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Fluctuations in protein numbers (noise) due to inherent stochastic
effects in single cells can have large effects on the dynamic
behavior of gene regulatory networks. Although deterministic
models can predict the average network behavior, they fail to
incorporate the stochasticity characteristic of gene expression,
thereby limiting their relevance when single cell behaviors deviate
from the population average. Recently, stochastic models have
been used to predict distributions of steady-state protein levels
within a population but not to predict the dynamic, presteady-
state distributions. In the present work, we experimentally exam-
ine a system whose dynamics are heavily influenced by stochastic
effects. We measure population distributions of protein numbers
as a function of time in the Escherichia coli lactose uptake network
(lac operon). We then introduce a dynamic stochastic model and
show that prediction of dynamic distributions requires only a few
noise parameters in addition to the rates that characterize a
deterministic model. Whereas the deterministic model cannot fully
capture the observed behavior, our stochastic model correctly
predicts the experimental dynamics without any fit parameters.
Our results provide a proof of principle for the possibility of
faithfully predicting dynamic population distributions from deter-
ministic models supplemented by a stochastic component that
captures the major noise sources.

gene networks � systems biology

One of the central goals of systems biology is to predict the
dynamic behavior of a cell’s genetic and metabolic net-

works. These predictions traditionally stem from models in which
discrete molecular events, such as transcription and translation,
are represented by continuous and deterministic differential
equations. Such equations are valid when behavior of individual
cells is very similar to the average behavior of the population.
However, in many cases, the inherently stochastic nature of
biological systems leads to significant cell-to-cell variability
(1–3), and previous studies indicate that individual cells often
behave very differently from the population average in response
to external stimuli. For example, studies of bacterial persistence
indicate that the population survival rate can be fundamentally
different from the average cell’s survival rate in response to
environmental stress (4, 5). The impact of noise-induced pop-
ulation heterogeneity is also relevant when studying cellular
memory, where fluctuations in protein numbers can cause the
stability of epigenetic memory to degrade by effectively causing
cells to forget their original states (6, 7). In these cases, stochastic
modeling techniques must be used to describe the large cell-to-
cell variability.

Although deterministic models can describe dynamic network
behavior and analytical stochastic models can faithfully predict
steady-state population distributions (8), little work has been
done to connect dynamic cellular behavior with noise models. It
is important that stochastic models of biological systems cor-
rectly capture system dynamics because few biological systems
ever reach steady state. Prior pioneering studies aimed at
predicting stochastic dynamics have modeled stochastic effects
by including high levels of microscopic detail (9). Although this

approach is correct in principle, it is often too complicated to
have general applicability because the parameters required are
usually unmeasured or difficult to acquire. Since the advent of
these microscopic approaches, much has been learned about
sources and propagation of noise in gene networks (8, 10–21),
leading to comprehensive models of stochastic behavior. How-
ever, these previous models have lacked a sufficiently detailed
set of dynamic data on which to test predictions of dynamic
population distributions (22–24). Thus, it has still not been
demonstrated that the current understanding of noise, which
accurately describes distributions of protein concentrations in
steady state, can be applied to predict dynamic distributions
reflecting noise-induced behavior.

In this work, we investigate the predictive power of stochastic
dynamics by using an integrated experimental and computa-
tional approach in which we construct a stochastic model of
cellular dynamics. To test the model’s predictions, we experi-
mentally measure population distributions of protein levels over
time in the lactose uptake network of Escherichia coli and then
compare these data to the predicted population distributions. To
construct our predictive model, we first build a deterministic
model that incorporates relevant network components. Next, we
use steady state measurements of this network to characterize
the magnitude of the relevant noise sources. Finally, by com-
bining these noise sources with the deterministic model, we
create a dynamic stochastic model that is able to predict the
dynamic behavior of distributions. Using this technique, we show
that once macroscopic rates are known, we only need two
additional parameters that characterize the noise in each gene to
faithfully predict experimental dynamic population distributions
without any fit parameters.

