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ABSTRACT

The potentiation and subsequent initiation of transcrip-
tion are complex biological phenomena. The region of
attachment of the chromatin fiber to the nuclear matrix,
known as the matrix attachment region or scaffold
attachment region (MAR or SAR), are thought to be
requisite for the transcriptional regulation of the euka-
ryotic genome. As expressed sequences should be
contained in these regions, it becomes significant to
answer the following question: can these regions be
identified from the primary sequence data alone and
subsequently used as markers for expressed se-
guences? This paper represents an effort toward
achieving this goal and describes a mathematical
model for the detection of MARs. The location of matrix
associated regions has been linked to a variety of
sequence patterns. Consequently, a list of these pat-
terns is compiled and represented as a set of decision
rules using an AND-OR formulation. The DNA se-
guence was then searched for the presence of these
patterns and a statistical significance was associated
with the frequency of occurrence of the various
patterns. Subsequently, a mathematical potential value,
MAR-Potential , was assigned to a sequence region as
the inverse proportion to the probability that the
observed pattern population occurred at random. Such
a MAR detection process was applied to the analysis of
a variety of known MAR containing sequences. Regions
of matrix association predicted by the software essen-
tially correspond to those determined experimentally.
The human T-cell receptor and the DNA sequence from
the Drosophila bithorax region were also analyzed. This
demonstrates the usefulness of the approach
described as a means to direct experimental resources.

INTRODUCTION

Recent studies have established that human somatic cell chro
tin is organized in loops that spas0—-100 kb {). The points of

nuclear scaffold are termed scaffold (metaphase) or matrix
(interphase) attachment regions (SAR or MAR). They are known
to facilitate the expression of genes and may function as the
origins of replication.

The matrix or scaffold attachment regions are relatively short
(100-1000 bp long) sequences that anchor the chromatin loops to
the nuclear matrix. MARSs often include the origins of replication
(ORI) and can possess a concentrated area of transcription factor
binding sitesZ). Approximately 100 000 matrix attachment sites
are believed to exist in the mammalian nucleus of which
B0 000—40 000 serve as OR3s MARs have been observed to
flank the ends of genic domains encompassing various transcrip-
tional units. It has also been shown that MARSs bring together the
transcriptionally active regions of chromatin such that the
transcription is initiated in the region of the chromosome that
coincides with the surface of nuclear matfi)).

Matrix attachment regions have been categorized as constitut-
ive (permanent) or facultative (cell-type specifi€). (The
constitutive MARs occur in all types of cells irrespective of the
tissue in which they are found. In contrast, the presence of a
facultative MAR is tissue specific and its use is governed by that
tissue. MARs have been experimentally defined for several gene
loci, including the chicken lysozyme gen&),( human
interferonf gene §), humarp-globin geneY), chickero-globin
gene 8), p53 Q) and the human protamine gene clustéy. (

Itis widely accepted that the next phase of the Human Genome
Project will focus on completing the transcript map. This will
entail the mapping of the transcribed sequences to the appropriate
regions of the chromosomes. To help identify these regions, some
sequence identifiers, such as promoters, enhancers and locus
control regions (LCR) are typically used. One of the clearest
indicators of functional sequences are MARs. In light of the key
role of MARs in genetic processes, and their localization to
functional chromatin domains, a means to model these markers
so that they could be placed on the map from sequencing data was
sought. The results of our studies to computationally define
MARs for experimental validation are presented.

