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ABSTRACT

Cells deficient in the Werner syndrome protein
(WRN) or BRCA1 are hypersensitive to DNA inter-
strand cross-links (ICLs), whose repair requires
nucleotide excision repair (NER) and homologous
recombination (HR). However, the roles of WRN and
BRCAT1 in the repair of DNA ICLs are not understood
and the molecular mechanisms of ICL repair at the
processing stage have not yet been established.
This study demonstrates that WRN helicase activity,
but not exonuclease activity, is required to process
DNA ICLs in cells and that WRN cooperates with
BRCA1 in the cellular response to DNA ICLs.
BRCAT1 interacts directly with WRN and stimulates
WRN helicase and exonuclease activities in vitro.
The interaction between WRN and BRCA1 increases
in cells treated with DNA cross-linking agents. WRN
binding to BRCA1 was mapped to BRCA1 452-1079
amino acids. The BRCA1/BARD1 complex also asso-
ciates with WRN in vivo and stimulates WRN helicase
activity on forked and Holliday junction substrates.
These findings suggest that WRN and BRCA1 act in
a coordinated manner to facilitate repair of DNA ICLs.

INTRODUCTION

Maintenance of genomic integrity requires efficient responses
to DNA damage. This involves the activation of signaling

pathways that delay cell cycle progression and recruit factors
to facilitate repair of DNA lesions (1). DNA interstrand cross-
links (ICLs) are toxic lesions because they are strong blocks
to DNA replication and transcription. The toxicity of ICLs
has led to wide use of DNA cross-linking agents for cancer
chemotherapy. Repair of DNA ICLs involves homologous
recombination (HR) and nucleotide excision repair (NER),
both of which are relatively error-free DNA repair pathways.
However, DNA ICLs are also repaired by a mutagenic error-
prone pathway (2). In Saccharomyces cerevisiae, genetic
studies implicate a large number of genes in ICL repair (3);
however, the precise mechanisms of ICL repair have not
been established and little is known about ICL repair in
mammals.

WRN and BRCA1 are both involved in genome surveil-
lance and participate in repair of DNA double strand breaks
(DSB). BRCAI germline heterozygotes with one functional
allele are predisposed to breast and ovarian cancer, and
tumor progression is associated with loss of heterozygosity
at BRCAI by somatic mutation. In contrast, WRN germline
mutations cause the segmental progeroid Werner syndrome
(WS) and WS patients are predisposed to sarcomas. WRN
and BRCAI interact with the MRN complex (MREII,
RADS50 and NBSI1) and with RADS51, both of which play
critical roles in HR (4-8). Cells from WS patients are defec-
tive in the repair of DNA ICLs (9). BRCAI interacts with
Fanconi anemia proteins, which protect against DNA ICLs
(10,11), and is required for RADS51 focus formation in
response to cisplatin, a DNA cross-linking agent (12). Cells
deficient in WRN or BRCA1 are defective in HR-dependent
DNA repair reactions. WRN prevents defective mitotic
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recombination resolution, whereas BRCA1 promotes DNA
DSB repair by HR (13-15). In addition, BRCA1 and WRN
are both implicated in the G,/M-checkpoint response
(16,17). Thus, there is indirect evidence suggesting that
WRN and BRCA1 cooperate in the cellular response to
DNA ICLs, and in HR-mediated repair of DNA ICLs.

Recent evidence suggests that BRCAI1 regulates HR-
dependent aspects of ICL repair. For example, BRCAI is
required for formation of cisplatin-induced RADS51 foci but
not for formation of y-irradiation induced RADS1 foci (18).
Moreover, BRCALI is necessary for RADS51-mediated gene
conversion, crossover and sister chromatid replication slip-
page events (19). Lastly, recent studies identified a
BRCAl-interacting protein, BACHI, that participates in the
Fanconi anemia pathway of DNA ICL repair (20,21).

In spite of recent advances that implicate BRCAI and
WRN in the cellular response to DNA ICLs, the biochemical
and cellular bases for their roles in the repair of DNA ICLs
have remained obscure. This study demonstrates and charac-
terizes physical and functional interactions between WRN
and BRCAI. Importantly, processing of DNA ICLs in cells
requires both BRCA1 and the helicase activity of WRN.
BRCAI1 stimulates WRN helicase and exonuclease activities
and the interaction between BRCAI1 and WRN increases
in cells exposed to DNA cross-linking agents. Together
with other results presented here, these data suggest that
WRN and BRCAL act in a coordinated manner to facilitate
processing of DNA ICLs.

