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Early origins of obesity: programming the appetite
regulatory system
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There is evidence that changes in perinatal nutrition programme the development of relative fat
mass and the regulation of appetite in adult life. These studies have been primarily in the rodent
utilizing maternal overnutrition or undernutrition imposed at different stages of pregnancy and
beyond, mapping of neuropeptide localization and activity and appropriate null mutant models.
Whilst the rodent offers significant advantages in terms of a short gestation and the availability
of useful transgenic and null mutant models, there are also advantages to using an animal model
more akin to the human, in which all components of the ‘fat–brain axis’ are present before birth,
such as the sheep. This review summarizes recent work on the expression and localization of the
‘appetite regulatory’ peptides in the fetal rodent and sheep hypothalamus and their potential
role in the early programming of postnatal appetite and obesity.
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The early origins of obesity

During the past two decades there has been a marked
increase in the global prevalence of adult and childhood
obesity and currently more than 50% of all adults in the
United States and the United Kingdom are overweight, i.e.
have a body mass index (BMI) of greater than 25 kg m−2

(James, 1996; Campfield et al. 1998; Flegal et al. 2002;
Ogden et al. 2002). An increase in the prevalence of obesity
(BMI > 30 kg m−2) is associated with an increase in a range
of co-morbidities including type 2 diabetes, high blood
pressure and ischaemic heart disease (James, 1996) and in
this context it is of interest that a range of epidemiological,
clinical and experimental studies have shown that there is
a relationship between the fetal nutritional environment
and patterns of adult adiposity. A number of studies have
reported that there is a J shaped or U shaped relationship
between birth weight and adult fat mass, with a higher
prevalence of adult obesity occurring in individuals who
were of either low or high birth weight. There are
associations between maternal and paternal birth weight
with offspring birth weight and where adjustments for
maternal BMI have been able to be made (Maffeis et al.
1994; Curhan et al. 1996a; Curhan et al. 1996b; Parsons
et al. 2001), the relationship between birth weight and adult
BMI has diminished. A recent study reported that there was

a weak but positive relationship between birth weight and
adult BMI and that this relationship was largely accounted
for by maternal weight, i.e. heavier mothers had heavier
babies and these babies went on to have a high BMI in adult
life (Parsons et al. 2001). There is additional evidence,
however, that the positive associations between birth
weight and later BMI may represent an association of birth
weight with lean, rather than adipose tissue. This indicates
the importance of determining body composition, rather
than solely BMI, in long-term follow-up studies (Singhal
et al. 2003). In pregnancies complicated by maternal
diabetes mellitus, gestational diabetes or even mildly
impaired glucose tolerance, the offspring are at risk of
developing obesity (Dorner & Plagemann, 1994; Buchanan
& Kjos, 1999); and in another study of infants of
diabetic mothers, 50% had weights greater than the 90th
percentile at birth and at 8 years of age (Silverman et al.
1991).

Whilst people who were small babies tend to have a
lower BMI in adult life, these individuals also tend to
have a more abdominal distribution of adipose tissue, a
significantly reduced muscle mass and a high overall body
fat content in adolescent and adult life despite their lower
BMI (Law et al. 1992; Fall et al. 1995; Malina et al. 1996;
Okosun et al. 2000; Loos et al. 2001; Loos et al. 2002;
Singhal et al. 2003). This is significant because central
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obesity is associated with the clustering of pathologies
that defines the insulin resistance or metabolic syndrome
(hypertension, dyslipidaemia, hyperinsulinism, impaired
glucose tolerance or type 2 diabetes) (Reaven, 1988).
Exposure to a reduced nutrient supply in early pregnancy,
as occurred in the Dutch Winter Famine in 1944–45, also
resulted in an increase in body weight, BMI and waist
circumference at 50 years of age for the offspring (Ravelli
et al. 1976). Interestingly, Parsons et al. (2001) found that
men with a lower birth weight who then achieved a greater
proportion of their adult height by 7 years of age had a
risk of obesity comparable with that for men with higher
birth weights. Based on this series of epidemiological
studies, it has been suggested that the influence of maternal
weight on the relationship between birth weight and
subsequent BMI may operate through an impact of
maternal and hence fetal nutrient supply. During the past
decade many experimental studies have investigated the
impact of varying maternal and hence fetal nutrition on
patterns of postnatal growth, insulin secretion, the insulin
sensitivity of the postnatal liver, skeletal muscle, adipose
tissue and glucose tolerance and these important studies
have been the focus of several recent reviews (Holemans
et al. 1996; Hales et al. 1997; Hoet & Hanson, 1999; Hales
& Ozanne, 2003; Armitage et al. 2004; McMillen et al.
2004). A series of studies have also highlighted, however,
the possibility that varying maternal nutrition during
critical windows of development may also alter the level of
energy intake in the offspring through inducing changes
in the expression, localization and action of specific
neuropeptides in the appetite regulatory network present
within the brain. This review will therefore focus on the
nature and role of such changes in the central component
of the energy regulating system in the early programming
of adult obesity.

