale for the applicability of such models for a wide variety
splice site prediction to be based on the same signals that §f&eduence analysis problems.

recognized by the nuclear splicing machinery. Practically, most

methods are based on consensus motifs and weight matri®#8TERIALS AND METHODS

scoring the degree of fit to some average signal pattern arou@gne collections

known splice sites in a learning set (e3g4). Neural network

applications were introduced by Brunak, Engelbrecht an@enomic sequences frdaa mayandA.thalianawere retrieved
Knudsen 7). The construction of decision trees based ofrom GenBank and compiled into specifically annotated
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non-redundant databases (redundancy as a result of significalsb seeks to incorporate known and presumed properties of the
sequence similarity was assessed as described ibyeOnly  biochemistry underlying splice site recognition. In this way, the
completely sequenced genes were included, i.e. those genesnfimdeling results provide a consistency check on possible factors
which all introns between the start codon and the stop codon aantributing to splice site recognition by evaluating the predictive
available. FoZ.maysour database contains 46 genes that encodsefulness of these factors individually and in various combina-
distinct proteins and comprise a total of 250 exons and 204 intraiiens.

(this database denoted GBEzm). Obvious annotation errors inlhein vivomechanisms of splice site selection are undoubtedly
GenBank entries were corrected. Roabidopsis a database of quite complex and details are still largely unknown. Thus, any
131 distinct genes was obtained with a total of 709 exons and 5m@deling attempt will necessarily involve considerable simpli-
introns (GBEat). In this case, because many genes are availabigtions. Here, we consider splice site recognition in terms of a
we simply excluded GenBank entries with likely erroneouslassical dose-response assay. In this case, ‘dose’ refers to
annotation. Korninget al (16) offer a detailed account of measurable characteristics of a site (degree of matching to the
problems with GenBank entries and provide a cleArsaldopsis  extended signal consensus, compositional contrast between the
gene set of similar size. upstream and downstream signal flanking regions, possibly other
features). The response is whether or not splicing occurs at that
site under standard conditions.

For a given site, leP denote the probability that splicing
Databases for donor and acceptor sites and respective control eggeeds. Experimentally could be measured in terms of
were derived from our gene collections in the following waysplicing efficiency expressed as the proportion of pre-mRNA
Identification of splice and control sites was restricted to th#anscripts that are spliced at that site. All other things being equall,
pre-mRNA portions between the known start and stop codons\§¢ assume th&tdepends only on the dose of measured sequence
each gene. This restriction accomplishes several goals. Firstcharacteristics. For simplicity, first assume that splice site
limits the number of control sites, which is already large evepequence characteristics can be measured in terms of a single
prior to scanning the flanking regions and the opposite DNXariable,x, such that high positive valueso€orrespond with
strand. Second, correct identification of splice sites in thiB-values close to 1 and low negative valuesaafrrespond with
restricted region is of practical interest, because there are nwalues close to 0. It is convenient and customary in this case to
several independent promising methods for predicting eukaryotiélize a sigmoidal curve of the explicit form:
promoters and terminator$ &-19). These methods, if applied .
successfully, would similarly limit the search space. Third, in P(x) = %eﬂﬂ 1
terms of understanding the cellular splicing machinery, the task

is, of course, to distinguish true splice sites from non-sites {gherex = —a is the dose that gives half-maximal response. More
pre-mRNA, not in genomic DNA. G3‘<Enerally, various characteristics of a site are measured simulta-

Splice site collections and control sets

Our donor site and corresponding control sets consist of all ously such that a specific sités represented by the vecior
dinucleotides occurring within the prescribed sequence bounds X1, X2 oo %) of observables, and, in the simplest

and including 50 nt on each side. For each such site, we record g e rajization of, a + x is replaced by the linear combination
signal sequence and the percent nucleotide composition evaiu-- - .
ated separately for the 50 nt in tHeaBd 3 flanks. The donor X8, wheref = (a, By, B2, .....BK)" is a set of parameters to be
signal sequence was chosen to cover the 3amicbthe 4 nt'3o estlmated. I?arameter estimation for this logitlinear model can be
the GU. The donor site data sets comprise 201 true sites plus 63851ed out in standard fashion as follows (€g21). LetY be
control sites foZ.maysand 577 true sites plus 14 964 control sitedhe indicator variable, set to 1 for true splice sites and to O for
for Arabidopsis In three of the 204 maize introns the donor sitéon-sites. Ley be the vector of observédralues, consisting of
consensus GU is replaced by GC. These exceptional sites wlR ones for true sites antiN zeros for false sites in a given
not considered for the purposes of this study. training set AP and AN stand for actual positives and actual
For acceptor sites and their controls, we selected all AGegatives, a notation also used below). Then the joint loglikeli-
dinucleotides with 50 nt flanks and created corresponding dataod of the observationgis given by
sets comprising a total of 204 true sites plus 6290 control sites in

maize and 577 true sites plus 15 712 control sitésaibidopsis = N L =3
The acceptor signal sequence was defined to cover 13 ntto the left = L) = Z(yi InPB) + (1 — y)In(l — P(X ﬁ)) 2
of AG and 2 nt to the right. =1
whereN = AP+ ANis the total number of sites in the training set.
Logit]inear models for Sp”ce site recognition The maximum likelihood estimator fﬁns found numerica”y as