The Lactose Uptake Network
At the systems level, the lactose uptake network in single E. coli
cells displays an ‘‘all or nothing’’ response depending on the
extracellular concentration of the inducer (25, 26). This ability to
display different phenotypes at a single extracellular inducer
concentration has been attributed to a positive feedback loop,
which is shown in Fig. 1a. LacY (indicated by purple in Fig. 1)
is a transmembrane protein involved in active uptake of the
inducer thiomethylgalactoside (TMG) (indicated by orange in
Fig. 1). The synthesis of LacY is under the control of the lac
promoter, which is repressed by the lac repressor, LacI (indi-
cated by blue in Fig. 1), in the absence of TMG. However,
intracellular TMG molecules bind to LacI tetramers, causing
their dissociation from DNA and an increase in lacY transcrip-
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tion. lacY transcription can be further activated by the cAMP
receptor protein (CRP) (indicated by gray in Fig. 1), which upon
association with cAMP binds to an activator site in the lac
promoter and increases the probability of transcription. In
summary, this positive feedback loop is composed of two neg-
ative connections and one positive connection: TMG inhibits
LacI, LacI represses lacY transcription, and LacY increases the
intracellular TMG concentration. In addition to this natural
endogenous network, we constructed two fluorescent reporter
systems to monitor the state of the network in single cells. The
gene encoding for GFP (gfp) (indicated by green in Fig. 1) under
control of the lac promoter was integrated into the genome and
reports the concentration of LacY. Additionally, we placed a red
fluorescent protein (RFP) gene (rfp) (indicated by red in Fig. 1)
under the control of the gat promoter on a plasmid, which
contains a CRP activation region and a gat repressor binding site.
Because wild-type K12 E. coli strains lack a functional gat
repressor protein, GatR (27), RFP is a faithful reporter for the
activity of CRP (28).

Experimental Results
To model the stochastic dynamics of the lactose uptake network,
it is first necessary to understand single-cell behavior. At steady
state, the positive feedback loop causes cells to be in either an
ON (induced) state, during which they maximally produce LacY
and GFP, or an OFF (uninduced) state, during which LacY and
GFP are produced at a minimal, basal rate. In ON cells, LacY

imports enough extracellular TMG to maximally produce LacY,
whereas OFF cells do not have enough LacY or extracellular
TMG to produce LacY molecules faster than they are lost. These
circumstances mean that cells do not generally contain inter-
mediate concentrations of LacY and GFP when in steady state.

To observe this behavior, we prepare cells in either the ON or
OFF state by growing them for 24 h in media with 100 �M TMG
or 0 �M TMG, respectively. We then remove the cells from this
preparation media and subsequently grow them in fresh media
containing an intermediate concentration of extracellular TMG.
Cells are grown for 20 h (approximately seven cell generations),
at which point the population distributions are no longer chang-
ing quickly. For cultures resuspended in very high or low
concentrations of TMG, cells occupy either the ON or OFF
state, respectively, independent of their induction history (Fig. 2
a and c). However, resuspension in intermediate concentrations
of TMG maintain an ON or OFF population for extended
periods of time in either the higher or lower peak, respectively
(Fig. 2b), indicative of hysteresis (Fig. 2d).

Although we find that individual cells are either in the OFF
or ON states after 20 h, measurements at shorter time intervals
must reveal transient, intermediate distributions that reflect the
population morphing from its initial state (Fig. 2a, blue curve)
to its final state (Fig. 2c, blue curve). To characterize the
dynamics of these population distributions in response to
changes in inducer concentration, we sample the population at
various times and measure GFP levels in single cells. Fully
induced or uninduced cells are washed and subsequently resus-
pended in media with an intermediate concentration of TMG.
Next, the mean GFP fluorescence levels of individual cells are
measured. Histograms are generated every 1 or 2 hours for
several hours after resuspension in media with intermediate
TMG concentration.