"BAaracterizing the regions of matrix attachment

attachment of these chromatin loops serve as specific sequeM&Rs are polymorphic and appear to be distributed throughout
landmarks as they anchor the DNA sequence to the fibers the genome. There is no known consensus sequence that is
chromosomal scaffold. These sites of DNA attachment to theharacteristic of a MAR. Biologists have physically identified
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Motif Indes | Motif Name Sequence Predicate well as the motil TTAAA(motifsny . . .mgin Fig.1). Rule 3 will
m ORI Signal ATTA identify curved DNA.
m, ORI Signal ATTTA - i . . .
m | ORI Signal TTTTA Kinked DNAKinked DNA has generally been associated with
T TG-Rich Signal TOTTTTCG the presence of copies of the dinucleotide TG, CA or TA that are
ms TG-Rich Signal TGTTTTTTG separated by 2—4 or 9-12 nt. For example, kinked DNA will be
me TG-Rich Signal TTTTGGGG produced by the motiTARTGrsCA, with TA, TG and CA
m Curved DNA Signal | AAAAn; AAAAn; AAAA occurring in any order (motifsyg. . .mysin Fig.1). Rule 4 will
mg Curved DNA Signal | TTTTn;TTTTn;TTTT identify kinked DNA
My Curved DNA Signal | TTTAAA ’
mag E?ntej gii S?gnzi ;3"353"3% Topoisomerase |l site§opoisomerase Il binding and cleavage
" wnEec Lt A S1en Sna Al sites are concentrated at the sites of nuclear attachment. Both
mig Kinked DNA Signal | TGn3T AnyCA b dD hil . I ‘
mys Kinked DNA Signal | TGnyCAngTA vertebrate and Drosophila topoisomerase Il consensus sequence:
omn Kinked DNA Signal | CAnyT AnsTG have been identified1,13), and are fashioned as Rule 5 in
mis Kinked DNA Signal | CAn;TGnyTA Figure2.
m1e mtopo-II Signal RnY nnCnnGY nGKTnYnY . L
M dtopo-II Signal GTaW AY ATTnATnnR AT-rich sequencedlany MARs contain significant stretches of
s AT-Rich Signal WWWWWW AT-rich sequences. It has been suggested that the simple

occurrence of isolated AT-rich regions is not sufficient to cause
matrix association. Several such regularly spaced motifs are

Figure 1. The set of motifs characterizing MARs constitute DNA sequence : : ot s : :
signals or predicates upon which rules the defining higher level patterns arreqUIrEd for matrix association. Periodicity was considered while

constructed. Note that the IUPAC characters R,Y, W and K are defined aformUIating Rule 63), although consideration of local nucleotide
follows. R=AorG,Y=TorC,W=AorTandK=GorT. concentration above a threshold may be required.

Several other characteristics, some of which have not been
MARs and have tried to correlate their presence with th cluded in the current analysis, have been proposed for MARSs.

occurrence of several DNA sequence motifs, including the O [or example, MARs have been shown to contain palindromic

curved and/or kinked DNA. A description of some of the motif%?qu?nces'tz'r? NA alnd [l;Nase_ dl h);g_e:fenai}t_iveMﬁggﬁ(fgw .
that have been identified within several MARs is as follows. “u €l€ments have aiso been ldentified within s. Specifi-

cally, Alus with a high AT content may interact with the nuclear
Origin of replication. It is known that DNA replication is matrix. With the exception &lu elements, whose role in matrix
associated with the nuclear matrix. It has also been demonstragtthchment is unclear (and their occurrence limited to primates),
that nuclear matrix attachment sites, homeaotic protein recognititime above elements cannot be easily fashioned into a definitive
and binding sites and the origins of replication share the ATTApnsensus pattern. Moreover, these elements may not be ap-
ATTTA and ATTTTA motifs. This implies that differential propriate or necessary for the mathematical determination of
activation of origins of replication (important for development) ar®é1AR-potential. For example, many bacterial, viral and mam-
regulated while part of the nuclear matéx ORI motifsny ...  malian ORI sequences, which are characteristic of MARs, are
mg in Figurel have been used to formulate Rule 1 in Figure  also palindromic. The occurrence of palindromic sequences at

, . : ites of nuclear matrix attachment may thus reflect the presence
TG-rich sequencesSome malrix aftachment regions have bee'?)f origins of replication, which are already identified by Rule 1

characterized by T-G rich spa@$. (These regions are abundantin.”_ _. o ; .
the 3 UTR of a number of genes, and may act as signals at oy Figure2. DNase | hypersensitivity, while possibly a character-

recombination sites, e.g. immunoglobulin genes. Matifs,. .Img E]E(ir?xf Z&Rﬁb'tsilt'ls(eclgﬁsrgsﬁgg thgl\'lr:;;aftr']on ggz:]gﬁi\?ittjdi?;
in Figurel are used to compose Rule 2 (Rigthat identifies the - hus, Diva yp uvity may

: represent a useful method for identifying MARs experimentally
T-G rich spans. .

rather than computationally.