the unique solution to the system of non-linear equations
As evident from the sizes of the data sets described above, 5@6" — P) = G, whereX is the (L + k) N matrix with columns
every true splice site within a particular pre-mRNA there are on o =
the order of 30 non-sites conserving the consensus GU for donfyia! to the vectorg (X is assumed to be of full rank), aRds
or AG for acceptors. We wish to derive rules that distinguish thee vector of probabilitieB(X;'8 ). Many computer programs are
real sites from the bulk of non-sites on the basis of local sequerasilable to obtain such parameter estimates numerically, e.g., by
properties. From a practical standpoint, any such rules woudgbplication of the Newton—Raphson algoritt#fZ1). We used
suffice if their general applicability could be demonstrated on eorresponding functions from StatUnit by Tue Tjdg)(as
set of new sequences not involved in the derivation of these ruleaplemented in our freely distributed DNASTAT packag@.(
Beyond this practical goal, we advocate a modeling approach ti@&dnvergence was always achieved after a few steps, but the
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Figure 1. Definition of donor site variables. The signal sequence is taken to extend 3 nt upstream and 4 nt downstream of the cajsersag@idence variable,

set to one if the nucleotide at positide b and zero otherwiséy, is the frequency of nucleotidiein signal position in the training set of true donor sites. Tige

are signal sequence weights that are estimated as discussed in the text. Base compositional contrast is measured in termgf aedgeatddn(t G+C<6c)

usage difference over 50 base flanks upstream and downstream of the GU. Variables for true acceptor sites and for non-sites were assessed similarly as disc
the text.

calculations were lengthy due to the large number of observatianslependent but emphasize different aspects of a potential splice
and parameters. site and its context.

A cautionary note concerning interpretation of the model is in The signal information was evaluated in several alternative
order. Assuming the validity of the modBlwould truly be an ways. First, a nucleotide frequency profile was derived in the
estimate of splicing efficiency if the training data consisted afisual way from all true donor (acceptor) sites. For a given site, the
repeated observations for each particular combination of si@riable\s was defined as the sum of log-frequencies taken from
characteristics. In other words, the indicator variablgould the profile, where summation extends over the entries associated
have to be observed repeatedly for each siteR@ndimply the  with the nucleotides occurring in the given site (EjgA similar
estimated success probability for this binomial variable. SuakariableW, was constructed using the profile derived from all
data are commonly not available. Instead, we sample over distimein-sites. A logitlinear model based on the four measurements
sites in the pre-mRNA and make only one observation per sk, W,, Xy andXgc is given by
(true splice site or non-site). The validity of this sampling scheme
as an approximation to the repeated observations sampling In-—P
scheme rests on the continuity of Biinction in its dependence 1-P

on 75. Thus, we replace sampling of repeated experiments g_yjﬂlerea, B3,y, 6 andu are the components of the parameter vector
the same site by sampling of other sites with similar characterig- in the general formulation given above. A special cage is
ticsX. Sites with score€ 8 similar to those of many non-sites are P In which case the signal variable is the log-likelihood Wjp

considered poor splice sites; sites with exceptionally high score —Wh.
are con5|de$ed eff?ment splice sites. P yhg Alternatively, the variablegg andW, were replaced by a set

There is experimental evidence in support of these modelir‘?% '.”.d'v'dllz‘al rl:acftorz Va”?bleil' . E? one for each S'?nhal ‘
assumptions for our choice of independent variables. Thus, itgStion. Each of these factor variables assumes one of the four

well documented that improved matching of the splice sitiVelSlia, lic, lic orliy depending on the observed nucleotide in
consensus increases splicing efficiency and that base compdignal positiori. The corresponding logitlinear model is
tional changes in both introns and exons affect splice site selection

=a+ﬂWs+j/Wn+6XU +ILLXGC 3

and splicing efficiency in the predicted manner (e.g., In1 —p= ¢ + L+ 00Xy +uXee, L= Z L; 4
11-13,24-26). i-1

The valuedj, are unknown parameters to be estimated. In each
Selection of independent variables of the positiong one of thdy, must be set to some arbitrary value

(different choices of this level are easily seen to be equivalent
In this paper we consider the prediction of splice sites on the baafter commensurate changes in the conajalite initially setiy
of three local sequence properties: (i) the signal sequence, (ii) thé, calculated the remaining parameters, and then re-parame-
U content of 50 nt sections upstream and downstream of ttrezed by adjusting the largest parameter in each position to zero.
consensus donor GU or acceptor AG, and (iii) the G+C contelnt this way, the consensus residue in each position may be
of these sections. The latter two properties were quantified as theerpreted as a standard, with alternative residues assigned
difference in percent nucleotide content and denotef;land  penaltiedj, < 0. Note that the apparently simpler m&ibased
Xgc, respectively (Fig.l). These variables are clearly noton the variable®¥g andW, actually involves a similar number of
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parameters, because in this case the profile frequencies are a¢sllts, because the sample of non-sites is much larger than the
derived from the training data and thus should be counted amosemple of true sites.

the parameters. When comparing the performance of different models it is
convenient to employ the monotonicityB(X;’5) and re-scale
Splice site prediction and evaluation of models the P-values such that the decision threshold is at a fixed value.

