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Abstract
This paper presents the first application of spatially correlated neutral models to the detection of
changes in mortality rates across space and time using the local Moran's I statistic. Sequential
Gaussian simulation is used to generate realizations of the spatial distribution of mortality rates under
increasingly stringent conditions: 1) reproduction of the sample histogram, 2) reproduction of the
pattern of spatial autocorrelation modeled from the data, 3) incorporation of regional background
obtained by geostatistical smoothing of observed mortality rates, and 4) incorporation of smooth
regional background observed at a prior time interval. The simulated neutral models are then
processed using two new spatio-temporal variants of the Morany's I statistic, which allow one to
identify significant changes in mortality rates above and beyond past spatial patterns. Last, the results
are displayed using an original classification of clusters/outliers tailored to the space-time nature of
the data. Using this new methodology the space-time distribution of cervix cancer mortality rates
recorded over all US State Economic Areas (SEA) is explored for 9 time periods of 5 years each.
Incorporation of spatial autocorrelation leads to fewer significant SEA units than obtained under the
traditional assumption of spatial independence, confirming earlier claims that Type I errors may
increase when tests using the assumption of independence are applied to spatially correlated data.
Integration of regional background into the neutral models yields substantially different spatial
clusters and outliers, highlighting local patterns which were blurred when local Moran's I was applied
under the null hypothesis of constant risk.

1 Introduction
Cancer mortality maps are important tools in health research, allowing the identification of
spatial patterns, clusters and disease ‘hot spots’ that often stimulate research to elucidate
causative relationships (Jacquez 1998; Rushton et al. 2000). Analysis of mortality maps for a
series of time intervals also contributes to a better understanding of temporal trends and can
help pinpoint locations where health policy needs to be changed. For example, comparison of
maps of mortality rates of cervix cancer from 1950 through 1990 highlighted states that did
not follow the national decline because poverty reduced access to health care and to early
detection through the Pap smear test in particular (Friedell et al. 1992).

The analysis of spatial patterns and their change in time requires the combination of easy-to-
use interactive visualization tools (e.g. see Greiling, this issue) and powerful statistics that can
be tailored to the data under analysis and the hypotheses to be tested. In most spatial analysis

This research was funded by grants R01 CA92669 and 1R43CA105819-01 from the National Cancer Institute and R43CA92807 under
the Innovation in Biomedical Information Science and Technology Initiative at the National Institute of Health. The views stated in this
publication are those of the authors and do not necessarily represent the official views of the NCI. The authors also thank three anonymous
reviewers for their comments that helped improve the presentation of the methodology.

NIH Public Access
Author Manuscript
J Geogr Syst. Author manuscript; available in PMC 2006 May 18.

Published in final edited form as:
J Geogr Syst. 2005 May ; 7(1): 137–159.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



software a statistical pattern recognition approach has been implemented whereby a statistic
(e.g. spatial cluster statistic, autocorrelation statistic) quantifying a relevant aspect of spatial
pattern is first calculated. The value of this statistic is then compared to the distribution of that
statistic's value under a null spatial model. This provides a probabilistic assessment of how
unlikely an observed spatial pattern is under the null hypothesis (Gustafson 1998). Waller and
Jacquez (1995) formalized this approach by identifying five components of a test for spatial
pattern.

1. The test statistic quantifies a relevant aspect of spatial pattern (e.g. Moran's I, Geary's
c, a spatial clustering metric)

2. The alternative hypothesis describes the spatial pattern that the test is designed to
detect. This may be a specific alternative, such as clustering near a focus, or it may
be the omnibus “not the null hypothesis”.

3. The null hypothesis describes the spatial pattern expected when the alternative
hypothesis is false (e.g. complete spatial randomness which corresponds to the
absence of clustering in spatial point processes).

4. The null spatial model is a mechanism for generating the reference distribution. This
may be based on distribution theory, or it may use randomization (e.g. Monte Carlo)
techniques.

5. The reference distribution is the distribution of the test statistic when the null
hypothesis is true.

A key step in hypothesis testing is the formulation of the null and alternative hypotheses; see
the discussion for case-control point data and regional count data in the recent book by Waller
and Gotway (2004). Each null hypothesis corresponds to a particular conceptual model, leading
to a specific question being addressed so that different answers are likely depending on the
specifics of the null hypothesis. The term “Neutral Model” captures the notion of a plausible
system state that can be used as a reasonable null hypothesis (e.g. “background variation”).
The problem then is to identify spatial patterns above and beyond that incorporated into the
neutral model, enabling, for example, the identification of “hot spots” beyond background
variation in a pollutant, or the detection of local spikes in cancer rates beyond broader scale
variation in the risk of developing cancer. For situations where health professionals are mostly
interested in identifying areas with generally high (or low) disease rates, the focus would be
on the detection of cancer clusters above and beyond a null hypothesis of constant risk.

