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Abstract
The presence of large number of false lesion classification on segmented brain MR images is a major
problem in the accurate determination of lesion volumes in multiple sclerosis (MS) brains. In order
to minimize the false lesion classifications, a strategy that combines parametric and nonparametric
techniques is developed and implemented. This approach uses the information from the proton
density (PD)- and T2- weighted and fluid attenuation inversion recovery (FLAIR) images. This
strategy involves CSF and lesion classification using the Parzen window classifier. Image processing,
morphological operations and ratio maps of PD and T2 weighted images are used for minimizing
false positives. Contextual information is exploited for minimizing the false negative lesion
classifications using hidden Markov random field – expectation maximization (HMRF-EM)
algorithm. Lesions are delineated using fuzzy connectivity. The performance of this algorithm is
quantitatively evaluated on 23 MS patients. Similarity index, percentages of over, under and correct-
estimations of lesions are computed by spatially comparing the results of present procedure with
expert manual segmentation. The automated processing scheme detected 80% of the manually
segmented lesions in the case of low-lesion load and 93% of the lesions in those cases with high
lesion load.

Keywords
Segmentation; Feature classification; Multiple Sclerosis; Expectation maximization; Hidden Markov
random field; MRI

INTRODUCTION
Magnetic resonance imaging (MRI) is a sensitive modality for visualizing MS lesions. MRI-
determined lesion burden is used as a secondary outcome measure in a number of multicenter
clinical trials on MS.18, 12 Accurate tissue segmentation is a prerequisite for robust estimation
of lesion volumes. Independent of the segmentation technique used, various factors such as
noise, intensity inhomogeneities, and partial volume effects introduce false tissue
classifications. These false classifications can be reduced to some extent by applying image
preprocessing techniques aimed at reducing noise and shading.13, 4 However, these steps only
partially reduce the false classifications. Elimination of these false classifications requires
considerable human intervention. Such intervention is impractical when dealing with large
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number of images that are typically encountered in multicenter clinical trials. Therefore, the
image processing and segmentation techniques need to be either fully automatic or involve
minimum human intervention.

While the emphasis of the current studies is on lesion segmentation, as indicated in the methods
section below, minimization of false lesion classifications requires segmentation of other brain
tissues. Wells et al.17 have proposed expectation maximization (EM) approach for iteratively
and simultaneously correcting for the bias field and classifying tissues. Zhang et al.19 used
hidden Markov random field (HMRF) model along with EM algorithm to incorporate
contextual information into segmentation. These parametric methods assume the tissue classes
to be modeled by some known distribution. While this appears to be true for gray matter (GM)
and white matter (WM) classes which follow Gaussian distribution, lesions and CSF do not
follow any known distribution. For example, Van Leemput et al.11 have identified MS lesions
as outliers that are not well handled by this model. In contrast, nonparametric methods such as
Parzen window classifier6 do not assume any distribution for tissues. These methods segment
images using the feature space generated from the feature vectors comprised of the seed points
for different classes.4 However, nonparametric techniques such as Parzen classifier are also
prone to false classifications.

Both parametric and nonparametric techniques have their own strengths and weaknesses. For
example, parametric techniques are robust but assume a known intensity distribution. This is
not satisfied for lesions and to some extent CSF. On the other hand, nonparametric techniques
do not assume any distribution. However, nonparametric techniques also introduce false tissue
classifications. Therefore, by combining these two techniques, it is possible to improve the
segmentation quality. This is the approach that we have followed in the current studies. This
method was quantitatively validated using similarity measures against the results of manual
segmentation performed by an expert neuroradiologist using MR images acquired on 23 MS
patients.

METHODS
Patients

Twenty three patients (18 females and 5 males) with clinically definite MS were included in
this study. Their mean age was 36 years (mean ± SD: 36.42 ± 9.9, range: 20-51 years). Their
expanded disability status scale (EDSS) ranged from 0 to 5 (median score of 1.3). Written
informed consent was obtained from all patients. These studies were approved by our
Institutional Committee for the Protection of Human Subjects.