MATERIALS AND METHODS
Proteins, cell lines and siRNA

Purification of WRN, BLM, BRCA1/BARDI complex, and
BRCAI fragment proteins and maintenance of HeLa cells
were described previously (4,22,23). We purchased 6x
His-tagged BRCA1 from Jena Biosciences (>95% pure by
SDS-PAGE, Jena, Germany) and 6x His-tag peptide from
Abcam (Cambridge, MA). Generation and maintenance of
the telomerase-immortalized 03141 WS cells complemented
with wild-type WRN, exonuclease-inactive E84A WRN
(E-), helicase-inactive K577M WRN (H-), or exonuclease-
and helicase-inactive WRN (E-H-) were described previously
(24). The short hairpin RNA (shRNA) targeted against WRN
mRNA was cloned into the pSilencer™ 3.1-H1 hygro vector
(Ambion Inc.) for a stable transfection into U-2 OS cells. The
WRN RNAI target sequence is: TGAAGAGCAAGTTAC-
TTGA. A pSilencer vector expressing a shRNA that is not
homologous to any known human genes (Ambion) was
used as a negative control. The WRN and control shRNA
cells were selected and maintained in the presence of
hygromycin B. The siRNAs targeted against BRCAI
mRNA and its control siRNA (Upstate Inc.) were transiently
transfected into the WRN and control shRNA knockdown
cells using the Lipofectamine™ 2000 transfection reagent
(Invitrogen) according to the manufacturer’s instructions.

Cell proliferation assay

One day after siRNA transfection for BRCA1 knockdown,
cells were seeded into 6 cm dishes and ICLs were generated
in vivo by treatment with 8-methoxypsoralen (8-MOP,

Sigma) for 10 min and 365 nm ultraviolet (UV) light
at 1.8 J/cm? for 3 min (25). Cells were counted using the
Beckman Z1 Coulter® Particle Counter (Beckman Coulter,
Inc.) each day for 3 days following treatment. Because cells
transfected with BRCA1 siRNA showed decreased prolifera-
tion (data not shown), viability was corrected for cell
numbers with the respective time points in the absence of
photoactivated psoralen treatment. Then, values were normal-
ized to the cell count on day O.

Determination of ICL by comet assay

The comet assay was performed under alkaline conditions to
detect the presence of ICLs as previously reported (26) with
minor modifications. This assay measures the unhooking
of DNA ICLs, the first step for the repair of DNA ICLs.
Under alkaline conditions, denaturation of DNA containing
ICLs is repressed, such that DNA migration is retarded
upon electrophoresis. Therefore, DNA without ICLs forms
tails while cross-linked DNA shows no tails. We used this
approach to quantify the induction and incision of DNA
ICLs induced by photoactivated psoralen (8-MOP plus
UVA). Angelicin (purchased from Sigma) is a psoralen
mimetic compound that forms DNA monoadducts but cannot
form DNA ICLs. Forty hours after siRNA transfection for
BRCAL1 knockdown, cells were treated with photoactivated
psoralen. At various intervals after 8-MOP treatment
(1 pg/ml), cells were scraped and washed with phosphate-
buffered saline (PBS), mixed with 75 pl of 0.5% low-melting
point agarose at 37°C (104 cells, 10 ul), and spread onto
a cold slide precoated with agarose for 5 min. Another
75 pul of melted agarose was added and slides were chilled
for 5 min. Slides were placed in cold lysis buffer for 1 h
[2.5 M NaCl, 100 mM EDTA, 10 mM Tris (pH 10), 1% Tri-
ton X-100 and 10% dimethyl sulfoxide (DMSO)], washed
3x with PBS for 5 min and incubated in lysis buffer contain-
ing 1 mg/ml proteinase K for 2 h at 37°C. Slides were washed
again and then incubated for 30 min in alkaline denaturation
buffer [300 mM NaOH, 1 mM EDTA (pH 13)] at 4°C,
followed by electrophoresis in the same buffer at 25 V.
Tail moments were quantified using the Komet 5.5 software
(Kinetic Imaging, Durham, NC) according to the manufac-
turer’s instructions. We normalized tail moments to that of
the 12 h time point of control RNAIi cells (as 100%).