. i . o . For example, changing the constartb o — In[c/(1-)] adjusts
Given the above interpretationRfprediction of splice sites may the decision threshold to 0.5.

be based on the following simple rule:

decision: true site iP >c RESULTS
decision: non-site iP<c 5 Splice site profiles

wherec is an appropriately chosen constant between 0 and 1. TAR true splice sites were initially aligned with respect to the
problem of splice site prediction then consists of optimal choice®nsensus GU or AG, respectively, and the nucleotide distribu-
for P as a function of a set of observed site characteristics and f@fh was determined for each column of this alignmentfi_et

c given P in order to minimize prediction errors. For anydenote the frequency of nucleotitia positioni, where extends
particular functiorP and threshold, the described classification over all signal positions. The entropy valugs = —SpfipInf

splits a sample of splice sit®to the two sub-sampl&c and  provide a means of defining the extent of the signal sequéB)ce (
S of sites with score c-or <c, respectively. In general, both |(j) attains its minimal value 0 in the extreme case that one of the
sub-samples contain true sites and non-sites. The predictigfisesb in positioni is completely conserved and its maximal
method is better the more the distributions of true sites an@lue —In 0.25 = 1.386 in the uniform cise 0.25. Selecting the
non-sites are biased towards true sit&dmnd non-sites iB¢.  region around the splice sites with significantly lower than base

Our evaluation of the performance of the various modelgvel entropy, we defined the extent of the donor signal from —3
follows the treatment of Brunat al (7), using the notation of to +6 (negative integers extending into the exon, positive integers
Snyder and Stormc). Thus, let the number of sites3. be  extending into the intron) and the acceptor signal from —15 to +2
predicted positivesPP), consisting ofTP true positives (real (negative integers extending into the intron, positive integers
sites) and=P false positives (non-sites). L8% consist ofFN  extending into the exon). The donor site signal corresponds to the
false negatives (real sites of low score) @httrue negatives well known region of complementarity to U1-snRNA, and the
(non-sites), adding up to a totaRif predicted negative sites. Let acceptor site signal contains the conserved U-rich tract upstream
AP=TP + FN be the number of actual positives (true sites), angf position —4 (for recent reviews s&é0).
let AN=FP + TN be the number of actual negatives (non-sites). None of the 204 sequences in the maize acceptor site set has ¢
ThenSn= TP/AP measures the sensitivity of the method: whats in position —3. If regarded as an absolute requirement, then the
fraction of the real sites are correctly predict&>= TP/IPP  search algorithm for potential acceptor sites would have to
measures the specificity of the method: what fraction of thgiscard any GAGI.. triplet site, no matter how well the other
predicted positives are real sites? An overall measure of th@sitions of the consensus are matched. A more sanguine
quality of the method is given by the Kendall tau rank correlatiopproach would consider the complete lack of G as reflecting the
coefficient for dichotomous classifications (ey), relatively small sample size of the training set and allow for a

small proportion of GAG/.. sites for consideration. We opted for
T = (AN — (FREN) 6 the latter (particularly because in thebidopsisset of 578 sites
J(PP)(PN)(AP)(AN) there are three sequences with G in position —3) and replaced the

i L observed frequencies in the profiles with probabilities estimated
Tis 1 for a completely accurate prediction and —1 for a completejyym, pseudocounts derived as iP9) based on a Bayesian
erroneous prediction. o principle with uniform prior distribution.

High specificity is important for gene prediction programs gjgna site extent and the derived profile frequencies do not
based on signal identification. Each false positive splice si{gffer significantly from previously published tabulations
prediction may generate a large number of false exon—intrgg 28 30) and are therefore not shown here. The most frequent
structures. However, high sensitivity may be even more imporiycleotides in each position yield the familiar (A or C)AG/
ant. Each true site 8 that is discarded by the gene predictiongyaAGU donor site and WGCAG/GU acceptor site consen-
algorithm causes it to miss the true parsing of the gene. Wgses. The control set profiles in each position closely reflect the

therefore focused in this study on site prediction methods thﬁ\‘rerage genomic base composition, as expected, because the
keep the rate of false negative predictions very low whilgon_sites are sampled equally from exons and introns.
minimizing the rate of false positive predictions. For each model

we report sensitivity, specificity, amndfor three choices of
(relative to the training set): (i) the highest response Wafoe
non-sites givingn= 1 (predicting all true sites correctly), (ii) the The average mononucleotide composition in windows of length
highest response valBdor non-sites givingn= 0.95 (allowing 50 nt flanking both sides of the donor GU and acceptor AG signals
5% of real sites to be missed), and (iii) the smallest valughat  is displayed in Tabld. The intron internal flanks display a U
maximizest. Note that there are always different choices of percentagéil3.5 and 16.5 points higher than that in the exons
giving the same predictor performance for the training sample. &mound the donor and acceptor sites, respectively. The exon parts
each case the response value close to an appropriately chosendrae3—10.5 percentage points higher in G content, and to a lesser
site value would work as well. Restriction to response values ektent higher in C and, for acceptor sites, also in A. The Wilcoxon
non-sites as candidates for the threslogiives more reliable signed-rank test for comparison of matched pairs was used for

Compositional contrast
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testing the statistical significance of the content differer&Bs ( equatiorB, and the salg, W, Xy denotes model equatiBmvithout
The contrast in C, G and U content is statistically significant faronsidering the variabMc, i.e., setting the parameter= 0.
both donor and acceptor sites, whereas the A content differs

significantly only for acceptor sites. Note that we cannot similarlyable 1. Compositional contrast around maize @webidopsissplice sites.
specify a typical compositional contrast for the set of non-sites,
because this set contains sites with flanking regions entirely within Donor sites Acceptor sites

exons, or entirely within introns, or involving exons and introns in exon intron A intron exon A
either order. In particular, the AG immediately upstream of the GUaize
in the donor site consensus gives rise to a fair proportion of