MRI acquisition
MR images were acquired on a 1.5 T, General Electric scanner. Subjects in the present study
were recruited and scanned over a period of time. During this period of time, the scanner
software was upgraded from 8.x to 9.x. Therefore data on some patients was acquired under
8.x while data on others was acquired under 9.x operating system. A quadrature birdcage
resonator was used for radiofrequency transmission and signal reception. Dual echo images
were acquired using the fast spin echo (FSE) sequence with the following parameters: TR =
6800 ms, TE1/TE2 = 12 ms/ 86 ms. Fast Fluid Attenuated Inversion Recovery (FLAIR) images
were acquired with TR = 10002 ms, TI = 2200 ms, and TE = 91 ms. A total of 42 contiguous
and interleaved slices, each of 3 mm thick, were acquired using the FSE and FLAIR sequences
with the following parameters: FOV of 240 mm × 240 mm, and image matrix of 256 × 256.
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Segmentation of Lesions, CSF, and Parenchyma
FLAIR images were registered with the interleaved dual echo images using the 3D rigid body
registration technique.9 This multi-resolution technique maximizes the mutual information
using the global optimization technique that is based on the genetic algorithm in continuous
space and dividing rectangle method. Bias field correction was applied on these three sets of
images using the module provided in statistical parametric mapping (SPM2).2 The
extrameningeal tissues from the MR images were removed (image stripping) using semi-
automated, in-house developed software. Anisotropic diffusion filter was applied to reduce
noise in the images without concomitant image blurring.15, 7 While the filtration operation can
be performed either before or following the image stripping, in these studies we chose to filter
the post-stripped images. Intensity standardization14 was applied to all data sets so that the
same feature maps could be applied to images acquired on different patients for Parzen window
classification.13 Initially, lesions, CSF and parenchyma were classified on the late-echo FSE
(T2-weighted or T2 images) and FLAIR images based on the two-dimensional feature map
generated using the nonparametric Parzen window algorithm.6 The training points used for the
generation of the feature map were identified by an individual with expertise in neuroanatomy.
The two-dimensional feature map was generated using Parzen estimator with a Gaussian
kernel:

p̃(x) = 1
n ∑
i=1

n 1

(hn 2π)2
exp( − x − ξi

2

2hn
2 ) [1]

The n samples of the training set in the two-dimensional feature space is denoted by ξi, i ∈
{1, ..., n}. Here, hn = h1 ∕ n and the parameter h1 was chosen as:

h1 = 2
R ( Total number of points sampled for all tissues

Number of tissues sampled )1∕2 [2]

where R is the rejection radius. Based on our experience, a value of 90 was used for R.

Removal of Surface Lesions
Small errors in the image registration and partial volume effects tend to produce false lesion
classifications around the brain edges. Careful observation on a large image database obtained
from multiple patients indicated that most of these false positives occurred within 2 to 3 pixels
from the brain surface. Using this criterion and employing the morphological erosion operation
with 2D kernel of size 3×3, all false lesions at the surface were eliminated.

False Positive Minimization (FPM) Inside Brain
False classifications inside the brain were eliminated using the ratio maps that were generated
by taking the ratio of PD and T2 weighted images.10 A single threshold value, based on careful
observation of a number of images, was used for all data sets to obtain a binary ratio mask of
brain, excluding CSF and lesions (See Table 1). Negation of this mask was multiplied by the
lesions obtained with Parzen classifier. Sizes of lesions obtained by the masking were usually
smaller than the sizes seen on Parzen classifier. These sizes were matched with the Parzen
classification by considering all the connected pixels of lesion. This procedure was observed
to significantly minimize false positives. These identified false positive regions were
reclassified as parenchyma which was later segmented into GM and WM.

Classification of GM and WM
Usually, GM and WM classes, but not lesions and CSF, follow a Gaussian distribution.
Therefore, in the present study we have classified CSF and lesions using the Parzen classifier.
Then the remaining brain parenchyma, excluding CSF and lesions, was classified into GM and
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WM using the proton density (PD or short echo FSE) and T2 images (long echo FSE). A
parametric method, the HMRF-EM algorithm19 that is applicable to multispectral case was
used for GM and WM classification.

A d-dimensional HMRF model with a Gaussian distribution can be specified as:
p(yi ∣ xNi

, Φ) = ∑
l∈L

g(yi; Φl)p(l ∣ xNi) [3]

where g(yi; Φ) = 1

(2π)d ∣ Σ ∣
exp( − 1

2 (yi − μ)tΣ −1(yi − μ)), with Φ = {μ, Σ}. L represents

the set of all class labels. yi is a feature vector in d-dimensional space and xNi is the
neighborhood configuration of xi determined from the local characteristics of Markov random
fields. Estimation of the model parameters for tissue classification simultaneously with bias
field correction using expectation maximization (EM) approach is discussed in detail
elsewhere.19 This method incorporates the contextual information into segmentation through
MRF theory.