Dot blot assay

Recombinant proteins (1-10 ng) were spotted onto PVDF
membranes. The membrane was blocked in 5% non-fat milk
in T-TBS buffer [0.75% Tween-20, 25 mM Tris (pH 7.4),
150 mM NaCl] for 1 h at room temperature and incubated
in T-TBS with or without WRN (1 pg/ml) overnight at 4°C.
After extensive washing, the membrane was analyzed by
immunoblotting with anti-WRN antibodies (clone 30; BD
Biosciences, Lexington, KY) followed by chemiluminescent
detection with SuperSignal substrates (Pierce, Rockland, IL).

Immunoprecipitation, western analysis, enzyme-linked
immunosorbent assay (ELISA) and catalytic
activity assays

Methods for immunoprecipitation, immunoblot and ELISA
were described previously (27). Relative densities of protein
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Figure 1. Roles of WRN and BRCAL in response to psoralen ICLs. (A) RNAi was used to knock down expression of WRN and/or BRCA1 in U-2 OS cells as
described in Materials and Methods. Forty hours after BRCA1 siRNA trasnfection, knockdown or control cells were treated with psoralen ICLs (0.1 ug 8-MOP/ml
+UVA) and harvested 12 h thereafter for western blot analyses. (B) Alkaline comet assay with untreated cells or psoralen-treated cells. (C) Comet assay was
performed at the indicated intervals after cells were exposed to psoralen (1 g 8-MOP/ml +UVA). Knockdown phenotype for cells in each set of assays is indicated.
Tail moments are normalized to the 12 h time point for control siRNA transfected cells. Data are averages of three independent assays, from each of which at least
50 cells were randomly selected. Values are means + SD. (D) One day after BRCA1 siRNA transfection, control (+) or RNAi (—) treated cells were treated with 0.01
g 8-MOP/ml +UVA, and cells were counted each day for 3 days (n = 4). Numbers shown here were corrected for cell number with the respective time points in the

absence of photoactivated psoralen treatment.

bands were quantified using an Gel Doc™ XR imaging
system (Bio-Rad, Hercules, CA); the values were normalized
with the controls (lamin B in Figure 1A and H2AX in
Supplementary Figure S1) and expressed as ratios to those
in the cells without RNAIi or psoralen treatment. The antibod-
ies used were: anti-WRN (H-300, Santa Cruz Biotechnologys;
clone 30, Transduction Laboratories; Ab200, Novus) and
anti-BRCA1 (Ab-4, Oncogene). WRN helicase activity was
measured using a 22 bp forked duplex substrate (28) or a
Holliday junction substrate (29). WRN exonuclease activity
was measured using a 34 bp forked duplex substrate (28).
Experimental procedures, conditions and quantification were
described previously (28).

RESULTS

Proliferation and DNA repair defects in WRN- and/or
BRCA1-deficient cells treated with psoralen ICLs

To test whether WRN and BRCAI1 act cooperatively in an
ICL-specific DNA response pathway, sequences for RNA
interference (RNAi) were designed to selectively knock
down expression of WRN or BRCA1 in human osteosarcoma
cells (U-2 OS). WRN RNAIi was achieved by hygromycin B