) ! . o 21.1 345 -134 376 215 161
non-acceptor sites with donor-like contrast. Similarly, the GU
: ) . ; A 24.0 23.7 03 215 250 35
immediately downstream of AG in the acceptor site consensus
gives rise to non-donor sites with acceptor-like contrast 26.9 18.9 80 192 295 -10.3
' C 28.0 22.9 51 217 24.0 -2.3
Arabidopsis

Splice site prediction U 27.3 410 -13.7 434 26.0 17.4

- . ) . A 26.9 270 01 245 29.0 45
We initially studied 12 dlffergnt models for the predmnon of splice 5 23.0 14.6 84 169 264 95
sites. Results for the maize data are shown in Tablthe

22.8 17.4 54 152 186 -3.4

Arabidopsiset gave similar results (not shown). For each model, thé&
sensitvity, SpeCITICIty, an_d value were derived for different Ievels_ Displayed are the average percent base frequencies in 50 nucleotide flanks up-
of the threshold in equatlorS. _The r_nOdels are represented by theilsyream and downstream of the conserved donor GU and acceptor AG, respect-
_deflnlng sets of varlable_s given in column one of Tabl&or ively. For convenience, the differences between upstream and downstream
instance, the set of variable®;, W,, Xy, Xcc denotes model percentages are given in columns 4 and 7.

Table 2.Prediction of splice sites in maize pre-mRNAs

FN =0, Sn = 100% FN =10, Sn = 95% tau maximal
Variables FP Sp (%) tau FP Sp (%) tau FN Sn (%) FP Sp (%) tau
Donor sites
Wsn 2945 6 0.18 629 23 0.44 46 77 171 48 0.59
W, XU 2108 9 0.24 289 40 0.60 55 73 72 67 0.69
Wsn, Xgc 2479 8 0.21 384 33 0.54 56 72 60 71 0.71
Wsn, Xu, Xgc 2342 8 0.22 298 39 0.59 52 74 67 69 0.71
Ws, Wh 2926 6 0.19 627 23 0.44 47 77 165 48 0.59
Ws, Wh, XU 2094 9 0.24 292 40 0.60 61 70 62 69 0.69
W, Wh, Xac 2518 7 0.21 383 33 0.54 57 72 58 71 0.71
Ws, Wh, XU, Xcc 2375 8 0.22 293 39 0.60 53 74 65 69 0.71
L 2983 6 0.18 590 24 0.46 44 78 164 49 0.60
L, Xy 1382 13 0.31 306 38 0.59 52 74 59 72 0.72
L, Xcc 1900 10 0.26 346 36 0.56 39 81 80 67 0.73
L, Xy, Xac 1497 12 0.30 284 40 0.60 38 81 70 70 0.74
Acceptor sites
Wan 3197 6 0.17 1373 12 0.30 100 51 127 45 0.46
Wen, Xu 2597 7 0.21 923 17 0.37 75 63 75 63 0.62
Wen, Xac 2471 8 0.22 731 21 0.42 82 60 83 60 0.58
Wsn, Xu, Xcc 2716 7 0.20 689 22 0.43 70 66 68 66 0.65
Ws, Wh 3195 6 0.17 1340 13 0.30 94 54 134 45 0.48
Ws, Wh, Xy 2699 7 0.20 610 24 0.45 58 72 109 57 0.63
Ws, Wh, XgC 2536 7 0.21 653 23 0.44 66 68 102 57 0.61
W, Wh, XU, XaC 2836 7 0.19 493 28 0.49 63 69 74 66 0.66
L 2533 7 0.21 1225 14 0.32 88 57 134 46 0.50
L, Xy 1506 12 0.30 529 27 0.48 55 73 86 63 0.67
L, Xcc 1526 12 0.30 502 28 0.49 64 69 94 60 0.63
L, Xu, Xcc 1516 12 0.30 411 32 0.53 33 84 133 56 0.67

Predictions are based on 201 true and 6305 false donor sites and on 204 true and 6290 false acceptor sites. FN, number of false negatives; FP, number of false |
Sn, sensitivity; Sp, specificity; tau, correlation coefficient, equaiorhe 12 different models are based on equaBasd4 of the text with only the indicated
variables included. For examplg, Wh, Xcc refers to model equati@with & = 0. Numbers that highlight performance differences between selected models appear
in bold face.
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As a standard model for comparisons we chose predictidoreover, the large performance differences between the models
based on the usual profile scok&;,. Requiring 100% sensitivity, upon inclusion of the contrast variables suggests that signal
such that no true splice sites are overlooked, forces choice of 8teength and compositional contrast do not contribute indepen-
predictor threshold of equatiord below the level of the weakest dently to splice site recognition. This apparent correlation is
true site in the training set. This strict requirement results in a veopvious for acceptor sites, because the U-rich section of the
large number of false splice site predictions. In the case of theceptor signal sequence clearly contributes to the U-content of
standard model, falsely predicted splice sites outnumber the tithe upstream flank, but it is less obvious for donor site prediction.
ones in a ratio of about fifteen to one. Allowing 5% of true sites To further investigate these issues, we categorized the splice
to be missed greatly reduces the number of false positigtes according to presence or absence of the most conserved
predictions. Specificity improves about 4-fold to 23% for donosignal residue apart from the donor GU and acceptor AG. For
sites and 2-fold to 12% for acceptor sites in the standard modealonor sites this residue is G in position —1 immediately upstream
(Table2). of the GU. Eighty-six percent of the donor sites in the maize set