False Negative Minimization (FNM)
During the minimization of false positives, some true lesions, particularly subtle lesions, were
eliminated from lesion classification. Following GM and WM segmentation, these regions
were mostly classified as GM. More than 95% of MRI-observed MS lesions reside within WM.
So, all the GM islands surrounded by WM or lesion were re-examined for possible
reclassification as lesions. This was done by first labeling all disjoint GM segments by the
connected component analysis (blob coloring3) that assigns every disconnected island a distinct
numerical value (identifier/flag). For each GM segment, G, the outer boundary β(G) was
obtained by

β(G) = (G ⊕S) − G, [4]

where G⊕S  is the dilation of G by the 2D structure element S of size 3×3. If the boundary β
(G) had pixels of WM and/or lesion only, then the associated GM region, G, was classified as
lesion if it was originally segmented as lesion on the Parzen classifier but was deleted during
the FPM. Though this procedure recovered most of the lesions inside the WM, it did not recover
the deleted lesions located in the GM and WM mixture regions and cortical gray matter.

Following the minimization of false classifications, lesions were delineated using fuzzy
connectivity16 on the FLAIR images. In the present application, the degree of fuzzy adjacency
between two spatial elements was assigned a value of unity if they differed in exactly one of
the coordinates by one, and zero otherwise. The strength of fuzzy affinity, μκ (c,d), between
the spatial elements c and d was described by the relation

μκ(c, d) = μα(c, d) ω1g1 + ω2(1 − g2) . [5]

Here, μα (c, d) is the degree of adjacency assigned to the spatial elements (c, d), g1 and g2 are
multivariate Gaussian functions and ω1 and ω2 are non-negative weights such that ω1 + ω2 =
1. All the terms in equation [5] have the same meaning and definitions as described by Udupa
et al.16 The values for ω1 and ω2 were chosen as 0.7 and 0.3 respectively. The threshold for
fuzzy connectivity was set to 0.5. All thresholds and weights used for the delineation of lesion
using fuzzy connectedness were optimized and fixed following a careful examination of a large
number of data sets.

The final segmentation results, as judged by the expert neuroradiologist, have demonstrated
more accurate lesion sizes with significantly reduced false lesion classifications.
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The complete segmentation procedure is summarized in Fig. 1. The software was implemented
on a PC under the Interactive Data Language (IDL, Research Systems, Inc., Boulder, CO)
environment. SPM2 module for bias field correction and HMRF-EM algorithm were re-
implemented in IDL.

Manual Segmentation
In the absence of histologic confirmation, the true lesions and true lesion volumes are not
known. Therefore, we relied on the expertise of a neuroradiologist (RKG) to establish the “true”
lesions and their volumes by manually segmenting the lesions using the in-house developed
software. All lesions identified on the MR images of the 23 MS patients were manually
segmented. The expert classification was based on interpretation of the registered PD, T2 and
FLAIR images and considered to be the “gold standard” or “reference” in these studies. Regions
with high intensity in WM and GM on PD, T2 and FLAIR were defined as lesions. Hyperintense
regions at tissue interfaces with the vasculature and the hyperintense ventricular lining seen
on FLAIR were not considered as lesions. Periaqueductal hyperintensity was also not labeled
as lesion. We arbitrarily classified patients into two categories: category I if the total lesion
volume in the whole brain was less than 10 cc (N = 8), and category II if the total lesion burden
was greater than or equal to 10 cc (N = 15).

Evaluation
The performance of the automatic segmentation results were quantitatively compared against
the “gold standard” using four different similarity measures (Eqs. [6a]-[6d]): similarity index
(SI), percentage of correct estimation (PCE), percentage of over estimation (POE), and
percentage of under estimation (PUE). The SI is a measure of agreement in lesion volume
between the reference and the segmented results. The PCE measures the percentage of correctly
classified segmented lesion volumes relative to the reference. The POE measures the
percentage of false positive classification relative to the reference while the PUE measures the
percentage of missed lesion classifications. While the performance of the segmentation is
evaluated based on the value of SI, the other three similarity measures provide an insight into
the effect of each processing step on the lesion segmentation. The four similarity measures are
formally defined as:

SI = 2 × (Ref ∩ Seg)
Ref + Seg [6a]

PCE = Ref ∩ Seg
Ref × 100 [6b]