As a rule of thumb one should employ that neutral model or those neutral models that most
closely correspond to the spatial pattern expected in the absence of the alternative spatial
process. So, for a cluster study one would select those neutral models that specify the risk
function deemed most likely in the absence of spatial clustering. Yet, in its most common
software implementation the local Moran's I statistic for detection of clusters from aggregate
data (Anselin 1995) is based on the “normality” and “randomization” null hypotheses (Waller
and Gotway 2004). Under the normality hypothesis all observations follow independent,
identically distributed normal distributions. Under the randomization hypothesis, each
permutation of the observed values is equally likely. These translate into a null hypothesis of
spatial independence of observed rates and, provided the population sizes of areal units (e.g.
SEA units) are fairly homogeneous, the assumption of constant or spatially uniform risk. In
other words, the neutral model is obtained by a randomization or random shuffling of observed
rates, thereby disregarding the spatial pattern of the data and the population size associated
with each areal unit which controls the reliability of the measured rates. If ignored, large
differences in population size decrease the ability of Moran's I to detect true clustering. Also,
as emphasized by Ord and Getis (2001), Type I errors may increase when tests of hypothesis
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using the randomization assumption are applied to spatially correlated data, leading us to reject
the null hypothesis of no clustering more often than we should.

Several modifications of the local Moran's I test of hypothesis have been proposed to take into
account heterogeneous population sizes, spatial autocorrelation, and non-uniform risks. For
example, Oden (1995), Waldhör (1996), as well as Assunçao and Reis (1992) developed a
modified version of the test statistic to account for heterogeneous population sizes in cluster
detection. An alternative is to randomly shuffle the counts rather than the rates (i.e. under a
heterogeneous Poisson model the cases are allocated to each area using hypergeometric
sampling; see Besag and Newell, 1991). A third option is to transform or standardize the rates
prior to the application of the test, thereby removing much of the noise due to the small
population size; for example, see filters developed by Marshall (1991), Mungiole et al.
(1999), and Goovaerts and Jacquez (2004). To account for the fact that observed rates are
usually correlated in space, Ord and Getis (2001) introduced a test statistic that detects local
hot spots even when global spatial autocorrelation is present, reducing the potential for over-
identification of these hot spots. Spatial trends in the observed rates, which might reflect a non-
uniform risk, can be incorporated using a reference distribution for the test statistic that is
conditional on a known or estimated background spatial trend; see Ord and Getis (1995) and
Tiefelsdorf (1998) for further discussion on the conditional distributions of local Moran's I. A
non-parametric approach consists of computing the local Moran's I from residuals of a spatial
regression model, allowing one to test for clustering of deviations from local expectations based
on some model of disease incidence (Cliff and Ord 1981; Tiefelsdorf 2000). A similar approach
was adopted by Goovaerts et al. (2003) to identify patches of disturbed soils in hyperspectral
imagery; geostatistical filtering was first used to remove regional background and enhance the
local signal (i.e. residuals) which was then analyzed for spatial outliers using local Moran's I.

This paper introduces a new approach whereby the spatial or temporal features that the
researcher wants to incorporate in the formulation of the null hypothesis are directly accounted
for in the generation of neutral models. The key idea is to generate the multiple realizations of
the neutral model using simulation techniques developed in the field of geostatistics (Goovaerts
1997) which provides a set of statistical tools for analyzing and mapping data distributed in
space and time. In particular, sequential Gaussian simulation (SGS) allows one to generate
realizations of the spatial distribution of rates that reproduce the sample histogram and spatial
patterns displayed by the data, and also account for any auxiliary data or information on the
local trend. Noise caused by small population sizes can be filtered prior to the analysis using
geostatistical filtering techniques that account for the pattern of spatial correlation and
population sizes (Goovaerts et al. 2005; Goovaerts 2005a).

The objective of this paper is to present a geostatistical approach to generate realistic neutral
models and use them for the detection of local clusters and anomalies in cancer mortality rates.
Building on the typology recently proposed by Goovaerts and Jacquez (2004), the technique
is first introduced within a pure spatial framework that aims to analyze data collected over a
single time period. Then, regional background observed at earlier times is incorporated into
the neutral model, allowing one to test change in cancer rates above and beyond that observed
in the past. The new methodology is illustrated using the space-time distribution of cervix
cancer mortality rates recorded over all US State Economic Areas (SEA) with a 5 year
resolution. It is worth mentioning that this paper does not pretend to conduct a thorough analysis
and interpretation of the space-time pattern of cervix cancer from aggregate data (ecological
fallacy), but references to results of prior studies will be made in order to showcase some of
the features of the proposed methodology. A simulation-based comparison of the geostatistical
approach to the wide range of aforementioned modifications of the local Moran's I, although
desirable, is beyond the scope of this paper which reports preliminary results of a recently
awarded research project.
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2 Methods
2.1 LISA statistic under spatial independence (Model I)

Consider the problem of detecting significant clustering and spatial outliers in the map of cervix
cancer mortality rates displayed in Fig. 1 (top graph). For this example, age adjusted mortality
rates have been recorded for white females over the period t = 1955–1959 at the aggregation
level of State Economic Areas (SEA). Following other studies (e.g. Jacquez and Greiling
2003a,b) these features can be identified using Anselin's (1995) local Moran test implemented
in the Cancer Atlas Viewer (Greiling, this issue). The detection approach is based on the so-
called LISA1 (Local Indicator of Spatial Autocorrelation) statistic, which is computed for each
SEA unit referenced geographically by its centroid with the vector of spatial coordinates u =
(x, y), as:

LISA (u; t) =
z(u; t) − mt

st
× ( ∑j=1J 1

J ×
z(u j; t) − mt

st ) (1)

where z(u; t) is the mortality rate for the SEA unit being tested, which is referred to as the
“kernel” hereafter. z(uj; t) are the values for the J neighboring SEA units that are here defined
as units sharing a common border or vertex with the kernel u (1-st order queen adjacencies).
All values are standardized using the mean mt and standard deviation st of the N = 506 SEA
units at time t. Since the standardized values have zero mean, the LISA statistic takes negative
values if the kernel value is much lower or much higher than the surrounding values (i.e. SEA
cancer incidence is below the global zero mean while the neighborhood average is above the
global zero mean, or conversely), which indicates negative local autocorrelation and the
presence of spatial outliers. Clusters of low or high values, which correspond to the presence
of positive local autocorrelation, will lead to positive values of the LISA statistic (i.e. both
kernel and neighborhood averages are jointly above zero or below zero).

In addition to the sign of the LISA statistic, its magnitude informs on the extent to which kernel
and neighborhood values differ. Testing whether this difference is significant or not requires
knowledge of the distribution of the LISA under the null hypothesis. This distribution can be
inferred either analytically under stringent assumptions regarding the distribution of observed
rates or empirically using Monte Carlo simulation. In this paper we used the empirical approach
as implemented in the ClusterSeer software and Cancer Atlas Viewer (Greiling, this issue).
First, the set of observed rates, excluding the kernel value, is sampled randomly and without
replacement; in other words all (N-1) observed rates are reassigned at random among the SEA
units (randomization assumption). Then, the corresponding “simulated” neighborhood
averages are computed. This operation is repeated many times (e.g. L = 999 randomizations)
and these simulated values are multiplied by the kernel value to produce a set of L simulated
values of the LISA statistic at time t and location u:

LISA(l)(u; t ∣ Neutral Model I) =
z(u; t) − mt

st
× ( ∑j=1J 1

J ×
z (l)(u j; t) − mt

st ) l = 1, …, L (2)

with z (1)(uj; t) = F−1 p(1)(uj; t)  F[.] is the sample cumulative distribution function (cdf), and
p(1)(uj;t) is a random number uniformly distributed within 0 and 1. This set represents a
numerical approximation of the probability distribution of the LISA statistic at u, under the
assumption of spatial independence as operationalized by random sampling. Note that in the
present paper the randomization was conducted without regard to the heterogeneous population
size of SEA units, leading to an implicit null hypothesis of uniform risk of contracting the
disease. In particular for tests applied to smaller and less populated geographical units (e.g.

1Local Moran's I is the most widely used LISA statistic and both terms will be used equivalently throughout the paper.
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counties, census tracts), population size and its impact on the reliability of measured rates
should be accounted for; for example, standardized or filtered rates should be used in the
analysis.

The last step is to compare the observed LISA statistic, LISA(u;t), to the empirical probability
distribution, allowing the computation of the probability of not rejecting the null hypothesis
(so-called p-value). Figure 2 (top graph) shows an example for the SEA unit # 57444 identified
in Fig. 1, where a p-value of 0.22 is obtained under the null hypothesis of spatial independence.
The values have been computed for all the SEA units and mapped in Fig. 1 (bottom graphs),
which reveals the existence of significant clusters of high values (High-High: HH) in the Deep
South and a few HH clusters across Appalachia, while low values are clustered in the Northern
Plain States (Low-Low: LL). A few outliers (Low-High and High-Low) are also identified.
The exact number of significant SEA units is listed in the first row of Table 1. An adjusted
significance level a α = 0.009356 was used to account for the fact that the multiple tests (i.e.
506 in this study) are not independent since near by SEA units share similar neighbors. This
significance level was obtained using the Bonferroni adjustment which divides the significance
level α = 0.05 by the average number of neighbors in each test.

2.2 LISA statistic under a spatial neutral model (Model II)
Results in Fig. 1 are based on the null hypothesis that the distribution of cancer mortality rates
is spatially random (no autocorrelation) with uniform risk over the study area. According to
the typology presented in Table 2, this will hereafter be referred to as Neutral Model type I.
The simplistic nature of the assumptions of Neutral Model I is best illustrated by Fig. 3 (top
graphs) which shows two maps (realizations) obtained by randomly shuffling the mortality
data across the 506 SEA units. The presence of spatial autocorrelation can be detected using
the semivariogram (Cressie 1993;Goovaerts 1997) which plots the average squared difference
between cancer rates as a function of the separation distance and direction between SEA unit
centroids:

γ̂(h; t) = 1

2 ∑
α=1

N(h)
w(uα; t)

∑
α=1

N(h)
w(uα; t) z(uα; t) − z(uα + h; t) 2 (3)

where |h| corresponds to the Euclidian distance (spherical distortion of the earth's surface on
the continental scale was here disregarded, but could be easily incorporated) between two
centroids, and N(h) is the number of data pairs falling within that class of lag distance. All the
following discussion can be readily generalized to other distance measures that could be more
appropriate to capture contiguity of entities of complex shape (e.g. distance between
population-weighted centroids, shortest overland distance, neighbors-based distance).
Following previous simulation studies (Goovaerts et al. 2005) and in order to account for the
noise induced by small population sizes, each pair has been assigned a weight proportional to
the square root of the population size, w(uα; t) = n(uα; t) + n(uα + h; t) ∀ uα, where n
(uα ; t) is the size of the population at risk in unit uα at time t. Figure 4 (top graph) shows that
cancer data exhibit a range of autocorrelation of about 1,200 km, with slightly larger variability
observed along the EW direction for longer distances. Regional background is further revealed
when using a geostatistical filtering technique (Goovaerts et al. 2005) to remove the noise and
short-range variability of the mortality data while incorporating both the anisotropy (i.e.
direction-dependent variability) of the data and population size information, see Fig. 4 (bottom
graph).