The appetite regulatory neural network

A range of appetite regulatory neuropeptides, including
primarily the appetite stimulatory neuropeptides
neuropeptide Y (NPY) and agouti-related protein (AgRP),
and the appetite inhibitory neuropeptide precursor
molecule pro-opiomelanocortin (POMC, precursor
for α-melanocyte-stimulating hormone, αMSH) and
the neuropeptide cocaine- and amphetamine-regulated
transcript (CART), are expressed within the adult
hypothalamus and act together to regulate energy balance
(Friedman & Halaas, 1998; Schwartz, 2001). NPY is
predominantly localized in the hypothalamic arcuate
nuclei (ARC) and NPY neurones project to the
paraventricular nucleus (PVN), dorsomedial nucleus
(DMN), the perifornical region and the lateral hypo-
thalamic area (LHA; Grove & Smith, 2003). NPY neurones
are able to respond to a range of peripheral nutrient
and hormonal metabolic signals such as glucose, insulin,

and the adipocyte derived hormone, leptin. A long form
variant of the leptin receptor is highly expressed on cell
bodies in the ARC and DMN, and increases in circulating
leptin concentrations during periods of increased food
intake results in a decrease in hypothalamic NPY mRNA
and a subsequent fall in energy intake (Schwartz, 2001).
AgRP is coexpressed with NPY in the ARC and is an
endogenous antagonist of the anorexigenic melanocortin
receptors MC3-R and MC4-R in the PVN and other
hypothalamic regions. The POMC derived peptide,
αMSH, is an endogenous anorexigenic peptide which acts
at the melanocortin receptors to suppress food intake,
while leptin acts to up-regulate POMC expression within
the ARC and thereby limits energy intake (Schwartz,
2001). The neuropeptide CART is colocalized within
POMC neurones in the hypothalamus and also acts to
suppress food intake.

Adult obesity is associated with relatively high
circulating leptin concentrations, and the tendency to
gain weight in some non-obese populations with high
basal leptin concentrations may indicate an underlying
role for leptin resistance in obesity (Chessler et al. 1998;
Lindroos et al. 1998; Lissner et al. 1999). It has been
proposed that elevated plasma levels of leptin result in
an uncoupling of the action of leptin at its receptors
in the hypothalamus, thereby disrupting signal trans-
duction pathways which are required for the suppression
of appetite by an increase in circulating leptin (Kieffer
et al. 1996; Ahima & Flier, 2000). Alternatively, it has also
been suggested that elevated plasma leptin is associated
with impaired blood–brain leptin transport, and hence
apparent central resistance to the leptin signal (Banks et al.
1999).