POE = Ref̄ ∩ Seg
Ref × 100 6c

PUE = Ref ∩ Seḡ
Ref × 100 6d

In these definitions, Ref and Seg denote the volumes based on the manual (expert classification)
and the segmentation algorithm described above, respectively. The intersection of Ref and Seg
represents the volume of the correctly classified voxels. The volume Ref̄ ∩  Seg corresponds
to the false positives while Ref ∩ Seḡ Seg represents the false negatives.1 In all these measures
the spatial correspondence between the automatic and manual segmentations was considered.
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RESULTS
Segmentation

Figure 2 shows PD (A), T2 (B) and FLAIR (C) images of an MS brain. Figure 2D shows the
segmented image in which CSF (blue), parenchyma (gray), and lesions (salmon) were
classified. The segmented image was based on the FLAIR and T2 images using the Parzen
window classifier. The presence of large number of false lesion classifications, particularly
those close to the surface, can easily be appreciated on this image. Some of these false
classifications are indicated by the open arrow heads. The same image following the removal
of surface false positive lesions, as described earlier, is shown in Fig. 2E. However, this step
did not completely eliminate all of the false positives within the brain parenchyma as some of
them are shown by the solid arrow heads. These remaining false positives were removed using
the ratio mask obtained with a threshold of 1.75, as described earlier. The value of the threshold
was determined following a careful examination of a large number of images on different
patients. The same threshold was used for all images with consistent results obtained. As an
example Table 1 shows various similarity measures calculated at different thresholds on one
patient data. As can be seen from this table, a threshold value of 1.75 yielded the best results.
This value was employed in the segmentation of all the patient data. On the ratio mask, lesions
and CSF appear with zero intensity. Application of the ratio mask eliminated the majority of
the remaining false positive lesions (Fig. 2F).

Identification and elimination of the false negatives that occur in the segmentation process
require contextual or neighborhood information. Therefore, prior to eliminating false negative
classifications, brain parenchyma was classified into GM and WM using the HMRF-EM
algorithm as described earlier. For this purpose, the brain mask excluding the lesions and CSF
was generated (Fig. 2G). This mask was applied to the T2 and PD images and using the HMRF-
EM algorithm, the parenchyma was classified into GM and WM (Fig. 2H). The segmented
images shown in Figs. 2F and 2H were merged to generate the final segmented image (Fig. 2I)
in which all the tissues were classified.

Figure 3 demonstrates the false negative minimization. In the prior example, we observed few
false negative lesions and the effectiveness of false negative minimization could not be clearly
demonstrated. Figures 3A - 3C show the magnified regions on PD, T2 and FLAIR images
respectively. Figure 3D is the segmented image obtained as described above. A comparison of
the FLAIR and segmented images shows a number of false negative lesions. The gray matter
islands surrounded by WM or connected to lesions only were identified as described in the
previous section. By comparing with the original Parzen classification, some of these GM
islands were reclassified as lesions (Fig. 3E), as indicated by solid arrow heads. However, the
sizes of these identified lesions were generally smaller than the actual lesions. Fuzzy
connectivity was used for complete delineation of the lesions (Fig. 3F), shown by open arrow
heads.

Quantitative Analysis
Since the main purpose of these studies was to evaluate the quality of lesion segmentation, we
quantitatively evaluated the performance of the segmentation results on the brain images of 23
MS patients using the evaluation metrics described above (Eqs. [6a] - [6d]). The same Parzen
map and threshold values were used in segmenting all of the images on all of the patients.

In order to determine the extent of improvement in the segmentation quality following each
step (segmentation based on the Parzen classification, FPM and FNM), we computed the
similarity measures at each stage. It should be pointed out that FNM also includes lesion
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delineation using the fuzzy connectivity. The scatter plots of SI, over- and underestimation of
lesion volumes against reference lesion volume for all subjects are shown in Figs 4A–4C.

The similarity index using the Parzen classification without the application of FPM and FNM
varied from 0.05 to 0.7 depending on the patient. However, this value increased from 0.3 to
0.9 following FPM, suggesting the importance of this step in accurate lesion segmentation.
Significant improvement in the similarity indices in all the 23 subjects is evident from this plot
[Fig. 4A]. FNM resulted in a smaller increment in improvement compared to FPM. These
results also indicate that the process of FPM did not introduce large numbers or volumes of
false negative lesions. This behavior was observed in all the 23 patients.