A more realistic neutral model would be one that reproduces not only the sample histogram,
but also the pattern of spatial correlation observed in the data (Neutral model of type II). Spatial
neutral models are here generated using geostatistical simulation, in particular Sequential
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Gaussian Simulation (SGS) which proceeds as follows (see Goovaerts 1997, p. 380 for more
details):

1. Transform the N observed rates (z-data) into a set of standard normal scores
{y(uα; t); α = 1, …, N } using the following graphical procedure:

• The N original data z(uα; t) are first ranked in ascending order. Since the
normal score transform must be monotonic, ties in z-values must be broken,
which was done randomly as implemented in GSLIB software (Deutsch and
Journel 1998).

• The sample cumulative frequency of the datum z(uα; t) with rank k is then
computed as pk

∗ = k ∕ N − 0.5 ∕ N.

• The normal score transform of the z-datum with rank k is matched to the pk
∗

-quantile of the standard normal cdf: y(uα; t) = φ(z(uα; t)) = G −1 pk
∗

where G[.] is the standard Gaussian cdf.

2. Compute the experimental semivariogram of normal scores by applying expression
(3) to normal score data.

3. Fit a permissible function to the experimental semivariogram γ̂(h; t). The modeling
was performed by weighted least-square regression using the number of data pairs as
weight. All semivariogram models were bounded, that is a sill is reached for a given
distance referred to as the range of influence. The covariance model C(h; t) was then
derived by subtracting the semivariogram model γ(h; t) from the sill value.

4. Define a random path visiting each location uα (i.e. SEA unit centroid) only once.

5. At each location uα, determine the parameters (mean and variance) of the Gaussian
probability distribution as:

ySK
∗ (uα; t) − mY = ∑

i=1

n(uα)
λi y (l)(ui; t) − mY (4)

σSK
2 (uα; t) = 1 − ∑

i=1

n(uα)
λiC(ui − uα; t) (5)

where y(l)(ui; t) are normal scores simulated at locations previously visited along the
random path and located within a search radius from uα, mY is the stationary mean
of the variable Y (which is zero following the normal score transform), and C(ui −
uα; t) is the covariance function of the normal score variable Y at time t for the
separation vector hiα = ui − uα. Note that the observed normal scores are not used
per se in the kriging system, only the semivariogram model fitted to these scores is
used in the simulation procedure (non-conditional simulation). λj are kriging weights
obtained by solving the following system of linear equations (simple kriging, SK):

∑
j=1

n(uα)
λjC(ui − u j; t) = C(ui − uα; t) i = 1, …, n(uα) (6)

6. Draw a simulated value from that distribution and add it to the data set; i.e.
y (1)(uα; t) = ySK

∗ (uα; t) + w(1) × σSK(uα; t) where w(1) is a random number
uniformly distributed within 0 and 1.

7. Proceed to the next location along the random path, and repeat the two previous steps.
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8. Loop until all N locations are simulated.

9. Transform the simulated normal scores {y(1)(uα; t); α = 1, …, N} so that the target
histogram (in this case the global distribution of observed rates at time t, Ft[.]) is
reproduced:

z(1)(uα; t) = Ft
−1 p(1)(uα; t) (7)

where p(1)(uα; t) = kα ∕ N − 0.5 ∕ N, and kα is the rank of the simulated normal score
y(l)(uα; t) in the simulated set.

The procedure is repeated using a different random path and set of random numbers to generate
another realization.

Figure 3 (middle graphs) shows two realizations of the spatial distribution of mortality rates
generated using this approach. Like the Model I maps (top) the sample histogram is reproduced
but in addition these realizations reproduce the pattern of spatial correlation as modeled by the
semivariogram of Fig. 4. 999 realizations of Model II were generated and used to compute the
LISA statistic defined in Eq. (2). For example, Fig. 2 (left middle graph) shows the distribution
of simulated values of the LISA statistics for the SEA unit # 57444. Clearly, the variance of
the distribution is much larger than the results obtained under randomization, while the means
are very similar and close to zero. The spatial autocorrelation of simulated rates increases the
likelihood that the J neighboring values are jointly small or high, causing the neighborhood
average, hence the LISA value, to exhibit much larger fluctuations among realizations.
Consequently, the probability that the observed LISA statistic lies in the tails of the simulated
distribution decreases, leading to a larger p-value (0.34 versus 0.23 for this SEA unit). The
same pattern is observed for all units: the average p-values is 0.26 versus 0.18 for Model I.
These larger p-values cause a substantial reduction in the size of significant LL or HH clusters
(see Fig. 5, top graph), which confirms previous findings regarding the increased risk of type
I error when ignoring the presence of spatial autocorrelation in the data. Table 1 indicates that
all SEA units significant under Model II were also significant under the assumption of spatial
independence.