Development of the appetite regulatory
system in the rodent

The development of the hypothalamic appetite regulatory
network in rodents such as the rat or mouse occurs
predominantly after birth. Whilst NPY is present within
the fetal ARC from as early as 14.5 days gestation,
NPY/AgRP projections between the ARC and DMN are
not complete until some 10–11 days after birth and NPY
containing projections to the PVN do not fully develop
until around 15–16 days (Allen et al. 1984; Woodhams et al.
1985; Kagotani et al. 1989; Grove & Smith, 2003). During
the first week after birth there appears to be a relative
dominance of NPY and αMSH innervation of the PVN
by efferents derived from the brainstem, rather than from
the ARC, and it has therefore been suggested that vagal
sensory information from the gut relating to gut fullness
may be important in regulating feeding behaviour in the
rat pup throughout this period (Grove & Smith, 2003).
There is also transient expression of NPY in the DMN,
the perifornical region and the LHA during the postnatal
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period and POMC, AgRP and MC4-R mRNAs are also
all present within the rat hypothalamus through this
postnatal period. In mice, projections from the ARC to
other areas of the hypothalamus also develop during the
postnatal period, with projections to the dorsomedial
hypothalamus (DMH), PVN and LHA established in
sequence between postnatal days 5 and 16 (Bouret et al.
2004a).

Early programming of appetite in the rodent

A series of early studies demonstrated that the amount
of food consumed during suckling in the rat plays an
important role in determining subsequent food intake in
later life (Oscai & McGarr, 1978). When postnatal over-
nutrition is induced in rats by rearing in small litters
of only three pups, they show an increased early weight
gain and fat deposition, followed by hyperphagia, obesity,
hyperleptinaemia, hyperglycaemia, hyperinsulinaemia
and insulin resistance (Plagemann et al. 1992, 1999a,d).
Leptin has a lower inhibitory effect on the appetite
stimulatory neurones of the ARC in these animals
as young adults whereas insulin and leptin tend to
exert greater inhibitory actions in the ventromedial
nucleus (VMN) (Davidowa & Plagemann, 2000, 2001).
Neurones in the VMN also have altered responses to
NPY and there are altered responses to both orexigenic
(AgRP) and anorexigenic (αMSH, CART) neuropeptides
in the PVN in the young adult after postnatal overfeeding
(Heidel et al. 1999; Davidowa et al. 2002, 2003; Li et al.
2002).

When mild hyperglycaemia is induced by
streptozotocin-induced gestational diabetes from
early pregnancy, pups are macrosomic at birth and
maintain an accelerated growth during the first 10 weeks
of age (Oh et al. 1988). In macrosomic, hyperinsulinaemic
pups at 21 days of life, the mean areas of neuronal nuclei
and cytoplasm were significantly decreased within the
PVN and VMN, and the mean area of neuronal cytoplasm
was also decreased in the ARC (Plagemann et al. 1999b).
In the adult offspring of the mildly diabetic pregnant dam,
there was a significant increase in the number of NPY
containing neurones within the ARC (Plagemann et al.
1998, 1999c). In a study in which control rats were reared
by diabetic rat dams, it was found that there were no
morphometric malformations in the hypothalamic VMN,
and the authors concluded that exposure to a diabetic
intrauterine milieu is critical for the reorganization of
the VMN in offspring of diabetic rat dams (Fahrenkrog
et al. 2004). In contrast, exclusive exposure to milk from
a diabetic dam resulted in an up-regulation of NPY and
AgRP peptides in the ARC of the control offspring and a
decreased immunostaining for both POMC and αMSH
(Fahrenkrog et al. 2004). Thus there appears to be a series
of critical windows both before and after birth when

exposure to enhanced nutrition or to breast milk from
diabetic mothers has consequences for the development
of the hypothalamic appetite regulatory system that
persist into postnatal life.

When rats are undernourished (50% decrease in energy
intake) during the first two weeks of pregnancy and
refed during the third week, the male offspring develop
significant hyperphagia and obesity when maintained on
a high fat diet (Jones & Friedman, 1982; Jones et al. 1984,
1996a; Anguita et al. 1993). The obesity has a delayed onset
(∼50 days of age) and refeeding during the third week of
pregnancy is critical for the induction of postnatal obesity
(Stephens, 1980). When maternal nutrition was restricted
to 30% of control intake throughout the whole of gestation,
the offspring were smaller throughout postnatal life, but
they had an increase in the relative mass of retroperitoneal
fat at 100 days of age (Vickers et al. 2000). Food intake by
the offspring of the undernourished rats (cross fostered
by ad libitum fed mothers) was higher early in postnatal
life, increased with increasing age and was amplified by
postnatal hypercaloric nutrition (Vickers et al. 2000). It
is not yet clear whether there are accompanying changes
within the hypothalamic appetite regulatory network in
these animals.