Inclusion of the contrast variablg and Xgc significantly  and 79% in théArabidopsisset conserve this G. For acceptor
improves prediction quality. For example, for the standard modsites, signal position —3 immediately upstream of the AG is C in
at 95% sensitivity the number of false positive donor siteg7% of the maize introns and in 68% of Arabidopsisntrons.
decreases from >600 to <300 when ei¥peglone or botlXy and  Table3 and Tablet display the predictor performance of the L,
Xgc are considered in the model. Similarly, the number of fals®,, Xgc model trained separately on the respective subsets of
positive acceptor sites drops from nearly 1400 to <700 upaplice sites. For maize donor sites, great improvement is obtained
inclusion of both contrast variables. at the 100% sensitivity level: compared with the non-categorized

Replacing th&\k, variable by the separate teriisandW, for ~ model, the number of false positive predictions is reduced nearly
the most part does not change the predictor performance v&yold. Improvement is also substantial farabidopsisdonor
much. An exception are the acceptor site models invoKing sites at 100% sensitivity. A small but consistent improvement is
for which theWg, W, models are clearly superior to the modelsevident for acceptor sites in both species, and for all comparisons
at the 95% sensitivity level (but not in terms of comparing the with the 95% sensitivity and maxinmactriteria.
values). A much stronger and consistent improvement is obtainedVhile 100% sensitivity is a desired goal for splice site
with theL models involving the contrast variables. Specificity aprediction in gene finding algorithms, this is met with consider-
the 95% sensitivity level is up to 40% for donor sites and 32% fable difficulty for methods based entirely on local sequence
acceptor sites for tHe Xy, Xgc model. characteristics. This is particularly evident farabidopsis

It is noteworthy that, at the 100% sensitivity level, the gainacceptor site prediction. There are three sites in our training set
obtained with thé. models compared with the standard profilewhich score so low in all models that their inclusion forces
models are at best slight when the contrast variables are aateptance of an exceedingly large number of false sites (data not
considered. However, the improvements are substantial for thlrown). One of these sites precedes a nine base exon (exon 2 o
full models including the contrast variables: donor site specificithtbfructl, GenBank accession number X74515) and accordingly
increases from 6% to 12% for themodel as a result of adding displays atypical compositional contrast as the downstream 50
the variable¥ andXsc compared with an increase from 6% tobase flank is essentially all intron. The second site occurs in the
only 8% for the profile models, and acceptor site specificitgecond intron of the cytochrome ¢ gene (GenBank accession
increases from 7% to 12% compared with an increase for thember M85253). This intron is very short (59 bases) and only
profile models from 6% to 7%. A distinction between the 13.6% U, resulting in poor profile and contrast scores. The third
variable and the profile variablég, orWs andW is that, for the  site (intron 10 of GenBank accession number U05599) is one of
former, weights in each signal position are derigbdinitio  only threeArabidopsisacceptor sites featuring G in position —3
during the training, whereas for the latter the positional weightsd there are only two U nucleotides in the —15 to -5 region.
are fixed as log-frequencies and only the relative contribution &xclusion of these troublesome sites from the training set restores
their overall sum per site is estimated in the regression model. Tiermal levels of predictor performance (Ta#f)ethus clearly
greater flexibility of theL variable appears advantageousidentifying these sites as outliers.

Table 3.Prediction of splice sites in maize pre-mRNAs upon subclassification of splice sites according to extended consensus

Set FP Sp (%) tau FN Sn(%) FP Sp (%) tau FN Sn(%) FP Sp (%) tau

5 GGU 361 32 049 8 95 166 50 064 53 69 24 83 0.73
HGU 148 16 0.40 1 97 119 19 0.42 5 83 11 69 0.75
combined 509 28 051 9 9 285 40 060 58 71 35 80 0.75
CAG 857 15 027 7 96 232 39 056 32 80 61 67 0.70
DAG 453 9 0.29 2 9 69 39 0.61 12 74 5 88 0.81
combined 1310 13 033 9 96 301 39 0.60 44 78 66 71 0.74

Results are shown for theXy, Xsc model, trained separately on the indicated subsets of donor and acceptor site samples. Notation is as in Table 2. Prediction crif
were set to 100% sensitivity (columns 2-295% sensitivity (columns 5-9), and maximal tau (columns 10-14). TheGétbconsists of 172 true and 1466 false
donor sites, all with G preceding the GU donor consensus. H denotes ridi@g) Bonsists of 29 true and 4839 false donor sites. D denotes non-C. Tt@A8t 3
consists of 157 true and 1645 false acceptor sites; B#d3consists of 47 true and 4645 false acceptor sites. The combined sets show improved prediction compare
with the non-categorized models (cf. corresponding bold face entries in Table 2).
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Table 4.Prediction of splice sites irabidopsispre-mRNAs

Set FP Sp (%) tau FN Sn(%) FP Sp (%) tau FN Sn(%) FP Sp (%) tau
5 all 3594 14 032 28 95 819 40 060 101 82 205 70 0.75