2.3 LISA statistic under a locally constrained spatial neutral model (Model III)
Additional information, beyond the reproduction of global statistics such as the sample
histogram and autocorrelation function, can be included in the generation of neutral models,
allowing the testing of more complex null hypotheses. Model III reflects the situation where
environmental exposure or other factors make the risk of developing cancer non-uniform. In
this instance the researcher wishes to detect spatial pattern above and beyond this non-uniform
risk. For example, one might want to detect clusters of melanoma beyond those that are
explained by the north-south gradient in solar radiation. In this paper, the regional background
of risk is identified with the noise-filtered means of observed rates displayed in Fig. 4. Neutral
models are created using the SGS algorithm where the parameters of the local distributions are
now estimated using simple kriging with local means to account for the regional background
(see Goovaerts 1997, p. 190; Goovaerts and Jacquez 2004, for more details). In short the
constant mean mY in Eq. (4) is replaced by location-specific means mY (uα; t), which amounts
at simulating first the residuals [y(uα; t)-mY(uα; t)], then adding the regional background. The
covariance function of these residuals is used in Eqs. (5) and (6). Note that the local Moran's
I is still computed using Eqs. (1) and (2), that is the observed and simulated rates are
standardized using the global mean mt, while the local means are used only in the generation
of the neutral models.
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Two realizations of neutral model III are displayed at the bottom of Fig. 3, illustrating how the
locations of high and small values are now reproduced by these neutral models. This local
conditioning reduces fluctuations among realizations, leading to the J neighboring values being
consistently either small or large across the realizations. Thus the distribution of 999 simulated
LISA values is expected to be narrower than for the two previous models with a shift in the
mean. This is illustrated for the SEA unit # 57444 in Fig. 2 (right middle graph). Because this
unit is located in a high-valued area, the use of neutral models reproducing the regional
background yields larger simulated LISA values (average = 0.1 instead of 0.01). Table 1 also
indicates that the p-values are of smaller magnitude (average: 0.21 vs 0.26 for Model II).

The map of significant SEA units in the middle of Fig. 5 bears little resemblance to the maps
obtained under neutral models I and II. This is expected since Model III addresses a different
question, namely the detection of local departures from the regional background. Therefore,
outliers HL and LH are much more frequent on this map than spatial clusters HH or LL. For
example, Model III highlights two Low-High outliers in the State of Colorado that went
undetected before. While the cancer rates in these units are not much lower than the average
rate across the US, they depart significantly from the regional background.

As mentioned in the Introduction, earlier work has examined the computation of local Moran's
I from residuals of spatial regression models, allowing one to test for clustering of deviations
from local expectations based on some model of disease incidence (Cliff and Ord 1981;
Tiefelsdorf 2000). This approach was implemented here by performing the LISA test on the
deviations (residuals) from the local means displayed in Fig. 4. Although much of the spatial
autocorrelation displayed by observed rates disappears after the removal of the regional
background, the semivariogram is not a pure nugget effect, and this residual autocorrelation
was accounted for using a neutral model of type II. The map of significant SEA units at the
bottom of Fig. 5 is clearly different from the map obtained using Model III. Although the major
HL outlier and LL cluster were detected by both approaches, the analysis of residuals leads to
much fewer significant SEA units (4 versus 27). It is hazardous to quantify the detection
performances of these two techniques in the absence of accurate knowledge regarding the
locations and spatial extent of true clusters. Future research using simulated datasets will
compare the results of these alternative approaches for taking into account background spatial
trend. Note also that the estimation of this regional background by geostatistical filtering is
based on the fitting of a semivariogram model to experimental values, which is non-unique
although practice has shown kriging results to be robust with respect to small changes in the
autocorrelation model.

2.4 Generalization of Model III to account for space-time variability
Model III described in Sect. 2.3 allows one to test change in cancer rates above and beyond a
regional background observed at the same time t. The simulation approach can readily be
extended to use as local means the regional background observed at a previous time, say (t
−1), enabling the testing of whether the spatial pattern has locally changed through time (note
that other time lags, e.g. t−2, could be considered as reference spatial patterns, depending on
the question to be addressed). While the observed LISA is still computed according to equation
(1), the simulated LISA values are obtained as follows:

LISAa
(l)(u; t ∣ Neutral Model III) =

z(u; t) − mt
st

× ( ∑j=1J 1
J ×

z (l)(u j; t ∣ t − 1) − mt
st ) l = 1, …, L (8)

with z(1)(uj; t ∣ t − 1) = Ft
−1 p(1)(uj; t − 1)  Ft[.] is the distribution of rates observed at time t,

p(1)(uj; t − 1) = G y(1)(uj; t − 1)  where y(1)(uj; t − 1) are normal scores generated using SGS
conditionally to the regional background observed at the previous time t–1. The simulation
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procedure uses the residual semivariogram computed from difference between the normal
scores observed at time t and the local means at time t–1, y(uα; t) − mY (uα; t − 1)  This
space-time test will reveal areas where the ranking of the neighborhood average values in the
global distribution changed over time. The procedure is illustrated by including as regional
background the age adjusted mortality rates recorded for white females over the previous period
1950–1954.