As can be seen from Fig. 4B, Parzen classification alone overestimated the total lesion volume
by as much as 60 cc. This number was dramatically reduced by the FPM step. The effect of
various processing steps on the underestimated lesion volume is shown in Fig. 4C. In this
analysis, Fig. 4C suggests that Parzen window classifier alone did not underestimate the lesions.
Reduction in underestimated lesion volume after FNM step indicates that most of the lesions
deleted during FPM were recovered.

The effects of various segmentation steps, averaged over all the patients, are summarized in
Tables 2 - 4. The values in these tables indicate the mean ± sd and are shown separately for
the category I and category II patients. The results suggest that FNM has provided an overall
improvement in all the similarity measures. This effect seems to be particularly impressive for
patients with low lesion load (category I). The POE values are particularly high for small lesion
load (category I) compared to large lesion load (category II). The values of PCE and SI were
higher for category II compared to category I. Overall, these results suggest the importance of
both FPM and FNM in maintaining the segmentation fidelity.

Quantitative analysis indicates high similarity measures between manual and the proposed
segmentation procedure. For instance the percentage of correctly estimated lesion volumes is
93% for high lesion load (≥ 10 cc; category II) patients and 80% for patients with smaller lesion
loads (<10 cc; category I). When both categories are combined, the percentage agreement is
about 88%. Perhaps a better index that reflects the quality of segmentation is the similarity
index that accounts for both false and correct classification. The similarity index in the current
studies is 0.84 for category II patients and drops to 0.67 for category I patients. However, the
overall value of 0.78 is one of the highest reported values in white matter lesion classification.

Bland-Altman Plot
Bland-Altman analysis was used for an objective evaluation of the agreement between the
manual and segmentation results.5 Bland-Altman method is a statistical technique for assessing
the agreement between two imperfect measures of the same variable. In this method the
difference between the two measurements of the same variable (also referred to as bias) is
plotted against the estimate of the true value (mean of the two measurements). In the present
analysis, difference was computed by subtracting the lesion volume obtained by our method
from the manually segmented volume. Generally the mean and mean ± 2 sd values of the
differences are shown on these plots to provide a visual estimation of both random and
systematic differences between the two measurements. The Bland-Altman plot for the lesion
volumes is shown in Fig. 5. The plot demonstrates a close agreement between the two
segmentation methods. This analysis also shows a bias that is below the zero mean, indicating
that the automatic analysis systematically overestimated the total lesion volume. However, the
bias is well within the two standard deviations.
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DISCUSSION
In spite of significant advances in image segmentation, lesion classification in MS continues
to be problematic. To some extent this can be alleviated by manually editing the segmentation
results. However, this becomes impractical when handling large amounts of data. Automatic
detection of false negative classifications is particularly problematic, and to the best of our
knowledge has not been addressed in any formal publications. In the present study, a unified
approach combining both parametric and nonparametric segmentation methods with
morphological operations is used to minimize these false classifications. Such an approach
overcomes the limitations of the parametric methods that require tissue distribution to follow
a well defined distribution. Since lesions and CSF do not obey this requirement, as powerful
as they may be, parametric techniques do not perform well in the classification of lesions. The
nonparametric techniques, in contrast, do not require any type of distribution for tissues. In the
present studies, the minimization of false negative lesion classification after FPM utilizes the
knowledge of the tissue type in the neighborhood of lesions and classification of GM and WM.
Previous studies have also shown that both of these tissues follow a Gaussian distribution.
Therefore, in the current studies WM and GM were classified using the HMRF-EM algorithm,
which is a parametric technique that has been shown to be robust in classifying tissues that
obey a well defined distribution. As can be appreciated from our results, such an approach
appears to have been reasonably successful.

Automatic identification and minimization of false lesion classifications is an important part
of the current studies. This aspect of segmentation received relatively little attention in the
literature. As can be seen from our results, without these steps, the lesion volumes are
overestimated by as much as 60 cc. The concept of using ratio images for lesion segmentation
was originally proposed by Krishnan and Atkins.10 These authors used this technique as a part
of the overall segmentation, but have not explicitly used the ratio images for minimization of
false positives. In the current studies, removal of false positives, in some instances, resulted in
the elimination of true lesions, particularly subtle ones. The GM and WM classification and
the “blob coloring” technique used in these studies for automatic identification of the false
negatives appear to have reduced this problem, as can be judged from the results [Table 4].
This step does remove intracortical lesions. It is worth pointing out that MRI is not very
sensitive in demonstrating cerebral cortex lesions. For example, in a recent study Geurts et
al.8 have shown that even on the FLAIR images only about 5% of cortical lesions appear on
MR imaging. In all the 23 patients, we did not see on MR any lesion within 2 pixels distance
from brain surface.