5 GGU 1509 23 0.37 22 95 395 52 0.66 52 89 158 72 0.77
5 HGU 1011 11 0.31 5 96 362 24 0.47 31 74 38 70 0.72

combined 2520 19 0.39 27 95 757 42 0.61 83 86 196 72 0.77
3 all 4417 12 0.29 28 95 754 42 0.61 122 79 216 68 0.72
3 CAG 1855 17 0.27 19 95 323 53 0.67 79 80 102 75 0.75
3 DAG 2289 8 0.25 9 95 305 37 0.58 56 70 72 65 0.67

combined 4144 12 030 28 95 628 a7 065 135 76 174 72 0.73

Results are shown for theXy, Xgc model, trained separately on the indicated subsets of donor and acceptor site samples. Notation is as in Table 2. Prediction crif
were set to 100% sensitivity (columns 2-285% sensitivity (columns 5-9), and maximal tau (columns 10-14). Tllesgt consists of 577 true and 14 964 false
donor sites. 5GGU consists of 458 true and 3729 false donor sites, all with G preceding the GU donor consensus. H denoteslGaheBnSists of 119 true

and 11 235 false donor sites. THeB set consists of 574 true and 15 712 false acceptor sites. Three poorly scoring true acceptors were excluded as discuss
the text. D denotes non-C. The se€3G consists of 387 true and 3240 false acceptor sites, @Al consists of 187 true and 12 472 false acceptor sites. The
rows labeled ‘combined’ give the overall values for prediction based on the subclassifications.

Interpretation of model parameters result of missing sequence information for one intron in each
case) and foArabidopsiscomprising 65 sequences contained in
The parameter values estimated in the wake of fitting the modetg Korninget al (16) set, but not in our training set. Splice sites
to the training sets should reflect the relative importance of the these sets were predicted with the predictor threshgsti to
different variables and thus may guide future modeling as well g@se values derived in the training. As shown in Tabl¢he
interpretations in terms of the underlying splicing process. Werediction quality on the test sets is entirely comparable with the
discuss these possibilities for tAeabidopsisdonor site model results obtained for the training sets (TaBland Table4).
with subclassification. The estimated model parameters are giverediction with the thresholds that maximize theorrelation
in Table5. Several observations stand out: (i) The constant termeasure on the training sets is the least stable. However, this is of
a is [B-fold higher for the GGU sites than for the HGU siteslittle concern because in typical applications the threshold will be
Inserting into equatioA we calculate d-value of 0.97 for a set to the more stable extremes that give either high sensitivity or
perfectly matching GGU donor site= 0 assuming no effect of high specificity. It is of particular significance to note thatithe
compositional contrasfy = Xgc = 0, compared with 8-value X, Xgc model with subclassification outperforms the other
of only 0.59 for a perfectly matching HGU donor site. Thus, outodels on the test sets as it did on the training sets. Thus, the
model predicts that splice site quality is considerably reduceddfsplayed performance values seem to reflect the best possible
the consensus G in position -1 is replaced. (ii) From Taki®  accuracy for splice site prediction based on the scope of models
expected contrast values abg—= Xsc = 0.14. Inserting these we investigated.
values (withL remaining zero) results P-values of 1.00 and
0'97.f0r GGU and HGU sites, respectll\./ely. Thus, the mOdiﬁlﬂbIe 5.Arabidopsisdonor site model parameters
predicts that average or better compositional contrast can fully
restore splice site quality in the HGU class of sites. (i) The mosg

negative weights occur in positions —2, 1 and 3 for GGU sites, an fameter  GU set (458 sites) HGU set (119 sites)
in positions 1-3 for HGU sites (positions counted relative to GUY 3.46 0.37
cf. Fig.1). Note that the penalties in positions 1-3 are more severg -9.71 -8.87
for the HGU set compared with the GGU set, indicating tha 13.68 13.09

further mismatches to the consensus are probably ill tolerated In
the former set. The importance of G at positon 3wasalso A ¢ G U A C G U

confirmed by Hebsgaarét al (14) and likely reflects a 13 0 0.32 -1.20 -0.80 0 0.20 -0.79 -0.91
requirement of hybridization by U1-RNA,(0). " 0 322 _305 -2.74 0 071 -1.29 -1.26
g 0 0 0 0 -0.17 -011 0 0
Validation tests for the splice site predictor Iy 0 _3.01 -299 -287 0 _3.18 267 -521
We tested in several ways how well the prediction uerks 12 o -l08 -211 -1.78 0 213 -452 271
to identify true splice sites in genomic DNA. Standard crossds  -253 -282 0  -2.72 -398 556 0  -3.73
validation techniques proved all models robust so that over-fitting,  _135 —0.82 -1.80 o0 117 -0.90 -154 0

during training could be ruled out (data not shown). For an

Qdditior]al test, we cgmpiled independent test sets ponsisting Ffameters are given for théq, X model (equatiod) with subclassification.
five maize genes (originally excluded from our training set as arameters set to 0 correspond to the consensus donor site residues.
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Table 6. Validation test of the splice site predictor

