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Abstract
Background—Cardiac perforation during atrial septal puncture (ASP) might be avoided by
improved image guidance. X-ray fluoroscopy (XRF), which guides ASP, visualizes tissue poorly
and does not convey depth information. Ultrasound is limited by device shadows and constrained
imaging windows. Alternatively, real-time MRI (rtMRI) provides excellent tissue contrast in any
orientation and may enable ASP and balloon atrial septostomy (BAS) in swine.

Materials and Methods—Custom MRI catheters incorporated “active” (receiver antenna) and
“passive” (iron or gadolinium) elements. Wholly rtMRI-guided transfemoral ASP and BAS were
performed in 10 swine in a 1.5T interventional suite. Hemodynamic results were measured with
catheters and velocity encoded MRI.

Results—Successful ASP was performed in all 10 animals. Necropsy confirmed septostomy
confined within the fossa ovalis in all. BAS was successful in 9/10 animals. Antenna failure in a re-
used needle led to inadvertent vena cava tear prior to BAS in one animal. ASP in the same animal
was easily performed using a new needle. rtMRI illustrated clear device-tissue-lumen relationships
in multiple orientations, and facilitated simple ASP and BAS. The mean procedure time was 19 ±
10 minutes. Septostomy achieved a mean left to right shunt ratio of 1.3:1 in these healthy animals.

Conclusion—Interactive rtMRI permits rapid transcatheter ASP and BAS in swine. Further
technical development may enable novel applications.
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Supplemental Video Legend
Real time SSFP short axis view of the aorta, and adjacent atrial structures. The atrial septal puncture needle (green) is positioned against
the fossa ovalis. The needle tip tents the septal membrane and enters the left atrium. A guide wire is advanced into the left atrial appendage.
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Introduction
Atrial septal puncture (ASP)(1,2) is an initial step in a variety of procedures requiring
transvenous left atrial entry. Despite years of experience, complications such as cardiac
perforation still occur and may relate to limitations of X-ray fluoroscopy (XRF) or ultrasound
image guidance(3–12). For example, XRF requires ASP is to be performed relatively blindly.
XRF uses ionizing radiation, discriminates tissue poorly, and displays projections (shadows)
that lack depth information. Ultrasound is constrained by limited acoustic windows, narrow
fields of view, and device-related shadow artifacts.

Alternatively, magnetic resonance imaging (MRI) provides tissue imaging with good contrast,
in any user-defined plane, without exposure to ionizing radiation or nephrotoxic contrast
agents. Technical advances now permit real-time MRI (rtMRI) to guide catheter based
procedures(13–33). We are developing interactive, multi-slice rtMRI to guide precise catheter-
based connection of vascular structures across tissue boundaries. To test this concept, we
demonstrate rtMRI-guided ASP with subsequent balloon atrial septostomy (BAS) in swine.

Methods
Animal Protocol

Animal protocols were approved by the National Heart, Lung, and Blood Institute Animal Care
and Use Committee. Ten healthy juvenile NIH miniswine weighing 19–60kg (mean 38 ± 14kg)
were pretreated with aspirin. MRI confirmed no pre-existing patent foramen ovale or atrial
septal defect. Intravenous heparin 100U/kg was administered after percutaneous sheath access
of femoral veins, and supplemented after atrial septal puncture. Baseline and post procedure
pressures and oximetry were measured using a pulmonary artery catheter. Oximetric shunt
ratio was calculated using the simplified formula:

Pulmonaryflow
Systemic flow =

QP
QS

=
SAO2 % − MVO2 %

SAO2 % − PAO2 %

where SAO2%, PAO2%, MVO2% represent hemoglobin oxygen saturation in systemic artery,
pulmonary artery, and mixed venous blood samples, respectively. MVO2% was estimated as
[(2 x Superior vena cava O2%) + (Inferior vena cava O2%)] ÷ 3(34). Following euthanasia,
hearts were explanted for examination.

Interventional MRI Suite
rtMRI guided ASP and BAS were performed in a clinical interventional MRI suite(35) (1.5T,
Sonata, Siemens). MRI data were transferred during acquisition via Gigabit Ethernet to an
external workstation for rapid reconstruction.(36,37) Hemodynamics, scan control and
volume-rendered images were displayed inside the scanner room using shielded LCD
projectors. The MR-compatible monitoring system displayed oximetry, two-channel invasive
blood pressure, and surface electrocardiogram. (Magnitude CV, In-Vivo Research) Standard
6 channel phased array torso and spine surface coils were used. The operators and staff
communicated via directional optical microphones (Phone-Or) and RF-filtered headsets fitted
with active sound suppression (Magnacoustics).