Figure 6 (top graphs) shows the maps of mortality rates before and after geostatistical
smoothing. The smoothed rates are used as local means to generate the neutral models. Two
realizations of these models are displayed in Fig. 6 (middle graph), each reproducing a similar
location of low and high values (regional background). 999 realizations were generated and
the distribution of the simulated LISA values for the SEA unit # 57444 is shown in Fig. 2 (left
bottom graph). The major difference between the two time periods is that in 1950–1954 the
mortality rate for the neighborhood average was lower than the US mean (9.19 versus 10.13),
while the opposite is true for 1955–1959 (10.02 versus 9.26). As a consequence the
standardized values of the simulated neighborhood averages are mostly negative, leading to a
shift of the empirical distribution to the left (average = −0.15 instead of 0.1) and a p-value
which becomes lower than 0.05, indicating a significant change in the pattern of local
autocorrelation.

The results for all SEA units are mapped at the bottom of Fig. 6 and summarized in Table 1.
Interesting features include the High-High clusters detected for North California and Southern
Texas which have experienced an increase in mortality rates between these two periods, while
Low-Low clusters in Virginia and Eastern Louisiana corresponds to a significant decrease in
mortality over the same period. Yet, the interpretation of these clusters and outliers is not
intuitive since their labeling is defined in terms of spatial relationships; e.g. HH denotes a high
value surrounded by high values. Important information, such as increase or decrease in rates
between times, is not conveyed by this classification. For example the HH clusters detected in
Tennessee, North and South Carolina, and Georgia do not reflect the decrease in mortality
observed between these two periods. Therefore, we propose a new labeling where H/L would
reflect an increase/decrease in standardized rates between times t−1 and t. Thus, a cluster ST-
HH would denote a temporal increase in both the kernel value and the neighborhood average,
while ST-HL would correspond to the situation where the kernel value would have increased
in time while the neighborhood average would have decreased within the same time period. In
this way relationships in both space and time can be easily captured and displayed. Note that
since this classification is based on values standardized using the global mean at each time t,
the change (increase, decrease) actually reflects a change in the ranking of the SEA unit value
within the distribution of rates across the US. This new classification scheme is illustrated in
the map at the top of Fig. 7 (left graph). Summary statistics listed in Table 4 show a substantial
increase in the number of SEA units classified as LL or LH, which is balanced by the decrease
in the number of HH and HL units. The newly labeled map indicates that in North California
and Southern Texas the rates have either increased or decreased at a slower rate than the average
decline over the US, causing the relative rank of the SEA units to climb. This new labeling
also highlights the few SEA units in Tennessee, North and South Carolina that have
experienced an increase in mortality rates from 1950–54 to 1955–59.

Even when using the new classification scheme, the weakness of the LISA statistic (8) is that
the kernel value at time t−1 is ignored in its computation; hence only changes in neighborhood
average values can be detected. For example, a significant high-high cluster was detected for
the SEA unit # 57444, mainly because the kernel value at time t is compared with the smaller
neighborhood values recorded at time t−1. To detect actual changes in local spatial patterns
across time, we propose to compute the simulated LISA values using the following expression:
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LISAb
(l)(u; t ∣ Neutral Model III) =

z (l)(u; t ∣ t − 1) − mt
st

× ( ∑j=1J 1
J ×

z (l)(uj; t ∣ t − 1) − mt
st ) l = 1, …, L (9)

where the kernel value observed at time t, z(u;t), is now replaced by the simulated value,
z(l)(u;t|t−1), generated conditionally to the regional background observed at the previous time
t−1. In other words, the observed LISA statistic (1) will be compared to the distribution of
LISA statistics computed from each of the L realizations of the space-time neutral model of
type III. Figure 2 (right bottom graph) shows that this new statistic, which accounts for the
smaller mortality rate recorded for unit # 57444 at time t−1, leads to a different conclusion
(non-significant change). Since both the kernel value and neighborhood average increased from
t−1 to t, accounting for the two in statistic (9) clearly reveals that the relationships between
these two sets of values did not change over time, hence no significant change in local spatial
autocorrelation is found.

Statistic (9) is mapped using the new classification labeling at the top of Fig. 7 (right graph).
Except for Southern Texas, the major clusters detected using statistic (8) have vanished because
they do not appear significantly unusual under the modified null hypothesis. The summary
statistics in Table 4 indicate that the two maps share only 5 SEA units similarly classified as
significant, with a smaller proportion of space-time clusters (9 versus 33) detected using the
new statistic (9). In particular, statistic (9) leads to fewer significant clusters of decrease in
Virginia, which would indicate that the local autocorrelation as measured by the LISA value
did not change significantly between these two time intervals.

3 Analysis over multiple time periods
The methodology developed in Sect. 2.4 was applied to the study of the space-time distribution
of cervix cancer mortality rates recorded over all US State Economic Areas (SEA) for 9 time
periods of 5 years each. Figures 7 and 8 show, for a few time periods, the results of the local
cluster analysis using statistics (8) and (9). Classification statistics for all time periods are
summarized in Tables 3 and 4. Following Miller et al. (1996), elevated rates among white
females tended to cluster across the South, more so in the earlier time period than recently,
across Appalachia, parts of the Midwestern states, and the upper Northeast. High rates were
also seen in the southern part of Texas, perhaps due to the concentration of Hispanic women,
who tend to have elevated risks. Low rates occurred in the lower Northeast, northern Plains,
and Rocky Mountain states, which may reflect cultural or religious influences on sexual
practices, resulting in reduced transmission of human papillomavirus.