¢ (Sn =100%) ¢ (Sn = 95%) ¢ (tau maximal)
Set FN Sn (%) FP Sp (%) tau FN Sn (%) FP Sp (%) tau FN Sn(%) FP Sp (%) tau
Maize
Donor sites
Wsn 0 100 444 7 0.2 3 91 90 26 0.46 13 63 25 47 0.52
Wen, XU, Xac 0 100 349 9 0.24 5 86 41 42 0.58 13 63 11 67 0.63
L, Xu, Xac 0 100 216 14 0.33 3 91 45 42 0.60 10 71 9 74 0.71
GGU/HGU 1 97 70 33 0.54 3 9 39 45 0.63 17 51 4 82 0.64
Acceptor sites
Wen 0 100 503 7 0.18 3 92 216 14 0.30 20 46 23 43 0.42
Wen, XU, Xac 0 100 436 8 0.20 2 95 108 24 0.45 15 59 13 63 0.60
L, Xu, Xec 0 100 216 15 0.34 4 89 68 33 0.51 1 70 27 49 0.57
CAG/DAG 0 100 185 17 0.37 6 84 51 38 0.54 12 68 18 58 0.61
Arabidopsis
Donor sites
L, Xu, Xec 0 100 1389 17 0.36 14 95 315 46 0.64 57 79 74 75 0.76
GGU/HGU 0 100 969 22 0.43 14 95 289 48 0.65 46 83 78 75 0.78
Acceptor sites
L, Xu, Xcc 3 99 1710 14 0.31 19 93 301 46 0.64 63 77 84 72 0.74
CAG/DAG 3 99 1636 14 0.32 27 90 247 51 0.66 73 74 70 75 0.73

GGU/HGU and CAG/DAG denote the Xy, Xsc models with subclassification. The three levels of the predictor threshold were set in accord with the respectiv
training data (Tables 3 and 4). Notation is as in Table 2. The maize test set consists of 35 true and 951 false donor sites and 37 true and 933 false acceptor s
Arabidopsigtest set consists of 277 true and 6101 false donor sites and 280 true and 6022 false acceptor sites.

DISCUSSION variables onto the [0,1] interval, where 1 indicates strong
L . ) ) prediction of a splice site and 0 indicates strong rejection of that
Elucidation of theransacting factors andis-acting elements hypothesis.

involved in splice site selection and determination of splicing
efficiency in plqnt pre-mRNAs has been h_am_pered by the abseq;gr%f” e methods
of a plantin vitro splicing system. Similarities to yeast and
vertebrates in terms of splice site consensuses and the sequefiibes strongest evidence that the considered variables truly
of the small nuclear ribonucleic acids are juxtaposed by pladetermine splice site selection would derive from a clear
specific features. Thus, plant introns generally lack a polypyrimgeparation of the scores for true splice sites from those of control
dine run upstream of thé $plice site, a feature that is conservechon-sites in both training and test sets. The degree of separation
in most yeast and vertebrate introns, nor do they containi® most stringently assessed by how many false positive
characteristic branchpoint sequence. On the other hand, plantdictions are made when the predictor is trained to 100%
introns are typically distinguished from the flanking exons by aensitivity, i.e., not to reject any true site. For example, just
strong bias towards U bases (Tableand this bias plays a role defining the splice sites by the consensus GU and AG dinucleo-
in accurate pre-mRNA processing (for reviews%e6). tides leads td B0 false positive predictions for every truly
Here we pursued the challenge of predicting splice sites in pladentified site. Our results (TabB show that discrimination
pre-mRNA from local sequence inspection. A successful solutidrased on the usual profile scofég decrease the number of false
to this problem would both suggest that our understanding pbsitive predictions onlyR2-fold. For every true donor site in the
splice site recognition variables is sound and also be afaize training set the model would also accept an average of 15
considerable practical importance in the context of gene identifalse sites, and for every true acceptor site it would inclil@e
cation algorithms. Specifically, we attempted to derive rules thabn-acceptor sites.
would distinguish true donor and acceptor splice sites from theOne hundred percent sensitivity is, of course, a very strict
large excess of alternative sites that minimally conserve only thequirement, and one that is easily foiled by a few exceptional
characteristic GU and AG consensuses, respectively. For each sites in the training set, including possible cases of erroneous
we evaluated (i) the particular sequence in the signal positiogglice site determinations or annotations. Some such problems
that are typically conserved in true splice sites, and (ii) theccurred with our originarabidopsisacceptor site training set
compositional contrast between the flanking 50 bases upstreéhable4). But even allowing 5% of true sites to be overlooked by
and downstream of the sites (Fij. We explored logitlinear the predictor (i.e., training the predictor to 95% sensitivity), the
models to map linear combinations of the values of thegwofile method would still accept an average of three or seven



4726 Nucleic Acids Research, 1996, Vol. 24, No. 23

inl

exd |

-lnj Tk 1 I I E] liaull lxnmlllalrnl

|
3

I T ru F 13 L} ATil WETIL ME K F 3

Figure 2. Donor site prediction for the maize actin gene sequence (GenBank accession no. J01238). The four exons and three introns are drawn to scale. Ea«
on the scale on the bottom represents 100 nt. Small triangles from below indicate positions at which GU is found in the sequence. Arrows from below mark GU loca
which are accepted as donor sites by the standard donor site profilevgpdetows from above indicate GU positions accepted by the logitlinear inoge|

Xcc with sub-classification. For each model, the prediction threshold was set at the 95% sensitivity level as derived from the training set. All true donor sites are stre
predicted. Note the false positive donor site prediction caused by the AG/GU intron 2/exon 3 boundary which in this sequence is not distinguished by composit
contrast.

false sites for every correctly predicted maize donor or acceptitiustrated for a typical gene in Figu2eThe best modeL( Xy,
site, respectively (Tabl®. Xgc with subclassification) is built into oBplicePredictor
program.