Image data derived from catheter antennae were displayed in color, whereas image data derived
from surface MRI coils were displayed in greyscale. When required, catheter images could be
imaged even when outside of selected scanning slabs by using projection-mode MRI (disabling
slice-select). The frame rate could be doubled interactively using echo-sharing, wherein MRI
image data were interleaved over temporally adjacent frames. Saturation pre-pulses were
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toggled on/off during real-time imaging to suppress background tissue, when gadolinium
contrast enhancement was desired. ECG gating was toggled on/off to suspend cardiac motion,
and temporal image filtering (averaging) was applied without scan interruption to improve
signal-to-noise ratio (SNR). Multiple oblique slices were acquired in rapid succession,
repositioned interactively, or individually omitted and reapplied as desired.

Magnetic Resonance Imaging
Catheter manipulations were guided by imaging in real-time with steady state free precession
(SSFP) pulse sequences. Typical parameters were repetition time (TR) 2.8 ms, echo time (TE)
1.4 ms, flip angle 45º, bandwidth 800 Hz/pixel, FOV 32x24 cm, matrix 192x108, generating
1.7x2.2x6 mm voxels. Using echo-sharing, an imaging rate of 8 frames/s was achieved with
an acquisition-to-display latency of approximately 250 ms.

Baseline and post procedure 2-dimensional through-plane phase contrast MRI (PC-MRI) was
performed on axial slices through the ascending aorta (AA) and main pulmonary artery (PA).
Typical parameters were TR/TE 33/3 ms, flip angle 30°, FOV 28 cm, velocity encoding 350
cm/sec, bandwidth 1528 Hz/pixel, matrix 256x256, and slice thickness 5mm. Manual
segmentation on each phase was performed for flow quantification (Argus VA50C, Siemens).
For each axial PA or AA slice, two measurements, obtained 1–3 minutes apart, were averaged.

Invasive devices
Custom MRI compatible catheter devices were made visible by incorporating “active” signal
receiver coils, or “passive” elements causing signal voids (ie. steel) or signal enhancement (ie.
gadolinium).

Active Devices—Custom 1.7mm diameter (6F) ASP needles were designed as loopless
antennae(38) containing telescoping nitinol hypotubes separated by polyimide insulation
(Figure 1). Tuning, matching and decoupling circuitry, attached at the proximal hub, were
connected to a separate MR scanner receiver channel. A 0.018” lumen permitted wire or
contrast delivery, but not pressure transduction. Active, dipole flexible-tipped 0.032” guide
wires were custom manufactured to deliver septostomy balloons. Loopless antennae designs
permit visualization of devices along their entire length(38), without significant heating (39–
41).

Heating of the ASP needle was tested in vitro in a 4% polyacrylamide gel phantom
(conductivity 0.7 S/m). Scanning conditions were designed to exaggerate heating, including
positioning 20 cm away from the bore center, and continuous gradient echo MRI with a high
flip angle (α=90°, TR/TE = 3.4/1.6 ms), generating an input specific absorption rate of 3.7 W/
kg. Temperature was measured at steady state using five fiberoptic thermistor probes (Umi-8,
Fiso Technologies) placed along the length of the device, including the tip.

Passive Devices—6F dilator (for ASP needle) and 10F introducer sheaths (for largest BAS
balloon) were trimmed and angled (Fast Cath, St. Jude; BriteTip, Cordis) using a heat gun.
Single 0.014” diameter x 1 mm length 316L stainless steel markers were bonded to the distal
tip of each sheath to create discrete MRI signal voids. Progressively larger angioplasty balloons
(Agiltrac 8-, 10-, 14 × 20mm, Guidant) were inflated at nominal pressures with 5mM
gadopentate dimeglumine (Gd-DTPA,Magnevist, Berlex). Septostomy dimensions were
measured under MRI and XRF using atrial sizing balloons (Amplatzer, AGA Medical).

Statistics
Continuous parameters were reported as mean ± standard deviation and were compared using
Student’s t-test. A value of p<0.05 was considered significant.
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Results
In a static phantom, the tip of the active ASP needle increased 6.3°C during 10 minutes of
continuous MRI. Under the same conditions, a redesigned needle with additional polyester
insulation heated 2.5°C at the tip, without significantly altering the crossing profile.

Following femoral venous insertion of the introducer sheath, the active needle and transseptal
sheath were advanced in tandem into the right atrium under rtMRI guidance. The needle was
steered in real-time to appose the fossa ovalis, guided by imaging in multiple slice planes.
Accurate positioning was confirmed with interactive application of ECG-gated rtMRI. ASP
was then performed by simple needle advancement (Figure 2). Once the needle entered the left
atrium under rtMRI, confirmatory MR angiography was performed by injecting 3-5mL dilute
Gd-DTPA (30mM) under real-time SSFP with a non-selective saturation prepulse (Figure 3).
Next, a guidewire was advanced into left atrium and used to introduce the dilator sheath and
thereby record left atrial pressure. BAS was then performed using three incrementally larger
(8–14mm) balloons over the active flexible-tipped guidewire (Figure 4). In three pigs, post-
septostomy defect size was 1.6 ± 0.6 cm using an atrial sizing balloon under both rtMRI and
XRF (data not shown).