Two types of dynamic responses are observed: ballistic and
stochastic. An example of a ballistic transition is shown in Fig. 3a,
where ON cells resuspended in 0 �M TMG collectively switch
OFF, drifting toward the new stable state. By contrast, Fig. 3b

Fig. 1. Network and noise diagram. (a) Diagram of the lactose utilization
network. Blue arrows indicate positive interactions, red bars indicate negative
interactions, and black arrows denote protein production. A positive feedback
loop from LacY to TMG to LacI back to LacY creates the potential for multi-
stability (high and low steady states). The fluorescent reporter GFP integrated
in the genome is expressed in parallel with LacY under control of the lac
promoter and reports the induction level of the cell. RFP under control of the
gat promoter reports activity of the activator CRP. (b) The noise network for
the lactose utilization network. Intrinsic noise is fed into each protein level and
is propagated through the network. The square above LacI represents the
combination and propagation of noise from total LacI and TMG through the
active fraction of LacI tetramers, which depends on the concentration of
intracellular TMG. (c) The effective noise network for induced cells with high
levels of intracellular TMG, where LacI tetramers are highly inactivated. The
crossed square represents the effective inactivation of this feedback by in-
creased levels of intracellular TMG.

Fig. 2. Demonstration of hysteresis in the long time limit. Histograms of
mean GFP fluorescence are shown for cells with a fully induced (red) and fully
uninduced (blue) history resuspended and grown for 20 h in 0 (a), 9 (b), and
30 (c) �M TMG. Induced cells grown in 0 �M TMG for 20 h still contain slightly
higher quantities of GFP than uninduced cells, and this difference is roughly
equivalent to that expected from exponential decay of fluorescence due to
dilution of GFP during cell division. (d) Steady-state solutions of the deter-
ministic model. The induced state is shown as the upper dark line whereas the
uninduced state is shown as the lower dark line. The intermediate unstable
steady state is shown as a dashed line in the shaded bistable region. Cells
remain in either the induced or uninduced states until they are moved to a
concentration of inducer at which the previous state is unstable (vertical
arrows).
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illustrates stochastic transitions, where some initially OFF cells
remain OFF while a subpopulation switches to the ON state.
Characteristic of a stochastic response, the OFF peak decreases
in magnitude exponentially with time.

Deterministic Model
Several deterministic models have been used to explain the
bistable behavior observed in the lactose utilization network
(28–31). We augment a model that has been used to describe the
strains analyzed in this study (28). Our model is composed of
three equations:

�x

dx
dt

� ��TMG�y � ��TMG � x , [1]

�y

dy
dt

� �
1 � x2

	 � x2 � y, [2]

and

�g

dg
dt

� �
1 � x2

	 � x2 � g. [3]

Here, x, y, and g represent intracellular concentrations of TMG,
LacY, and GFP, respectively. TMG denotes the extracellular
concentration of TMG. 1��x represents the rate of loss of
intracellular TMG due to export, degradation, or dilution from
cell division and growth. 1��y and 1��g represent the combined

loss from dilution and degradation of LacY and GFP, respec-
tively. The rate constant of active uptake of TMG per LacY
molecule is proportional to �, which is a function of extracellular
TMG, whereas � represents passive uptake of TMG independent
of LacY. We assume that GFP is transcribed at a rate identical
to that of LacY because both are expressed under control of the
lac promoter. Therefore, we set � as the maximal production rate
of both LacY and GFP. 	 is the repression factor representing the
ratio of transcription rates at the lac promoter between induced
and uninduced cells. This factor accounts for the effect of fully
activating all present LacI tetramers in the absence of intracel-
lular TMG. Derivations of these equations can be found in the
supporting information, which is published on the PNAS web
site.