We would note that our performance statistics are conservatively
estimated by disregarding the relative location of the false
The above numbers demonstrate the need for improved splice gigsitive predictions with respect to the known or potential splice
prediction methods. We showed that including compositiongroducts. For example, the intron 2/exon 3 boundary in the maize
contrast variables and modeling the signal sites by the moaetin gene is AG/GU and results in both a correct acceptor site
general weightg (Fig. 1) greatly enhanced the performance ofprediction and a false positive donor site prediction (cf. Fig.
the predictor: at 100% sensitivity, the ratio of false positive sitddowever, as long as the splicing machinery efficiently recognizes
to correctly identified sites decreased [i@, and at 95% the upstream true donor site, this false positive site is irrelevant.
sensitivity, this ratio decreased to 2 or less (Table Hebsgaaret al (14) recently demonstrated that incorporation of

The result that the logitlinear models involvingpstead of the  this type of global coding potential assessment drastically
usual profile scores performed so much better was initiallynproves exon/intron prediction.
surprising. Our interpretation is that the equal weighting of the
different signal positions in a common profile application is
inadequate. For example, in the maize donor sites the positiBerspective
immediately upstream of GU is 86% G. However, in the non-sites
exceeding the minimal profile score of the true sites this positiddespite the substantial improvements in splice site prediction
is only 33% G. Thus, the majority of these non-sites compensatéh the refined models, the success rate of the predictor is not
for the lack of this G with a more favorable match to the consensestirely satisfactory. This may reflect inherent limitations within
in other positions. But the compensation in terms of scorinipe current framework. First, there are other factors influencing
apparently does not reflect splice site functionality. splice site selection that have not been considered. For example,

As a refinement of the model, we therefore subclassified truecent studies have identified branchpoints in some plant
splice sites and control non-sites according to the presenceppe-mRNAs 82,33). The exact sequence requirements for plant
absence of the most strongly conserved splice site bases apaanchpoints are unclear, but, when present, the branchpoint
from the characteristic GU and AG. This approach succeededlikely has a role in '3splice site selection. There are also
further lowering the numbers of false positive predictions, botbuggestions of specific intron and exon recognition facidrS)(
in the training sets (Tabkand Tablel) and in independent test which may actively contribute to true splice site selection or
sets (Tables). The improvements in splice site prediction areotherwise mask high scoring non-sites by binding to pre-mRNA.

Improved methods



Nucleic Acids Research, 1996, Vol. 24, No. 23727

Also not considered in our current model are changes in thé Guigo, R., Knudsen, S., Drake, N. and Smith, T. (199®)ol. Biol 226
local site attributes during the sequential process of splicing. F(ér 141-157.
|

example, the splice sites delineating very short exons wou gg)r'féeréiﬁdasngaﬁtsorgg %g@;ﬁ%gg Asi'gfsieﬁl 607-613.

typically display poor compositional contrast. Once one of the; Brunak, S., Engelbrecht, J. and Knudsen, S. (1B9apl. Biol 220
introns is removed, the remaining intron will be flanked by the 49-65.
fusion of the short exon with its adjacent exon, which should® flir%}o{zgd?ég- Nagashima, T. and Ono, K. (1996np. Appl. Biol. Sci
restore the typical compositional contrast. Itis also possible thgt Filipowicz, W., Gniadkowski, M., Klahre, U. and Liu, H.-X. (1995)
relatively high scoring non-sites are locally suboptimal compared  pe_mrNA splicing in plants. In Lamond, A.I. (e8ifg-mRNA
with nearby true sites and are irrelevant because splice site processingR.G. Landes Publishers, Georgetown, TX, pp. 65-77.
selection is accomplished by scanning for the locally besd Luehrsen, K.R., Taha, S. and Walbot, V. (19%4). Nucleic Acids Res.
matching site. Moreover, interaction of adjacent splice sites in1 '\ég'c-)c?;ﬁ'- é7j 1;1251':?"3-0Wm W, (1985156, 473483
e|th.e'r'5 t’O 3 ('”tror? dgflnltlon) 0( 3t 3 p'olarlt'y (e_xon . 12 Lou, H.,’McCullough,pA.J. ar’1d Schuler, MA (198B)l. Cell. Biol 13,
definition’; 34) may indicate selection of splice sites in pairs 4485 4493
rather than individually. 13 Luehrsen, K.R. and Walbot, V. (199@nes De\8, 1117—1130.

The above issues will have to be addressed by further modelit¥y Hebsgaard, S.M., Korning, P.G., Tolstrup, N., Engelbrecht, J., Rouzé, P.
studies. The logitlinear modeling approach provides a very @and Brunak, S. (199®ucleic Acids Re24, 3439-3452.
flexible tool in this context which is statistically very well 12 Brendel, V. (1892Mathl. Comput. Modelling6 (6/7), 3743,

. . 16 Korning, P.G., Hebsgaard, S.M., Rouzé, P. and Brunak, S. (1996)
understood and, as discussed, thoroughly motivated for sequenceycleic Acids Reg4, 316-320.

signal recognition problems. 17 Kondrakhin, Y.V,, Kel, A.E., Kolchanov, N.A., Romashchenko, A.G. and
Milanesi, L. (1995 Comp. Appl. Biol. Scil1, 477-488.
11, 563-566.

: ; ; Prestridge, D.S. (1995) Mol. Biol 249, 923-932.
The databases and profiles used in this study as well as gge Santner, T.J. and Duffy, D.E. (198%e Statistical Analysis of Discrete
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for splice site prediction in plant genes, are available electronically christensen, R. (1990pg-linear ModelsSpringer-Verlag, New York.
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