ASP was successfully accomplished in all ten animals. rtMRI permitted anatomic
measurements (Figure 5) and easy navigation with attention to important structures such as the
fossa ovalis, aorta, and posterior atrial wall (video supplement). In one animal, the tuning/
matching/decoupling circuit connection to a repeatedly used active needle was damaged and
rendered the device intermittently invisible. This led to inadvertent perforation of the inferior
vena cava, causing hemothorax immediately evident by rtMRI. ASP was subsequently
successful in this animal using a new needle system but there was hemodynamic collapse before
septostomy could be attempted. BAS was performed without complication in all remaining
animals. No animal had a pericardial effusion after at least one hour of observation under MRI.

ASP required 19 ± 10 min (range 6–33, n=10) from the first rtMRI scan. The average ASP
time did not decline from the first five to the last five animals. BAS required 51 ± 16min (range
31–81, n=9) from the first rtMRI. BAS increased mean pulmonary artery (PA) pressure (24 ±
6mmHg vs baseline 14 ± 5 mmHg, p<0.01) but not pulmonary artery wedge (PAW: 12 ± 4
vs baseline 11 ± 4mmHg, p=0.4) or right atrial (RA) pressure (8 ± 2 vs baseline 8 ± 3 mmHg,
p=0.9). The directly measured left atrial pressure after BAS was 12 ± 3mmHg. BAS increased
the mean left to right shunt from 1.0 ± 0.1 at baseline to 1.3 ± 0.2 by oximetry and by PCMRI,
in these otherwise healthy swine.

Necropsy revealed a large inter-atrial communication confined within the fossa ovalis
following BAS in all cases (Figure 6). In addition, there was no visible evidence of acute
thermal injury, thrombus, valve injury or pericardial effusion in any animal.

Discussion
This report demonstrates rapid and “comfortable” conduct of atrial septal puncture and balloon
septostomy entirely using rtMRI and custom catheter devices in swine.

XRF guided ASP was first described by Ross(2,42) and Cope(1), refined by Brockenbrough
(43) and Mullins(3), and further improved with adjunctive intracardiac(44) and
transesophageal echocardiography (45). Examples of procedures that require transeptal access
include percutaneous mitral valvuloplasty,(46) radiofrequency ablation for arrhythmia,(47,
48) and balloon atrial septostomy in congenital heart diseases(49) or severe pulmonary artery
hypertension(50). Emerging indications include left atrial appendage occlusion for chronic
atrial fibrillation(51), and percutaneous mitral(52) or aortic valve repair(53). Despite decades
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of experience, even highly skilled operators cause cardiac perforation during transeptal
puncture as often as 0.9–5.4%(3–5,10,11,54–59) This potentially lethal complication is more
likely in patients with very small or large atria, dilated aortic root, thoracic spine deformities,
and prior atrial septal defect closure.(6) Transesophageal echo is uncomfortable, requires heavy
sedation, pharyngeal and esophageal instrumentation, prolongs procedure time and inhibits
patient communication. Intracardiac echo also suffers from device related shadow artifacts,
requires an additional large access sheath, and can interfere mechanically with other
interventional devices. With appropriate clinical grade devices, rtMRI might reduce risk and
offer robust procedural guidance by better visualizing the interaction between tissue and
devices.

MRI guided endovascular procedures have been successfully performed for a variety of
preclinical(13–30) and clinical(31–33) indications. In particular, rtMRI device navigation for
catheterization(23) and atrial septal defect closure (20,22,29), have been demonstrated using
active and passive devices. These investigators performed ASP under XRF guidance(22,23,
29) or employed animals having patent foramena ovale(20). Arepally et al (14) demonstrated
ASP using a similar active needle. They did not, however, test heating characteristics of the
device, and did not conduct an interventional procedure or hemodynamic assessment.
Moreover, they did not use a clinically-suitable rtMRI environment combining colorized
device display and interactive multi-slice imaging(30). Kee et al investigators created
transjugular intrahepatic portosystemic shunts (TIPS) using combined XRF and low-field
rtMRI in swine(13) and humans(60). Our contribution demonstrates a complex two stage
intervention, real-time multi-planar image display, clinically-relevant device visualization, and
combined anatomic and hemodynamic endpoint assessment, entirely using MRI.