By using these equations, it has been shown that the system can
have either a single stable steady state (monostable) or two
stable steady states separated by an unstable steady state (bist-
able), depending on the concentration of extracellular TMG
(Fig. 2d). Previously, the parameters �, �, and 	 have been
determined by fitting the theoretical monostable–bistable
boundaries (vertical arrows in Fig. 2d) to those measured
experimentally (28). Because the network used in our study is
identical, we will use the parameters �, �, and 	 as determined
in this previous study (Table 1). We set �y and �g equal to the
dilution time scale due to cell growth, �1/2 � �division, because we
assume that the active degradation rate of GFP and LacY is
much smaller than the dilution rate due to cell growth; here,
�division is the estimated average time between cell divisions. This

Fig. 3. Comparison between our stochastic model and experiments for transitions between OFF and ON steady states. Gray boxes are histograms of single cell
GFP fluorescence for populations of 2,000–6,000 cells, and red lines represent a population of 10,000 simulated cells using a Monte-Carlo algorithm. (a) ON cells
grown in 50 �M TMG and then placed in 0 �M TMG transition as a uniform population to the uninduced state with a single ‘‘ballistic’’ peak. (b) OFF cells grown
at 0 �M TMG are transferred to 15, 35, and 50 �M TMG. These three populations display stochastic switching behavior, where cells randomly leave the uninduced
state and move toward the induced state. Simulations predict the ballistic behavior associated with cells turning OFF and the stochastic behavior associated with
cells turning ON. In both cases, the experimental distributions are well matched by the model without any additional fit parameters.
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approximation leaves �x and � as the only undetermined param-
eters in the deterministic model.

We estimate the decay time of intracellular TMG, �x, by
measuring how quickly the average GFP levels of a fully induced
population decrease when placed in media without TMG (Fig.
3a). In this scenario, LacY no longer affects the dynamics of the
cells because there is no extracellular TMG to complete the
feedback loop. We assume the parameter �x to be much smaller
than �1/2 because cells cease GFP production within 10–20 min
after removal of extracellular TMG (see the supporting infor-
mation for further details), and a fit of the deterministic model
to the decreasing GFP levels yields �x � 0 min. This effect could
be due to rapid loss of intracellular TMG through efflux, which
is known to occur for other inducers (32, 33). Thus, we equili-
brate Eq. 1 in relation to Eqs. 2 and 3 by setting: �x(dx�dt) � 0.

In induced cells with many TMG-transporting LacY mole-
cules, passive TMG uptake, �, should contribute only a small
fraction to the intracellular TMG concentration. However, in
uninduced cells with few LacY molecules, this passive ‘‘leak’’
rate may be significant. To estimate this rate, the full determin-
istic model is fit to the population average of fully uninduced
cells placed in 50 �M TMG, giving � � 0.06 (see the supporting
information).

Noise and Stochastic Measurements
To make predictions about switching transitions and dynamic
population distributions, we must include the effect of stochastic
f luctuations in our model. It has been shown (8, 12, 13, 15, 17,
18, 20, 21) that noise in protein levels comes mainly from
discreteness of mRNA and protein numbers (intrinsic noise) as
well as from global changes in intracellular environment that
affect decay and production rates (global noise). To model
intrinsic noise, we must estimate two parameters for each gene:
the average number of proteins produced from a single mRNA
(burst size) and the conversion factor between absolute protein
numbers and fluorescence counts.

Fig. 1b contains a diagram indicating the generation and
propagation of noise in the network. First, LacY, LacI, and GFP
are sensitive to their corresponding intrinsic noise terms 
y-int,

i-int, and 
g-int, respectively (Fig. 1b). These terms are due to the
random creation and destruction events of lacY, lacI, and gfp
mRNA and the corresponding proteins. The RFP reporter
generates an intrinsic noise term, 
r-int (Fig. 1b), which contains
fluctuations due to RFP mRNA and RFP proteins as well as
fluctuations in plasmid number. Noise generated by CRP and
other factors, such as RNA polymerase and ribosomes, is
combined into the term 
global, which we treat as a multiplicative
factor on the production rates of LacY, GFP, and RFP.