In these studies we quantitatively evaluated the performance of our segmentation using the
similarity measures. These metrics were originally applied by Leemput et al.11, Zijdenbos et
al.20, and Anbeek et al.1 to measure the concordance of their results with manual segmentation
of white matter lesions. With their segmentation techniques, Leemput et al.11 and Zijdenbos
et al.20, achieved similarity indices of 0.51 and 0.68 respectively, while Anbeek et al.1,
achieved a value of 0.7 for SI for all of their study patients. In our present approach this value
is 0.78 suggesting the superior performance of our method. It is difficult to quantitatively
compare our results with other published results since very few publications evaluated the
performance of the segmentation using the metrics of the current studies.

As indicated earlier, one of our main objectives is to automate all the processing steps in the
lesion segmentation. Of these various steps, image registration, bias field correction, filtration,
intensity normalization, gray and white matter classification, identification and elimination of
false lesion classification and lesion delineation are fully automatic. The necessary thresholds
in the ratio images and lesion delineation do involve manual intervention. However, once fixed,
the same values were used for fully automated processing of all the subsequent images.
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Similarly, identification of training feature vectors for feature map generation needs to be
performed only once. The only processing step that involves some manual intervention is in
image stripping which was performed on the T2 set of images on each subject. However, this
procedure is significantly simplified by providing various tools such as connectivity and island
removal. The same mask was then automatically applied to the PD and FLAIR images. In our
studies, stripping of all 42 images corresponding to 42 cross-sections of one brain volume
typically took between 5 and 10 minutes, depending on the experience of the operator.

The HMRF-EM algorithm includes the bias field correction as a part of the tissue classification.
When we tried the HMRF-EM algorithm with and without bias field corrected (by SPM2) input
data for a fixed number of iterations with the same initial approximations, we observed better
classification with the bias field corrected input data. Therefore, SPM2 bias field correction
module was used before Parzen classification.

The Bland-Altman analysis indicates that the automatic segmentation yields values that are in
close agreement with manual segmentation, but consistently overestimates the total lesion load.
Like the majority of segmentation procedures, our technique classifies the ependymal lining
around the ventricles which appears bright on FLAIR and T2 weighted images as a lesion, but
our neuroradiologist did not classify this as a lesion. This perhaps is the major reason why the
present technique consistently overestimated the lesion load.

Similarity index is better suited for category II subjects compared to category I subjects. This
is because even a few false lesion classifications would have a higher impact on smaller lesion
loads. Similar behavior was also observed by Anbeek et al.1

The multi-spectral segmentation used in these studies requires that the dual FSE and FLAIR
data be in exact registration. Otherwise segmentation results in a large number of false lesion
classifications. Even though both of these image sets were acquired in the same session, the
inevitable movement of the subject between two different image series requires retrospective
registration with sub-voxel accuracy. In these studies we used the global optimization of mutual
information for image registration. This is shown to be a robust technique9 and in the current
studies it provided excellent results in 95% of cases.

While this method has been applied to the detection and quantification of MS lesions, it should
be applicable, with a few modifications, for automatically detecting and quantifying anatomical
lesions that are present in other pathologies such as cancer.