Curved DNAIntrinsically curved DNA has been identified at or There is ample evidence to suggest that transcription factor
near several matrix attachment sit24%). Curved DNA is also binding sites, promoter regions and other regulatory regions of
considered to play an important role in nuclear processes thlaé genome may be nuclear matrix associated. While there are a
involve the interaction of DNA and proteins, such as recombinanyriad regulatory elements and promoter sequences of known
tion, replication and transcription. Optimal curvature is expectetbmposition, these have not been utilized in the model presented.
for sequences with repeats of the mathAARAAARFAAAAas  The computational model proposed in this report will most likely

Rule | Name Definition Probability
R; | ORI Rule my V mg V ms pL =20, Pr(m)
R, | TG-Richness Rule | m4V msV mg Py = 20, Pr(m;)
R3 | Curved DNA Rule || m7 VmgV mygy p3 = >0 Pr(m;)

R, | Kinked DNA Rule | myo Vmy Vg V | py = 50, Pr(m;)
myz V imy VvV mys
Rs | Topoisomerase Rule | mg V mi7 ps = 2ot Pr(my)

R¢ | AT-Richness Rule mis AF2 mag ps = Pr(mys) - (1 — exp(—5 - Pr(mis)))

Figure 2. The set of biological rules defining patterns that were used for detecting structural MARs. The table also specifies the relationship between the DNA v
probabilities Pr(m), and the rule probabilitieg,.
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identify constitutive or class 2 MARs, although, when adjusted,
it has been successful in detecting facultative class 3 MAIRs ( or

LAYER

The computational model for detecting MARs

AND
LAYER

Known consensus sequences for eukaryotic transcription factors
and promoters can be identified using algorithms such as
SIGNAL SCAN (4) and PROMOTER SCAN1§). These
programs look for singular patterns, and are thus not very useful
for determining the significance of the co-occurrence of many
patterns. Similarly, ‘gene grammar’ has been utilizeg) {o
capture relations between the promoters, introns and exons.
While this approach has its merits for detecting functional units o=
within a sequence, its application is limited to recognizing ™
patterns where the relationship between the component motifs s,
known a priori. A neural network can be utilized to recognize ssouexct”
higher level patterns when such a relationship between the
component motifs is not formally defined but learned by theFigure 3. A rule is defined by utilizing logical connectives on the occurrence

computational agents. Such a system has been utilized by Grgijunderlying pattems. The DNA motifs (which may be overlapping) that are
present or absent in the raw sequence serve as the input predicates upon which

Where the network was trained to detect g@f@ﬂbases n S'Z_e) rule the logical definition of a rule is based. Such a generalized rule architecture
in raw DNA sequencel{). However, the lack of an appropriate is modeled after a AND-OR decision tree with the ANDCboperator
training set (there are very few MAR regions experimentallyconstraining the motifs separation distance. The highest level of this match
problem. Thus, our approach based on assigning a statisticgl® "YPothetical rule represented in the above figurel¥ ¢8) [1C [Vy D).
significance to the co-occurrence of several MAR specific

patterns represents a unique and, as we demonstrate below, viable

12
solution to the MAR detection problem. Re = Myg A Mye 2

... ACTGTTGGGAGGATATTATAATTTAGGGCATGCCC GATCATACCATGGTTACCCTTAGGGACCCT

Such a formulation uses an augmented AND operatf}f’,
to define the acceptable distance between the two motifs.