Mechanisms underlying the early programming
of appetite in the rodent

Both mild gestational diabetes and a reduction in litter size
are associated with perinatal hyperinsulinism and there
is evidence that exposure to hyperinsulinaemia during
fetal or early postnatal life results in increased adiposity
and altered hypothalamic development (Jones et al. 1995,
1996b; Harder et al. 1998, 1999). Protein restriction
maintained during gestation and lactation is associated
with hypoinsulinaemia, normal leptin concentrations
and an increase in NPY levels in the ARC, PVN and
LHA. There are, however, fewer neurones immunopositive
for NPY in the ARC of these offspring (Plagemann
et al. 2000). These authors have therefore suggested that
hypoplasia of neurones expressing the orexigenic peptides
such as NPY is the result of perinatal hypoinsulinism
whereas hyperplasia of these neurones is a consequence
of perinatal hyperinsulinism.

Interestingly, a recent study has reported that neural
projection pathways from the ARC are permanently
disrupted in leptin deficient (Lepob/Lepob) mice and
that treatment of these mice with leptin in neonatal
life, but not in adult life, rescues the development of
the ARC projections (Bouret et al. 2004b). These data
provide direct evidence that leptin promotes formation of
hypothalamic pathways that later convey leptin signals
to brain regions regulating food intake and energy
consumption. This developmental activity appears to be
specific for ARC projections and is restricted to a neonatal
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window of maximum sensitivity that corresponds to a
period of elevated leptin secretion. This neonatal ‘critical
period’ corresponds to the period when ARC axons are
guided to their targets (Bouret et al. 2004b). In rodents, the
capacity of fetal adipocytes to synthesize leptin is low until
relatively late in gestation; the placenta also synthesizes
little if any leptin (Kawai et al. 1997; Amico et al. 1998),
although there is evidence of significant transplacental
transfer of maternal leptin to the fetus (Smith & Waddell,
2002, 2003).

Thus it appears that glucose, insulin and leptin derived
from the maternal circulation or present in her breast
milk exert the dominant influence on the development
of the appetite regulatory neural network and that the
immediate postnatal period is of particular importance
for the long-term programming of food intake in the
rodent. However, the role of maternal metabolic and
hormonal signals and the critical windows during which
programming of appetite may occur in the litter-bearing,
altricial rodent are likely to be different from those in
non-litter-bearing, precocial species such as the human
and sheep.

Development and programming of the appetite
regulatory system in the human

In contrast to the rodent, the earliest stage that NPY
immunoreactivity was found to be present in the ARC of
the human hypothalamus was at 21 weeks gestation and
furthermore there were already projections from the ARC
to the PVN at this stage of pregnancy (Koutcherov et al.
2002). In pregnancies complicated by maternal diabetes,
the fetus is hyperglycaemic and hyperinsulinaemic, and
cord blood leptin concentrations are also increased in
parallel with increases in infant adiposity (Koistinen et al.
1997; Matsuda et al. 1997; Jaquet et al. 1998; Shekhawat
et al. 1998; Cetin et al. 2000; Tapanainen et al. 2001). Whilst
plasma leptin concentrations are low in growth restricted
infants at birth, they increase to become higher in these
infants at 1 year of age when compared to their normal
birth weight counterparts (Jaquet et al. 1999). It has also
been demonstrated that people with low birth weight also
go on to have higher leptin concentrations in adult life
when compared to individuals at the same BMI but with a
higher birth weight (Phillips et al. 1999). Furthermore,
the ratio of leptin to fat mass was significantly greater
in the children who had received a nutrient enriched
preterm formula than in those who received a standard
formula or banked breast milk (Singhal et al. 2002). These
authors concluded that programming of relative leptin
concentrations by early diet may be one mechanism that
links early nutrition with later obesity (Singhal et al.
2002). In order to determine the role of prenatal nutrient
and hormonal signals in the programmed development
of the appetite regulatory neural network it is helpful

to work with an animal model, such as the sheep, in
which there is prenatal development of the neural network
and in which fat is deposited before birth as in the
human.