In conclusion, we implemented a segmentation technique that combines parametric and
nonparametric techniques for lesion classification in MS with minimal human intervention.
This method was quantitatively evaluated using similarity measures. The percentage of correct
estimation of lesions between our method and manual segmentation was found to be better
than 88%.
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Glossary of Terms
CSF, Cerebrospinal fluid
EDSS, Expanded disability status scale
EM, Expectation maximization
FLAIR, Fluid attenuation inversion recovery
FNM, False negative minimization
FPM, False positive minimization
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FSE, Fast spin echo
GM, Gray matter
HMRF, Hidden Markov random field
HMRF-EM, Hidden Markov random field-expectation maximization
IDL, Interactive data language
MR, Magnetic Resonance
MRF, Markov random field
MRI, Magnetic Resonance Imaging
MS, Multiple sclerosis
PCE, Percentage of correct estimation
PD, Proton density
POE, Percentage of overestimation
PUE, Percentage of underestimation
SI, Similarity index
SPM, Statistical parametric mapping
WM, White matter
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FIGURE 1.
Schematic representation of segmentation procedure.
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FIGURE 2.
A-C: PD, T2 and FLAIR images respectively. D: Parzen classification: CSF (blue), brain
parenchyma (gray) and lesions (salmon). False positives are clearly seen on the surface brain
parenchyma (open arrow heads). E: After removing surface false positive lesions. The presence
of false positives inside the parenchyma is shown by solid arrow heads. F: Minimization of
false positives after applying the ratio mask to E. G: Binary mask of brain parenchyma
excluding lesions and CSF. H: Gray and white matter classification (HMRF-EM). I: Merging
CSF (blue), lesions (salmon), gray matter (gray) and white matter (white) segments.
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FIGURE 3.
A-C: Magnified regions on PD, T2 and FLAIR images respectively. D: Gray (gray) and white
(white) matter segmented image after false positive minimization, but with some lesions seen
on C classified as gray matter. E: Some of the lesions recovered during the FNM shown by
solid arrow heads. F: Delineated lesions (open arrow heads).

Sajja et al. Page 14

Ann Biomed Eng. Author manuscript; available in PMC 2006 May 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIGURE 4:
Scatter plots of similarity measures against reference lesion volume. Similarity indices (Plot
A), Overestimated (Plot B) and Underestimated (Plot C) lesion volumes are computed at
Parzen, FPM and FNM stages of the segmentation procedure on all 23 patients. In all the three
plots, X-axis represents the reference lesion volume.
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FIGURE 5.
Bland Altman plot for comparing the bias in manual and automatic lesion segmentations.
Average volume (X-axis) is the mean lesion volume of automatic and manual methods for each
patient. Bias is computed by subtracting the lesion volume obtained by the present method
from the reference lesion volume.
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Table 1
Similarity measures calculated at different FPM thresholds on one patient data (Manual segmented lesion volume:
29.41 cc).

S. No. Threshold to eliminate false positive
lesions

Segmented Lesion volume (in cc) POE PUE PCE SI

1. 1.5 19.28 13.03 47.48 52.52 0.63
2. 1.55 21.94 15.10 40.49 59.51 0.68
3. 1.6 25.75 21.50 33.96 66.04 0.70
4. 1.65 31.57 28.99 21.64 78.36 0.76
5. 1.7 33.03 31.22 18.93 81.07 0.76
6. 1.75 34.52 34.19 16.82 83.18 0.77
7. 1.8 35.78 37.27 15.64 84.36 0.76
8. 1.85 37.87 43.23 14.49 85.51 0.75
9. 1.9 39.24 46.97 13.55 86.45 0.74
10. 1.95 40.67 50.95 12.69 87.31 0.73
11 2.0 41.65 53.98 12.36 87.64 0.73
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Table 2
Various Similarity measures between manual segmentation and automatic segmentation following Parzen
window classification.

Parzen POE PUE PCE SI
Category I (8) 1735.77 ± 1646.24 15.25 ± 1.94 84.74 ± 1.94 0.15 ± 0.10
Category II (15) 176.82 ± 112.52 9.34 ± 2.55 90.65 ± 2.55 0.53 ± 0.13
Category I + II (23) 719.06 ± 1202.80 11.39 ± 3.69 88.60 ± 3.69 0.39 ± 0.21
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Table 3
Various Similarity measures between manual segmentation and automatic segmentation following false positive
minimization.

FPM POE PUE PCE SI
Category I (8) 47.20 ± 28.13 50.88 ± 24.73 49.11 ± 24.73 0.47 ± 0.18
Category II (15) 22.91 ± 13.46 13.45 ± 3.06 86.54 ± 3.06 0.82 ± 0.05
Category I + II (23) 31.36 ± 22.52 26.47 ± 23.08 73.52 ± 23.08 0.70 ± 0.20
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Table 4
Various Similarity measures between manual segmentation and automatic segmentation following false negative
minimization and fuzzy delineation.

FNM POE PUE PCE SI
Category I (8) 59.36 ± 34.34 19.74 ± 20.29 80.25 ± 20.29 0.67 ± 0.14
Category II (15) 27.18 ± 15.98 6.94 ± 2.70 93.05 ± 2.70 0.84 ± 0.05
Category I + II (23) 38.38 ± 27.98 11.37 ± 13.21 88.62 ± 13.21 0.78 ± 0.12
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