selection for stable expression of WRN shRNA, whereas
BRCA1 RNAi was achieved by transient transfection of
siRNA. Depletion of WRN by shRNA exhibited continuous
low levels of WRN protein level as it was a stable knockdown
(Supplementary Figure S1). To test the efficacy of BRCAI
knockdown, we first analyzed the kinetics of BRCAT1 deple-
tion. Supplementary Figure S1 shows that BRCAI protein
levels were reduced by 73, 98 and 89% at 2, 3 or 4 days
after the transient BRCA1 siRNA transfection, respectively.
Next, we determined the possibility that psoralen treatment
had an effect on the protein levels of WRN and BRCAL.
Figure 1A shows that BRCAL1 protein levels were reduced
by 60% in the control and WRN shRNA cells 40 h after
BRCAL siRNA transfection. Thus, cells were treated with
psoralen at this time point. We found that the BRCA1 pro-
tein levels were reduced by 70 to 80% 12 h after the pso-
ralen treatment. WRN protein levels were not affected by
psoralen treatment. Lamin B protein levels were not affected
by the WRN or BRCA1 knockdown, or by the psoralen
treatment. After verifying the levels of WRN and BRCAL
knockdown during the course of these experiments, the
cells were assessed for the extent of DNA cross-linking by
the comet assay under alkaline conditions (26). Psoralen
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forms DNA monoadducts that are converted to ICLs by pho-
toactivation. Tail moment, a measure of relative DNA elec-
trophoretic mobility, was lower in psoralen-treated cells,
consistent with the expected slower mobility of cross-linked
DNA (Figure 1B). In contrast, there was no delay in elec-
trophoretic mobility in (i) cells treated with photoactivated
angelicin that forms DNA monoadduct only, but not ICLs,
(ii) cells treated with psoralen alone without UVA exposure
and (iii) control or WRN shRNA cells treated with UVA
alone (Supplementary Figure S2), indicating that these
three conditions did not induce DNA ICLs in cells. Poot
et al. (30,31) have shown that WS cells are not more sensi-
tive than wild-type cells to exposure to UVA treatment
alone or psoralen monoadducts. The conclusion that WS
cells are not particularly sensitive to monoadduct forming
agents was also reached by Fujiwara et al. (32). Conse-
quently we conclude that the sensitivity of the WS cells to
psoralen/UVA and the reduced incision of psoralen treated
cells reflect a role for the WRN in cross-link metabolism.

The comet assay results showed similar tail moments in
cells knocked down for WRN, BRCAI, or both at all time
points (Figure 1C). Moreover, the tail moment in wild-type
cells was not different from cells knocked down for WRN,
BRCAL1 or both immediately after exposure to psoralen
(0 h), indicating that psoralen-induced ICL formation is inde-
pendent of the level of expression of WRN and BRCAL. The
tail moment gradually increased in wild-type cells from 0 to
12 h after exposure to psoralen, presumably due to ongoing
ICL repair. The rate at which the tail moment increased
was slower in cells knocked down for WRN, BRCAI1 or
both. This suggests that substantial DNA ICLs remain in
the genomes of the WRN and BRCAI1 knockdown cells
12 h after treatment with photoactivated psoralen. The effects
of WRN and BRCAI knockdown in ICL removal were
not additive, suggesting that WRN and BRCA1 may partici-
pate in a common pathway for efficient repair of psoralen-
induced ICLs.

To address if the WRN and BRCA1 genes functioned in
the same or different pathways, we next measured the effect
of reduced WRN or BRCA1 expression on cell proliferation
in response to psoralen-induced ICLs. In the absence of ICLs,
cells deficient in WRN, BRCAI or both, grew slower com-
pared to control cells (data not shown). Therefore, the data
presented in Figure 1D and in Supplementary Figure S3
were corrected for cell growth rate prior to photoactivated
psoralen treatment. The proliferation of cells deficient in
WRN or BRCAL1 was reduced (P < 0.05) by low to moderate
levels of psoralen-induced ICLs (0.01 or 0.1 pug 8-MOP/ml)
compared to that of control cells expressing wild-type levels
of both WRN and BRCALI during a 3 day interval. In addi-
tion, the reduction in cell proliferation was similar whether
cells were deficient in WRN, BRCA1 or both. Consistent
with the comet assay data (Figure 1C), the results suggest
that WRN and BRCAI are involved in a common DNA
ICL response pathway.

Direct interaction between WRN and BRCA1

If WRN and BRCAI1 participate in the same ICL DNA
response pathway, they may interact physically and function-
ally. This possibility was tested by co-immunoprecipitation

of WRN and BRCALI in psoralen-treated and untreated
control HeLa cells. In untreated control cells, there was little
or no evidence for an interaction between WRN and
BRCAL. In contrast, 12 h after exposure to psoralen or 3 h
after 7y-irradiation (10 Gy), a significant amount of
BRCA1 co-immunoprecipitated with WRN (Figure 2A).
This WRN-BRCAI1 association persisted in the presence of
ethidium bromide (data not shown), indicating that the inter-
action is not mediated by DNA. The amount of BRCAI1
brought down by the WRN antibodies is not trivial, since
its level is comparable to that of other proteins associated
with WRN (4,27). Figure 2B showed that the majority of
HeLa cells (86%) were arrested in S phase 12 h after the
psoralen treatment. In contrast, there was only a slight
increase in cell population in S phase compared to the
untreated cells (60 versus 45%) 3 h after cellular exposure
to +y-irradiation treatment (10 Gy). Also, the cell cycle
profiles were similar between untreated and 7y-irradiation-
treated cells. Further, it is known that BRCA1 expression is
most abundant during S phase. Therefore, it is likely
that both photoactivated psoralen and vy-irradiation con-
tributes to the increased WRN-BRCA1 association, and
such interaction is strengthened when DNA damage takes
place in S phase.