Programming of the appetite regulatory
system in the sheep

We have previously reported that genes for the appetite
regulating neuropeptides NPY, AgRP, POMC and CART
are each highly expressed in the ventromedial portion
of the ARC of the fetal sheep hypothalamus by
110 days gestation (term = 147 ± 3 days gestation), which
is consistent with their pattern of expression in the adult
sheep hypothalamus (Adam et al. 2002; Mühlhäusler
et al. 2004) (Fig. 1). Furthermore, and in contrast to
the rodent, NPY projections are also present in the
fetal PVN during late gestation (Warnes et al. 1998).
Messenger RNA for the long form of the leptin receptor
(OB-Rb) is also expressed in both the ARC and VMN
of the fetal sheep, and to a lesser extent in the DMN,
consistent with the reported pattern of expression in the
adult sheep (Williams et al. 1999; Mühlhäusler et al.
2004) (Fig. 1). Whilst the sites of OB-Rb expression were
similar in the fetal and adult sheep, there were differences
in the relative intensity of hybridization within these
hypothalamic nuclei. Specifically, the intensity of OB-Rb
mRNA expression was higher in the VMN compared
to the ARC in fetal sheep whereas in the adult hypo-
thalamus, the ARC is the predominant site (Mühlhäusler
et al. 2004). Thus leptin may play a different role as a
signal of energy balance before birth, compared to adult
life. In the adult rodent, the VMN is an important site
for the regulation of thermogenesis in the brown adipose
tissue (Cannon & Nedergaard, 2004), and it is possible to
speculate that the higher level of OB-Rb expression in the
fetal VMN indicates that leptin has a greater role in the
regulation of the thermogenic activity of brown adipose
tissue, rather than ‘energy intake’ during the perinatal
period.

In a recent study we have demonstrated that an intrafetal
infusion of glucose between 130 and 140 days gestation
resulted in a significant increase in POMC mRNA in
the ARC of the fetal sheep hypothalamus (Mühlhäusler
et al. 2005). This occurred in the absence of an increase
in circulating leptin, indicating that POMC mRNA
expression in the fetal hypothalamus may be responsive
to increases in glucose or insulin, acting either alone or in
combination. Interestingly, in this study, POMC mRNA
expression in the ARC was related directly to the total
expression of OB-Rb within the ARC and VMN of the fetal
hypothalamus (Mühlhäusler et al. 2005). Thus glucose
may act to stimulate a population of POMC containing
neurones within the ARC which coexpress OB-Rb. In
glucose infused fetuses, there was also a direct relationship
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between the expression of CART mRNA outside the ARC
(i.e. within the VMN, LHA and PVN) and expression of
POMC mRNA within the ARC, which may indicate a role
for CART in ‘second order’ neurones as part of a neural
network within the fetal hypothalamus activated by an
increase in nutrient supply.

Interestingly, there was no effect of intrafetal glucose
infusion on the expression of the orexigenic neuro-
peptides NPY and AgRP in the fetal sheep hypothalamus
(Mühlhäusler et al. 2005). This is surprising given that
circulating glucose and insulin concentrations in the fetus
are relatively low compared with those measured in adult
life and that fetal hypothalamic NPY content is increased
following maternal undernutrition in sheep (Warnes et al.
1998). Fetal hypothalamic expression of NPY and AgRP
may therefore be relatively insensitive to an increase in
fetal glucose or insulin concentrations and indeed the
preservation of orexigenic drive may be an important
survival strategy for the neonate immediately after
birth.