ASP and TIPS are examples of procedures in which devices traverse tissues boundaries, and
are well suited for rtMRI guidance because of simultaneous device and soft tissue imaging.
Combined with appropriate anastomotic devices, this technology might be extended to traverse
greater distances for catheter-based connection of disparate vascular chambers, as in peripheral
artery bypass or palliative pediatric cardiovascular shunts. Simple adaptations of these catheter
devices might facilitate safer image-guided recanalization of peripheral artery occlusions.

In this experience, the rtMRI images portraying both devices and soft tissue were sufficiently
information-rich to distinguish important structures simply and comfortably for the ASP
operator, even though both spatial and temporal resolution were reduced compared with XRF
(192x128 pixels and 8 frames/s compared with 512–1024 square and 15–30 frames/s). The
enhanced tissue visualization averted iatrogenic aortic penetration, a potentially catastrophic
complication that might not have been prevented using XRF or ultrasound. On a related note,
interactive rtMRI may enhance procedural safety by identifying unexpected complications
early. In one pig, hemorrhage was immediately evident under rtMRI; pericardial effusion
would similarly be readily evident. This information might expedite emergency treatment in
a clinical setting.

One limitation of this work is that catheter devices were home-made. Imaging failure in one
such device led to catastrophic complication, underscoring the importance of safe, durable,
conspicuous clinical-grade instruments. These experiments were performed in normal swine,
and therefore do not test the potential of MRI-guided therapy in complex clinical conditions.
As predicted, the observed acute shunt was low using positive pressure ventilation with positive
end-expiratory pressure. Nevertheless, necropsy consistently confirmed accurate anatomic
positioning of ASP in all animals within the center of the fossa ovalis.

In conclusion, rtMRI permits rapid and robust transcatheter ASP and BAS by virtue of superior
visualization of complex anatomy in any orientation. Additional advantages include online
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hemodynamic assessment and freedom from exposure to ionizing radiation or nephrotoxic
contrast agents. Further technical development may enable more novel applications.

Practical Applications
Conducting atrial septal puncture and balloon septostomy under real-time MRI guidance may
enhance procedural safety, speed, and operator confidence. Human translation of these findings
will require development of clinical-grade catheter devices.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
“Active” ASP needle. A. Schematic of the custom modified loopless antenna ASP needle. To
enhance tip visibility, a microcoil is affixed to the distal tip (positive) and connected to the
outer shaft (ground). Appropriate tuning, matching and decoupling circuitry connect the needle
to a MRI receiver channel. B. Photograph of 6F ASP needle. C. Image of the active ASP needle
colored green in a water phantom.
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Figure 2.
Atrial septal puncture procedure sequence. (A) Baseline transverse slice imaged in real-time.
Ao=aorta, RA=right atrium, LA=left atrium, FO=fossa ovalis (white arrow), PV=pulmonary
vein. (B) The modified “active” ASP needle (green) can be seen tenting the interatrial septum
at the level of the fossa ovalis. (C) The needle tip has entered into the LA. (D) A floppy-tipped
0.018” wire is advanced through the needle into the LA and subsequently left atrial appendage
(LAA). It has coupled with the needle signal and therefore appears green. The dilator sheath
tip susceptibility marker can be seen abutting the RA side of the septum (yellow arrow).
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Figure 3.
Selective real-time MR angiogram confirming ASP needle entry into the left atrium. After
visual confirmation of ASP needle entry in the left atrium, 3–5mL of 30mM dilute Gd-DTPA
is injected through the ASP needle wire port. A saturation pre-pulse is applied to suppress the
background as contrast sequentially enhances the lumen of the left atrium (LA), left ventricle
(LV) and out the aorta (Ao). Note there is no contrast enhancement of the right ventricle (RV)
or outlined pulmonary artery (PA), indicating successful ASP.
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Figure 4.
Balloon Atrial Septostomy. A 14 mm x 40mm peripheral angioplasty balloon (red) inflated
with dilute Gd-DTPA across the interatrial septum. A platinum marker indicates the distal
aspect of the balloon (white arrow). The proximal marker is out of plane. Ao = aorta.
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Figure 5.
Atrial septal measurements. Atrial septal dimensions (A-C) obtained from SSFP short axis
view. A=posterior aortic wall to anterior edge of fossa ovalis. B=fossa ovalis. C= posterior
edge of fossa ovalis to posterior atrial wall. LA=left atrium, RA=right atrium, RVOT=right
ventricular outflow track, SD=standard deviation.
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Figure 6.
Necropsy photograph after BAS view from the left atrium. The septostomy is centered within
the fossa ovalis (FO). There is no gross evidence of thermal injury or valve disruption. MA
=mitral annulus, MV=mitral valve
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