Fluctuations in LacI numbers are propagated directly into
LacY and GFP, and the strength of this transmission depends
greatly on the intracellular TMG concentration because TMG
binding decouples LacI from the production of LacY and GFP
(8, 13). Finally, noise in LacY will cause fluctuations in intra-
cellular TMG concentration that affect the binding of LacI to the
lac promoter. This effect causes LacY fluctuations to be trans-
mitted into both LacY and GFP noise with a magnitude depen-
dent on TMG concentration.

Extrinsic noise can be determined by examining correlations
between levels of proteins influenced by the same upstream
regulators. To extract the noise parameter, 
global, from the
distribution of GFP concentrations, it would generally be nec-
essary to solve a set of equations describing the propagation of
noise through the entire network (8). However, the network can
be simplified greatly by considering only fully induced cells,
where TMG-bound and inactivated LacI no longer affects GFP
and LacY production. In this case, f luctuations in LacY, GFP,
and RFP expression levels are dependent only on extrinsic noise
levels, 
global, as well as each protein’s intrinsic noise level 
y-int,

g-int, and 
r-int (Fig. 1c). Because the term 
global is shared by
GFP and RFP, it is possible to separate the total GFP noise into
intrinsic and extrinsic components (see the supporting informa-
tion for details). GFP and RFP fluorescence levels are measured
in individual cells on several populations induced with different
concentrations of extracellular TMG. For 30 �M TMG, this
distribution is shown in Fig. 4a, indicating a weak correlation
between GFP and RFP levels. For GFP, the total noise, 
g-total,
and extrinsic noise, 
global, are measured directly from the GFP
and RFP distributions in the induced population using the
relations


g�total
2 �

��G2�

�G�2 �
�G2� � �G�2

�G�2 [4]

and


global
2 �

��G�R�

�G��R�
�

�GR� � �G��R�

�G��R�
. [5]

Here brackets �. . .� represent the population average of fluo-
rescent levels of single cells in the ON state only. The intrinsic
GFP noise, 
g-int

2 � 
g-total
2 � 
global

2 , is calculated for extracellular
TMG ranging from 9 to 30 �M (Fig. 4b), and mean values of the
noise measurements are 
g-total � (0.25 � 0.04), 
g-int � (0.21 �
0.03), and 
global � (0.14 � 0.02). These values remain constant
over the range of measurement, indicating that the ON cells have
similar noise characteristics regardless of the concentration of
extracellular TMG.

Table 1. Parameters used in the dynamic stochastic model

Parameter Value Error Source

� 100 16 Ref. 28
� 0.123(TMG)0.6 15% Ref. 28
	 170 34 Ref. 28
� 0.06 (0.03, 0.12) This study
�x 0 min 35 This study
�1�2 216 min 43 This study
NLacY 790 proteins 210 This study
NGFP 790 proteins 210 This study
NLacl 50 proteins — Ref. 34
bLacY 34.8 proteins 10.1 This study
bGFP 34.8 proteins 10.1 This study
bLacl 5 proteins — Ref. 34

—, not applicable.

Fig. 4. Measurement of intrinsic and extrinsic noise is accomplished by
comparing RFP and GFP concentrations in individual cells. (a) RFP and GFP
concentrations for individual cells grown in media containing 30 �M TMG for
24 h. A slight correlation between the two concentrations is present, indicat-
ing that the two share a weak source of global noise. (b) Measurement of this
correlation allows division of total noise in GFP into intrinsic and extrinsic
components, each of which are calculated from 9 to 30 �M TMG.
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To calibrate between fluorescence and the absolute number of
molecules, it is sufficient to determine the number of GFP
molecules in an induced cell, N. Rosenfeld et al. (18) showed that
intensity f luctuations introduced by cell division vary with the
number of fluorescent molecules in the cell. Upon cell division,
each molecule will be independently and randomly partitioned
into one of the two daughter cells. This process can be described
by a binomial distribution, where the difference between the
numbers of molecules in each daughter cell will, on average, be
proportional to N1/2, meaning that as the number of molecules
decreases (increases) the fractional asymmetry introduced by
division, N1/2�N � N�1/2, will increase (decrease). Therefore, by
using this as a calibration tool, we measure the mean GFP
fluorescence in pairs of cells that have recently undergone cell
division and estimate that the average number of GFP proteins
in an induced cell is NGFP � 790 � 210 molecules (see the
supporting information for details).