Mortality from cervical cancer has declined substantially throughout the country; particularly
after 1965 (see Table 3, right column). This trend followed the increase in the utilization of
Pap smear testing between 1961 and 1966, which allowed early detection of the disease.
However, rates in certain areas have decreased less rapidly, mainly due to a relative lack of
access to screening programs (Devesa 1995). Looking at the same SEA data presented in this
paper, Grauman et al. (2000) detected some change in the geographic pattern over time, with
an increasing concentration of relatively high rates in the Appalachian regions of Ohio, West
Virginia, Kentucky, and Tennessee in later time intervals and corresponding decreases in high-
rates areas across the Deep South. However their analysis was purely visual and could not
easily detect changes above and beyond the regional historical background. The series of maps
in Figs. 7 and 8 reveal interesting features, such as significant changes (i.e. increase or decrease
at a smaller pace than the US average decrease) across Appalachia for the period 1965–1969
and across most of Texas during the last time period of 1990–1994. This illustrates how the
technique can be used to identify areas that are lagging or excelling in response to a health
intervention such as a screening program.
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The information provided by the series of temporal maps is summarized at the bottom of Fig.
8 which displays the number of times each SEA unit has been found significant using a
probability level α 0.05. This measure of lack of temporal stability indicates that most units in
Southern Texas underwent significant changes over half of the time periods, which might be
expected since this part of the country had the highest rates initially. Smaller temporal stability
is also observed in parts of Virginia and North Carolina, as well as California. As noticed on
the different time-specific maps, the proportion of significant p-values is on average smaller
when looking at changes in local spatial autocorrelation, i.e. using statistic (9).

4 Conclusions
Cancer mortality maps are used by public health officials to identify areas of excess and to
guide surveillance and control activities. Maps of incidence as well as mortality are used as
input to disease clustering procedures whose purpose is to identify local areas of excess. While
some controversy revolves around the utility of these techniques, it is indisputable that the
finding of a confirmed cancer cluster is often of considerable concern. The accurate
quantification of local excesses, as well as regional trends and differences in cancer incidence
and mortality, is therefore a problem of considerable practical importance.

Arguably one of the biggest problems facing spatial epidemiology and exposure assessment is
that of identifying geographic pattern (e.g. outliers, clusters) above and beyond background
variation. Most, if not all, environmental contaminants and diseases with potential
environmental causes occur at a background level in the absence of a pollution- or disease-
causing process. Nonetheless, this background pattern is typically ignored in spatial analyses
that employ null hypotheses of spatial independence and constant risk. Because some spatial
dependency is expected at background levels, these null hypotheses often are inappropriate or
at least not very interesting to test. The approach presented in the first part of this paper enables
researchers to assess geographic relationships using appropriate null hypotheses that account
for the background variation extant in real-world systems. An immediate consequence of using
more realistic neutral models is fewer significant spatial clusters or outliers, which could reduce
unnecessary public alarm and demands for investigation by already stretched state health
departments. Similarly, the simulation procedure could easily account for the population size
in each SEA unit (i.e., see Goovaerts et al. 2005), which is expected to decrease the number
of significant clusters/outliers detected in less populated states.

Another major contribution of this paper is the generalization of neutral models to the detection
of space-time clusters through the incorporation in geostatistical simulation of the regional
background observed in the past. This new methodology allows one to identify geographic
pattern above and beyond background variation displayed in prior time intervals. The new
classification scheme also leads to a better visualization of areas where temporal changes have
occurred in clusters or distinctly from the surrounding geographical units, as well as the sign
and magnitude of these temporal changes. The implementation of this approach in spatial
statistical software, such as the STIS (Greiling 2005 this issue), will facilitate the detection of
spatial disparities for temporal changes in mortality rates, establishing the rationale for targeted
cancer control interventions, including consideration of health services needs, and resource
allocation for screening and diagnostic testing.