ELISA with His-tagged purified full-length proteins
confirmed that BRCA1 and WRN interact, and demon-
strated that WRN binds directly and specifically to
BRCA1 (Figure 2C). The specificity of binding was con-
firmed by the observations that WRN did not bind to BSA
or the 6x His peptide. The purity of His-tagged WRN and
glutathione S-transferase (GST)-tagged BRCA1 fragments
was shown in the Supplementary Figure S4. The region of
BRCAL1 required for this interaction was mapped using
GST fusion proteins containing different BRCA1 domains
(Figure 2D), which were immobilized on a membrane and
probed with purified WRN in vitro. The results indicate
that the fragment containing BRCA1l 452-1079 amino
acids interacts with WRN (Figure 2E), suggesting that
BRCAL interacts with WRN via this region. This region
of BRCAI contains the nuclear localization signals (NLSs)
and the DNA binding motifs (23). Because BARDI binds
to the N and C terminal domains of BRCA1 (33), our re-
sults imply that WRN and BARD1 bind to different regions
of BRCA1 and thus may simultaneously interact with
BRCAL.

To confirm a direct interaction of WRN and BRCAI
in vivo, Sf9 insect cells were infected with both WRN and
BRCAL. We also tested a potential WRN-BARDI associa-
tion, as BARDI is considered an important protein partner
of BRCA1 on the basis of the observation that BRCA1 and
BARDI1 protein levels are reduced in the absence of
BARDI and BRCAI, respectively (34,35). Analyses of
anti-WRN immunoprecipitates by immunoblotting showed
that WRN associated not only with BRCAI but also
BARDI1 (Figure 3). When the amount of BRCAI and
BARDI brought down by anti-WRN immunoprecipitates in
cells expressing all three proteins was compared with those
co-expressing WRN and BRCA1 or WRN and BARDI, we
did not observe a noticeable difference. Whatever the case,
we conclude that WRN is likely to associate with both
BRCAL1 and BARDI in vivo.
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and GST-fusion proteins containing different regions of BRCA1 (1, 3 or 10 ng/dot) were immobilized on a membrane surface. The membrane was incubated with

WRN (1 pg/ml) and then probed with anti-WRN antibody.

BRCAL1 stimulates WRN exonuclease and
helicase activities

BRCAL is expressed during S phase, where HR activity is
high. To explore the significance of the physical interaction
between WRN and BRCA1, we assayed WRN catalytic activ-
ities on DNA substrates that are intermediates in HR. Also,
HR is essential for the repair of DNA ICLs. WRN helicase
activity may play a role in resolving recombination interme-
diates formed during HR-mediated recombination or repair
reactions (14,15). We tested WRN helicase activity in the
presence or absence of the BRCAI/BARDI1 complex. We
used a sub-optimal amount of WRN in order to determine
whether WRN helicase activity is promoted by its protein
partners (4). We observed that pre-incubation with BRCA1/
BARDI significantly (P < 0.05) increased the extent of strand
displacement on a forked substrate from 2 to 9% (Figure 4A)
and on a Holliday (four-way) junction substrate 12 to 28%
(Figure 4B). The BRCAI/BARDI1 complex alone had
no intrinsic DNA unwinding activity on either substrate,

supporting the view that the BRCA1/BARDI complex stimu-
lates WRN helicase activity via its interaction with WRN
instead of with DNA.