We next estimate the second missing noise parameter, burst
size, which can be determined from the intrinsic noise, 
g-int, by
using the relation ��n2� � �n� (b � 1) (11, 12), where n is the
number of protein molecules and b is the average number of
proteins produced from a single mRNA. This relation stems
from the fact that translation effectively amplifies the noise
associated with low levels of mRNA. We find that the burst size
for GFP is bGFP � 35.3 � 9.7, consistent with other burst size
measurements in E. coli (8). Because the same promoter is
regulating GFP and LacY expression, we assume that the
production rate of mRNA should be similar for the two proteins.
Thus, we set (NLacY�bLacY) � (NGFP�bGFP), where NLacY is the
number of LacY molecules in a fully induced cell, and bLacY is
the burst size of a LacY mRNA. We could reduce the ratio
NLacY�bLacY to a single parameter analytically because the
mRNA production rate for LacY is proportional to NLacY�bLacY,
and the burst size in units of f luorescence is proportional to
(NLacY�bLacY)�1. However, to proceed later with simulations
that model explicit molecular events, we need to assign values for
both NLacY and bLacY. Therefore, without loss of generality, we
choose values for these parameters that maintain the required
ratio by setting them equal to those measured for GFP: NLacY �
NGFP and bLacY � bGFP.

We expect noise to be transmitted from the LacI component
as well, but to analyze these contributions it is necessary to
examine steady state distributions around the uninduced fixed
point. However, a small signal to noise ratio combined with
increasing nonlinearity at these low concentrations makes ex-
traction of relevant information difficult. Instead, we use pub-
lished estimates of the molecule counts and burst sizes of LacI,
which we interpret as bLacI � 5 and NLacI � 50 in our strain (34).

Stochastic Model and Predictions
We now have a full set of parameters for the dynamic deter-
ministic model, as well as all parameters necessary to describe
the steady state noise properties of the lactose uptake network.
To determine whether these parameters can be used to predict
the full dynamic distributions measured in the experimental
section, we construct a dynamic stochastic model. In principle,
we have already fully defined the model, but for simulation
purposes we use a reduced model that contains only essential
events. The model consists of three processes: (i) mRNA pro-
duction followed immediately by a burst of protein production
and mRNA degradation, (ii) protein degradation, and (iii)
extrinsic or global noise. We therefore ignore specific events,
such as binding of LacI or CRP to operator sites and timing
between productions of individual protein molecules. These
processes and the corresponding rates are summarized in Table
2 and described in greater detail in the supporting information.
We use a modified Gillespie’s Monte-Carlo method (35) to
simulate large populations of individual cells. Fig. 3a shows the

results of the simulation (red solid lines) for induced-to-
uninduced transitions where induced cells are placed in 0 �M
TMG. Fig. 3b shows simulations (red solid lines) of uninduced
cells grown in 15, 35, and 50 �M TMG, respectively.

The stochastic model reproduces ballistic and stochastic
switching, whereas the deterministic model does not distinguish
between these types of behavior. For the case shown in Fig. 3a,
the experiments and simulations both show that every cell moves
like the average obtained from the deterministic model. In
addition to demonstrating average behavior, the stochastic
model also correctly predicts the widths of the distributions. For
the data shown in Fig. 3b, the individual cells behave very
differently from the average, and the stochastic simulation
captures this behavior. In this case, the peak at uninduced GFP
levels slowly decays as a subpopulation of cells begins to tran-
sition to the induced state. In addition to demonstrating the
general behavior, the model matches the rate of transitions out
of the uninduced peak and predicts the shape of the population
distribution over a wide range of TMG and time.