As a first step toward the algorithmic detection of regions of

probable matrix association (MARSs), an effective mathematic&ule database and probability assignment
framework for representing such patterns must be adopted. In
approach, the underlying architecture used to represent patt
is based on an AND-OR Boolean decision tree. As shown
Figure 3, such a tree represents a disjunction (OR) of th
conjunctions (AND) on motifs detected in the sequence. Thu
sequence level motifs serve as the lowest level predicates use
detect the presence of a higher level pattern in the sequence.
that the lowest level predicates may be negated before being u

MAR patterns definition

e%j{gdepicted in Figurg, sequence motifs serve as predicates in the
odeling of the MAR-detection rules. These predicates essential-
represent the various sequence motifs that have been known to
ccur in the vicinity of MARs. With the motif indices thus

aggned, a set of rules for detecting higher level MAR patterns
Le developed and shown in Figie This rule database

[epresents the core set of rules needed to identify MARs in a DNA

in the AND layer. In such an instance, the absence of motifs?‘saqulenct(he' Thehctore S%t of MAR pflt(tjelr)n {ﬁles are clonslud](carabl){[
sought to satisfy the conditions for the occurrence of the highﬁmp er than what can be represented by the general rule forma
level pattern. 8,19). However, as the experimental determination of some

As an example, consider a simpler instantiation of such Aflditional regions of matrix association continues, other related
AND—-OR decision tree. A rule to define the origin of DNA Patterns are likely to emerge. The more generalized framework
replication Ry) can be based on an OR or fheperator applied for pattern representation will facilitate the incorporation of new

e _ _ _ d potentially complex) pattern rules.
to the three motifay = ATTA, mp= ATTTA andmg= ATTTTA. (an ) . v .. .
The motif detectors bypass the AND layer in this case, and”SSociated with each of the motifs is a probability atit&lom
directly feed into the OR layer. occurrence. This is derived using the base composition of the

sequence being analyzetd). For example, the probability of
Ri=my Omp Omy 1 finding the motif ATTA in a sequence with composition
{A,C,G,T}=(0.2,0.2,0.3,0.3) is equal to B2.%) =3.6x 103
Similarly, the requirement for co-occurrence of multiple motifs In order to calculate the random probability of occurrence of a
can be specified using the AND or theperator. In the AND rule rule, the motif probabilities are multiplied across an AND layer
for multiple patterns, an additional parameter is incorporated tehen the motifs are independent, and added across an OR layer
constrain the allowable gap between the two co-occurring motifshen their occurrence is mutually exclusive. Furthermore,
For example, the AT-richned’g] rule has been formulated as theassuming a Poisson density function for motif occurrences, the
occurrence of two hexanucleotide stringgg = WWWWWW  probability of finding at least one motif within an acceptable
(note: the IUPAC code W denotes an ambiguous base A or T), tldigtance from the reference motif can be computed. Thus, the
are separated by distance of 8-12 nt. Thus, the AT-richness red@dom occurrence probabilities for ruiResandRg in Equations
can be written as: 1 and2 will be given by:
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Pr(Ry) = Pr(my) + Pr(mp) + Pr(mg) _ o EXprA _
Pr(Re) = Pr(myg)  {L - exp[-(12 - 8 + )Pr(myg} 3 P(Fod = I == whered; = p-W 5
The steps required for computation of thehe cumulative
=Pr(myg) - {1 — exp[-5 Pr(myg)]} 4 probability that the observation satisfits is given by Equation
6 below.

As we demonstrate, these probability values for random
occurrences of the various rules can be used for assignimg= Pr(x; = fi, X, = f,, ..., % = f))

statistical significance to the set of complex patterns that are = pr(x, = f,) - P,(x, = f,) - ... * Pr(x, = f,)

detected in a given region of the sequence. o expdl & expd? «, expidle 6
— | N R R e e P T Al