Because only the 452-1079 amino acids fragment
of BRCA1 binds WRN (Figure 2C), we tested whether this
fragment affected WRN catalytic activities. WRN helicase
activity was stimulated 5-fold (P < 0.05) by pre-incubation
with the 452-1079 amino acids fragment of BRCAI
(Figure 5A), whereas other regions of BRCAI had no effect
on WRN helicase activity (Supplementary Figure S5). None
of the BRCA1 fragments had intrinsic DNA unwinding
activity. The specificity of the helicase-stimulating function
of BRCA1 was tested by assaying other helicases in the
presence or absence of the BRCA1 452-1079 amino acids
fragment. The Bloom syndrome protein (BLM) is another
member of the RecQ helicase family. The BRCA1 fragment
also stimulated BLM helicase activity; it did not, however,
significantly ~ stimulate the bacterial UvrD helicase
(Figure 6). Thus, the BRCA1 helicase-stimulating function
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appears to be specific for the RecQ members of helicases, at
least the ones tested here.

BRCA1 452-1079 amino acids also stimulated WRN
exonuclease activity, increasing product formation from
4 to 32% (Figure 5B). The BRCA1 fragment had no intrinsic
exonuclease activity, and heat-inactivated BRCA1 did not
stimulate  WRN exonuclease activity (data not shown).
Thus, BRCAT and the KU heterodimer (36) share the ability
to stimulate WRN exonuclease activity. Collectively, these
data indicate that the 452-1079 amino acids fragment
of BRCAL1 stimulates both WRN catalytic activities, linking
the physical and functional significance of the WRN-BRCA1
interaction.

Processing of DNA ICLs requires the helicase, but not
the exonuclease, activity of WRN

Because WRN functions with BRCA1 in the cellular
response to DNA ICLs, and WRN helicase and exonuclease
activities are stimulated by BRCA1, we asked whether both
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activities of WRN were important for the removal of DNA
ICLs. For this purpose, we used AG03141 WS cells immor-
talized by telomerase and complemented with either wild-
type WRN, or WRN defective in exonuclease activity (E-),
helicase activity (H-), or both activities (E-H-) (24). Although
telomerase immortalization has been shown to suppress the
growth defects of WS due to telomere dysfunction (37), it
does not affect sensitivity to ionizing radiation (38,39), and
its effects on 4-nitroquinoline-1-oxide sensitivity is confined
to SV-40 transformed WS cells (data not shown). The cells
were treated with photoactivated psoralen. Western analyses
using anti-WRN antibody demonstrated comparable levels
of WRN expression in the four cells [(24), and data not
shown]. The comet assay results showed decreased tail
moments in wild-type WRN, E-WRN, H-WRN, and E-
H-WRN complemented cells immediately after exposure to
psoralen (0 h) and there was no difference among them, indi-
cating that psoralen-induced ICL formation is independent of
WRN catalytic activities (Figure 7). However, the comet
assay results showed increased tail moments in the wild-
type WRN and E-WRN complemented cells 16 h after expo-
sure to psoralen. In contrast, tail moment recovery was not
observed in the H-WRN and E-H-WRN complemented
cells after exposure to psoralen. Tail moments in the wild-
type and the E-WRN complemented cells were comparable
16 h after exposure to psoralen, and significantly greater in
the H-WRN and the E-H-WRN complemented cells. Collec-
tively, these data indicate that WRN may participate in the
processing of psoralen-induced ICLs via its helicase activity,
but not its exonuclease activity in vivo.

DISCUSSION

This study provides the first evidence that WRN and BRCA1
coordinately participate in the response to DNA ICLs.
BRCAL directly binds to WRN and stimulates WRN helicase
and exonuclease activities, and the interaction between WRN
and BRCAL1 increases in cells exposed to DNA cross-linking

B
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Figure 4. Effect of BRCA1 on WRN helicase activities. Purified WRN (5 fmol) was pre-incubated with the indicated concentrations of BRCA1/BARD1 complex in
20 ul assay buffer. WRN helicase activity was measured using a 22 bp forked duplex substrate (A) or a 50mer Holliday junction substrate (B). Product ssDNA
molecules are fast migrating species at the bottom of the gels. The mean percentage DNA strand displacement (rn > 2) is shown. Amount of DNA used per reaction was
10 fmol for forked substrates and 30 fmol for the Holliday junction substrate. Heated controls show 100% strand displacement.
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Figure 6. BRCA1 452-1079 amino acids fragment stimulates BLM helicase activity (A), but not UvrD helicase activity (B). Purified BLM helicase and UvrD
helicase were pre-incubated with the BRCA1 fragment in 20 pl assay buffer and helicase activity was measured using the 34 bp forked duplex substrate as described in

Figure 4.

agents. Efficient processing of DNA ICLs in vivo required
WRN helicase, but not exonuclease, activities. These obser-
vations suggest that WRN and BRCA1 may coordinately
facilitate repair of DNA ICLs.