It is noteworthy that ballistic switching does not always occur
when the initial state becomes unstable. For instance, although
the OFF state is no longer stable in media with 50 �M TMG, the
timing of an OFF-to-ON switching event depends on a cell’s rare
production of LacY mRNA and subsequent protein creation. It
is this rare, stochastic burst of LacY that ultimately triggers the
positive feedback loop and drives the OFF-to-ON transition.
Conversely, the ON-to-OFF transition is ballistic because it
requires the dilution of intracellular TMG and GFP, both of
which are low-noise events involving high molecule numbers.

Discussion
We introduced a method that should have general applicability
for the prediction of stochastic cellular dynamics. The first step
includes characterization of a deterministic model that matches
known steady-state behavior. Rate constants in this model can
be estimated from published values, by fitting to steady state
measurements, or through direct biochemical assays. Next, the
magnitudes of noise sources are extracted from distributions of
fluorescent counts and correlations between different expres-
sion reporters measured in steady state. The sources of intrinsic
noise are then characterized by the discrete molecule numbers,
N, and mRNA burst sizes, b. By combining these reaction rates
and noise sources, a stochastic model is produced containing
three important stochastic factors: mRNA production, protein
degradation, and global noise.

The model is in good agreement with experimental data and
can predict the type of response (ballistic versus stochastic), the
escape rates from a state, and the distribution of reporter
fluorescence values without any fit parameters. Furthermore,
the predicted distributions proved to be robust against param-

Table 2. Stochastic Model

Protein Event Reaction Rate

GFP Burst G3 G � B(bGFP) f(x(Y), I) NGFP�(bGFP �1�2)�
Decay G3 G � 1 G��1�2

LacY Burst Y3 Y � B(bLacY) f(x(Y), I) NLacY�(bLacY �1�2) �

Decay Y3 Y � 1 Y��1�2

LacI Burst I3 I � B(bLacI) NLacY�(bLacY �1�2)
Decay I3 I � 1 I��1�2

f(x, I) � ({[(	 � 1)I]�[NLacI(1 � x2)]} � 1)�1 with x(Y) � Y (���NLacY) � ��TMG
models the effect of LacI repression based on instantaneous values of Y and I.
� represents a correlated extrinsic noise, with ��� � 1 and ��(t)�(t � 	t)� �
2
global

2 exp(�	t��1�2). Capital variables are absolute molecule numbers of the
respective lowercase concentrations scaled to the deterministic model as
defined in the supporting information: G 
 g NGFP�� and Y 
 y NGFP��. B(b) is
an exponentially distributed random integer with mean equal to burst size b.

7308 � www.pnas.org�cgi�doi�10.1073�pnas.0509874103 Mettetal et al.



eter variation in both magnitude and general behavior (see the
supporting information). The precision of our model’s predic-
tions could be improved by careful measurement of individual
model parameters; however, we have shown that previously
obtained parameter estimates are sufficient to provide interest-
ing quantitative information about network behavior not avail-
able from deterministic equations alone.

Materials and Methods
We calculate the experimental error in noise measurements
[
g-total � (0.25 � 0.04), 
g-int � (0.21 � 0.03), 
global � (0.14 �
0.02)] by setting error bars equal to the standard deviation of the
noise values measured during independent experiments from 9
to 30 �M TMG. We determine the error in the value of bGFP by
calculating propagated errors from NGFP and 
g-int.

Model predictions were generated by Monte-Carlo simulation
by implementation of a modified Gillespie’s stochastic simula-
tion algorithm (35) in MATLAB (MathWorks, Natick, MA). Cells

are initialized at steady state protein numbers and then simu-
lated for 12 ‘‘Monte-Carlo hours’’ to generate an equilibrium
distribution at the initial TMG concentration. Results of the
deterministic model were calculated by integrating Eqs. 1–3
using Euler’s method with 	t � 1 min.

Because not all parameters used in the analysis are measured
explicitly, it is important to test the model’s behavior for
robustness against parameter error (see supporting informa-
tion). Although the theoretical predictions change quantitatively
as individual parameters are varied, the important features are
preserved through a wide range of parameter values.
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