In sheep, leptin is synthesized in fetal adipose tissue and
is present in the fetal circulation in lower concentrations
than in the maternal circulation through late gestation
(Yuen et al. 1999, 2002; Chen et al. 2000; Devaskar
et al. 2002; Ehrhardt et al. 2002; Mühlhäusler et al.
2002, 2003). As the sheep placenta expresses the leptin
receptor gene (Thomas et al. 2001) and maternal
and fetal plasma leptin concentrations are positively
correlated throughout late gestation (Yuen et al. 2002),
it is possible that the placental leptin receptor may
mediate the uptake of leptin from the maternal into the
fetal circulation. Fetal adipocytes also contain larger or
dominant lipid locules and there is a direct relationship
between the relative mass of the ‘unilocular’ component of
perirenal and interscapular fat and the circulating leptin
concentrations in fetuses of well nourished pregnant
ewes (Mühlhäusler et al. 2002). This suggests that that
circulating leptin concentrations may be a signal of the
unilocular component of fat in fetal life, rather than
total fat mass as it is in the neonate and adult. Intrafetal
leptin infusion in the presence of normoglycaemia and
normoinsulinaemia results in a decrease in the proportion
and relative mass of unilocular tissue in the perirenal
adipose depot and a decrease in the relative abundance
of leptin mRNA in perirenal adipose tissue in fetal sheep
(Yuen et al. 2003). The precise site of this action of leptin,
either within the fetal hypothalamus or peripherally within
the adipoinsular axis remains to be determined.

Whilst there is evidence that the hypothalamic neural
network that regulates appetite in adult life is present in the
fetus and is responsive to changes in circulating signals of
nutrition before birth, there is relatively little information
on whether this axis may be programmed prenatally in
the sheep. It has been demonstrated that low birth weight
lambs have a higher relative voluntary food intake during

the early postnatal period and are fatter at body weights
up to 20 kg when compared with lambs with normal
birth weights (Greenwood et al. 1998). One possibility
is that this relative hyperphagia is, at least in part, a

Figure 1. Autoradiographic images of coronal sections through
fetal sheep hypothalamus at 110 days gestation
(term ≈ 147 days) showing gene expression for NPY, AgRP,
POMC, CART and leptin receptor (OB-Rb)
3V, third ventricle; ARC, arcuate nucleus; ME, median eminence; VMH,
ventromedial hypothalamus; DMH, dorsomedial hypothalamus; PVN,
paraventricular nucleus; R, reuniens thalamic nucleus; OC, optic
chiasm. Scale bar = 1.5 mm. (From Mühlhäusler et al. 2004, with
permission from Blackwell Publishing Ltd.)
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result of early programming of the appetite regulatory
neuropeptide network.

Perspective

A series of studies have provided significant evidence
that changes in perinatal nutrition programme the
development of the hypothalamic neural network that
regulates appetite in adult life. These studies have been
primarily in the rodent utilizing maternal overnutrition or
undernutrition imposed at different stages of pregnancy
and beyond, mapping of neuropeptide localization and
activity and using appropriate null mutant models. Such
research has provided a neuroanatomical and functional
framework for the oft mooted hypothalamic body weight
‘set point’ hypothesis (Elmquist & Flier, 2004) and this
can now be interrogated experimentally to determine the
extent to which there could be perinatal programming of
such a set point by exposure to relative over- or under-
nutrition in the human fetus. Whilst the rodent offers
significant advantages in terms of a short gestation and the
availability of useful transgenic and null mutant models,
there are clear advantages to using an animal model
more akin to the human, in which all components of the
‘fat–brain axis’ develop before birth, such as the sheep. Use
of this model will allow a definition of the role(s) played by
the ‘appetite regulatory’ peptides before birth and whether
there are critical prenatal windows for the programming
of postnatal appetite. In the face of the global obesity
epidemic, there is a potential for an intergenerational
cycle of obesity as women enter pregnancy with a higher
BMI (Kral, 2004). Thus, in contrast to the general focus
of the ‘early origins of adult disease’ field on prenatal
growth restriction, there is an increasing impetus to define
the short and longer term consequences of exposure
of the hypothalamic neural network which controls
energy balance to maternal and hence fetal nutritional
excess.
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