ICLs form a covalent attachment between the two strands
of the DNA helix, thereby generating a strong block to DNA
replication and inducing DSBs (40). Because WRN asso-
ciates with BRCAL1 after DNA ICLs and DSBs are formed
in S phase, the WRN-BRCALI interaction may prevent aber-
rant HR-mediated recombination during S phase (14). In the
absence of BRCA1 or WRN, the frequency of DSBs during

S phase might increase and induce additional DNA damage
response pathways. Although it has recently been shown
that WRN localizes to YH2AX foci (41,42), the role of
WRN in repair of DNA DSBs associated with ICLs during
DNA replication remains unclear.

Previous studies indicate that BLM may also participate in
ICL repair in mammalian cells. In particular, cellular defi-
ciency in BLM causes hypersensitivity to DNA cross-links
(43) and a defect in BRCA1 focus formation after replication
stress (44). Consistent with this notion, we found that BRCA1
also stimulates BLM helicase activity. However, the BLM
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Figure 7. Role of WRN helicase activity in the processing of DNA ICLs. Comet
assays were performed between 0 and 16 h after cells were exposed to psoralen
(1 ug 8-MOP/ml +UVA) as described in Figure 1B. The AG 03141 WS cells
were complemented with wild-type WRN, exonuclease-inactive WRN
(E-), helicase-inactive WRN (H-), or exonuclease- and helicase-inactive
WRN (E-H-). Tail moments are normalized to the 16 h time point of wild-
type WRN complemented cells. Data are averages of three independent assays,
from each of which at least 50 cells were randomly selected. Values are
means = SD (n = 4).

helicase activity is not required for formation of BRCAT1 foci
after replication stress (44). Therefore, BRCA1 may recruit
BLM to DNA lesions and stimulates BLM helicase, promot-
ing efficient resolution of recombinational intermediates for
the repair of DNA ICLs.

Because BRCA1 stimulates the helicase activity of WRN,
another implication from this study is that BRCA1 and WRN
act cooperatively in the resolution stages of HR. The process
of HR generates recombination intermediates including
Holliday junctions and other forked or branched DNA struc-
tures. These structures are preferred substrates for WRN, and
WRN is likely to play a role in their resolution (45,46).
Because BRCA1 stimulates WRN unwinding and digestion
of forked duplexes, BRCA1 and WRN may also play a role
in replication fork maintenance. Recent studies show that
SGS1, a yeast ortholog of WRN, plays a role in maintaining
replication fork stability (47).

Identification of a functional and physical interaction
between WRN and BRCAI may have some relevance for
novel therapies for breast and ovarian cancer. Recent studies
show that BRCA-deficient cells are susceptible to killing by
an inhibitor of poly(ADP-ribose) polymerase (PARP)
(48,49), and previous studies in our laboratory demonstrate
that WRN interacts with PARP-1. Furthermore, WS cells
have less poly(ADP-ribosyl)ation than wild-type cells (50),
suggesting a functional interaction WRN and PARP. Because
BRCA1 stimulates WRN exonuclease and helicase, BRCA
mutant cells may have lower WRN catalytic activities than
wild-type cells. In contrast, PARP-1 inhibits WRN helicase
and exonuclease activities (51), so inhibition of PARP-1
should increase WRN catalytic activities. In BRCAI mutant
cells, WRN may not be stimulated by PARP inhibitors,
while in wild-type cells, PARP inhibitors may stimulate
WRN by a BRCAIl-dependent pathway. We believe it is
potentially critical to understand this complex interaction
between PARP, BRCA1 and WRN, and that this understand-
ing may stimulate development of therapeutic approaches to
breast and ovarian cancer based on PARP inhibitors.

Lastly, it should be pointed out that both BRCA1 and
WRN are likely to play roles in human aging. For example,
murine BRCA1 hypomorphs manifest many features of accel-
erated aging (52), which may reflect an increased frequency
of DSBs (53). If this is true, any factor that inhibits the
interaction between WRN and BRCA1 could potentially con-
tribute to aging-like pathologies in mammalian species. This
hypothesis is consistent with the notion that BRCA1 and
WRN contribute significantly to genomic stability and thus
prevent both aging and cancer (54).
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