This paper presented only a few flavors of null hypotheses and statistics to detect clusters in
space and time. This is the topic of ongoing research and, for example, Goovaerts (2005b)
recently used an environmental exposure model to define the spatial background incorporated
in the generation of neutral models. More research is needed to compare the proposed use of
geostatistically simulated neutral models with existing analytical or empirical approaches to
infer the reference distribution for local Moran's I that is conditional on a known or estimated
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background spatial trend. In particular, the benefit of our approach over more straightforward
local cluster analysis of spatial or temporal regression models should be investigated.
Application of the technique to smaller and less populated geographical units will also
necessitate a preliminary correction for heterogeneous population sizes. Controlled simulation
experiments under different model scenarios should allow a quantification of the power of
alternative approaches for cluster detection.
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Fig. 1.
Map of cervix cancer mortality (rates per 100,000) for the period 1955–1959 (categories
correspond to deciles of the histogram of rates). Bottom graphs show results of local cluster
analysis under neutral model I (spatial independence): p-values and the corresponding set of
significant outliers and clusters for a 0.009 significance level (Bonferroni adjustment)
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Fig. 2.
Histograms of the values of the LISA statistic simulated for SEA unit # 57444 (Del Rio, Texas)
under different neutral models. The black dot denotes the observed LISA statistic which lies
inside the 0.95 probability interval for all models except the space-time model using LISA
statistic (8)
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Fig. 3.
Two realizations of the spatial distribution of cervix cancer mortality data based on the
assumption of spatial independence (Model I), reproduction of spatial autocorrelation (Model
II), and incorporation of the regional background displayed in Fig. 4 (Model III). The grayscale
ranges from white (low rates) to black (high rates), and for each realization categories
correspond to deciles of the histogram of simulated rates
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Fig. 4.
Population-weighted semivariogram for cervix cancer mortality data computed in four
directions: N-S, SW-NE, EW, and NW-SE. The semivariogram model (thick solid line) is used
by kriging analysis to decompose the original map of mortality rates (Fig. 1) into a smooth
map of local means (regional background) and a map of residuals. Grayscale categories
correspond to deciles of the histograms of local means and residuals, respectively
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Fig. 5.
Results of the local cluster analysis conducted using spatially correlated null models of the
type displayed in Fig. 3 (Models II and III). For comparison purposes the bottom graph shows
the results of the analysis for the map of residuals displayed in Fig. 4 using a neutral model of
type II to account for the spatial autocorrelation of the residuals
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Fig. 6.
Maps of cervix cancer data for the period 1950–1954 and the regional background obtained
by geostatistical smoothing of the short-range variability (top graphs). This regional
background is used to generate the two realizations of the neutral model ST III (middle graphs).
Bottom maps show the results of the local cluster analysis under this new model, and the
distribution of cervix cancer mortality data for the tested period of 1955–1959. For all
continuous variables grayscale categories correspond to deciles of the histogram of displayed
values
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Fig. 7.
Results of the local cluster analysis under the ST III neutral model for the cervix cancer
mortality rates recorded for a series of time periods. Left column corresponds to statistic (8),
while right column results are produced by statistic (9)

Goovaerts and Jacquez Page 20

J Geogr Syst. Author manuscript; available in PMC 2006 May 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
Results of the local cluster analysis under the ST III neutral model for the cervix cancer
mortality rates recorded for a series of time periods. Bottom maps show the number of times
each SEA unit has been found significant (α = 0.05) over 8 time periods (gray = 2, dark gray
= 3–4, black = 5–7). Left column corresponds to statistic (8), while right column results are
produced by statistic (9)
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Table 1
Number of significant SEA units for the different types of clusters/outliers and neutral models (cervix cancer for
white females). Numbers between parentheses indicate SEA units that have similar classification under the
reference Model I (spatial independence). Summary statistics for the p-values are also provided

Neutral model type

Model I Model II Model III ST Model III

High-High 11 1(1) 7(0) 18(0)
High-Low 4 0(0) 10(2) 12(0)
Low-High 2 0(0) 5(0) 10(0)
Low-Low 43 7(7) 5(1) 16(1)
Non-Sign. 446 498(446) 479(422) 450(391)
p-value
Mean 0.183 0.255 0.212 0.185
CV 82.0% 54.6% 70.2% 79.7%
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Table 2
Typology of neutral models based on the spatial characteristics of the risk being simulated

Risk at time t

Uniform Heterogeneous

Spatially random Spatially correlated Spatially correlated (regional
background at t)

Spatially correlated (regional
background at t-1)

I II III ST III
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Table 3
Number of significant SEA units for the different types of clusters/outliers in cervix cancer mortality data detected
using the neutral model ST III with statistic (8) and the new ST classification scheme. The last column gives the
relative change in average mortality rate when compared with the preceding time interval (Grauman et al.
2000)

Time period Type of units

High-High High-Low Low-High Low-Low NS % change

1955–1959 10 11 12 23 450 −9.3
1960–1964 16 14 15 4 457 −12.1
1965–1969 4 7 7 8 480 −19.2
1970–1974 13 3 8 13 469 −23.1
1975–1979 9 11 9 15 462 −24.1
1980–1984 11 3 7 2 483 −18.1
1985–1989 19 8 16 17 446 −11.9
1990–1994 24 13 8 20 441 −3.5
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Table 4
Number of significant SEA units for the different types of clusters/outliers in cervix cancer mortality data detected
using the neutral model ST III with statistic (9). Numbers between parentheses indicate SEA units that have
similar classification under Model ST III with statistic (8)

Time period Type of units

High-High High-Low Low-High Low-Low NS

1955–1959 7(4) 10(0) 4(1) 2(0) 483(432)
1960–1964 12(2) 9(2) 8(2) 2(1) 475(433)
1965–1969 8(1) 2(0) 3(0) 7(1) 486(462)
1970–1974 8(0) 3(0) 8(1) 3(0) 484(448)
1975–1979 8(3) 6(1) 3(0) 4(3) 485(448)
1980–1984 9(5) 4(1) 3(0) 1(0) 489(472)
1985–1989 8(4) 10(0) 5(2) 5(1) 478(425)
1990–1994 14(7) 6(1) 5(1) 7(3) 474(421)
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