Statistical significance of MAR motifs X =ty o= =i

The task of detecting regions of matrix association is modeled as'hep-value in Equatio® is next utilized to compute the value
a problem of hypothesis testing. Since matrix association isofp or the MAR-potential as given by Equatibbelow.
property of a span of the sequence, a sliding window algorithm

was considered appropriate for detecting MARs. The sliding = '"p = ~In(®)

window algorithm uses two parametaféandd to measure a k k k

local property of the DNA sequence. The statistic of interest is = Zl’li * _;'”fi!_;fi In%, 7
measured in a window of si¥écentered at locationalong that o T T e 2t

sequence. Successive window measurements are then made by 1|n(1 5 1t T l)l(fi R VT +|2)'“(fi - t))

sliding the window in increments &fnucleotides. I8 is small, i
linear interpolation can be used to join the individual window It is not surprising that a pattern’s contribution to the overall

statistics gathered &g x +9, . . . ,x +ka. In this manner, a AR notential is strongest when its observed frequency is high
continuous distribution of the parameter of interest is obtained Ahile its probability of random occurrence is low. The infinite
a fll_Jrr]]Ct'or;l ?]b(. thesisi tested | H window is as follows, Summation term in Equatidtguickly converges and thus can be

€ null NpotnesiSiio, tested In each window 1S as TolloWS, 4qantively calculated to the precision desired. For small values of

Ho: .t.he frquency of the MAR patterns obser_ved Is n i, the series may be truncated such that the last term satisfies the
significantly different from the frequency expected in a randorﬂ)llowing condition:

W nt sequence of the same composition as the sequence being
analyzed. Al

Thus, large deviation from the expected frequency of patterns [(fi F O + 2. + t)] =€ 8
in a window will force the rejection dflg, which in turn will . ]
imply the presence of a MAR. Undétp, the cumulative Dependmg upon the Ievel_ pf accuracy deswe_d, the valae _of
probability, p, of observing a frequency vector with each of itdS typically set to a small positive number. In our implementation,
components greater than or equélisessentially the probability € Was set at 16.
that the null hypothesis will be erroneously rejected. In other .
words, a small value farsignifies that the observed event would!nferring MAR locations

be a rare occurrence under the null hypothesis and hence quajfyer computing the values fqu, the next task requires the
the window sample as a candidate for containing a site for matipterpretation of the statistical potential values to infer the
attachment. location of matrix attachment sites. The following provides a

In order to quantify the significance of this deviation, theyiscussion of the basis for selecting some key parameters that car

[<log(p)] is also referred to as MAR-potential, and denotqa as ) )
The value op is computed for both the forward and the revers&un lengthA true MAR will be characterized by a run-length of
strands of the DNA sequence and the average of the two valljg@h potential values. In other words, if the average span of a
is considered to be the potential at a given location. We ndWAR is Mspanbases, we should expect to see successive high
describe the mathematical model for calculating the valpe of Potential values in an average run length of:

Let us assume that we are searching fiistinct types of MAR W — Moo — 8/2
patterns within a given window of the sequence. Typically, these r, = Span
patterns are defined as ruRsRy, . . . ,Rk. Using the probability Y
formulation defined in Equatidd) the random probability of the ~ Thus, ifW = 1000 bp and =100 bp, and iMspanis assumed
occurrence of the various rules is calculated. Let these valuestbé&el1600 bp, an average run-length of three high potential values
PL P2, - - - Pk is expected.

Next, a random vector of pattern frequendieis constructed. The use of this parameter is illustrated in Figur@he top
F is a kdimensional vector with componers; {x1, Xo, . . . X}, panel shows the analysis of the sequence using a window size
where each componextis a random variable representing thew = 1000 bp, while the lower panel shows the same analysis done
frequency of the patteR in theW nt window. Furthermore, the with W = 2000 bp. In both these cases, however, the windows
component random variabbgsare assumed to be independentlywere stepped by= 100 bp. Using the formula in Equati@rthe
distributed Poisson processes, each with the parameldre  expected value fay is 3 in the first case and 13 in the second.
joint probability of observing a frequency vedigps= {f1, f2, . Ther_ cut-offs specified above were used in establishing the
.., T} purely by chance is given by Equatibn locations of the various MARs. Although, locations of MARs are

9
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Figure 4. Detection of MARs in a 338 234 bp bithorax compleRafsophila(U31961). MAR predictions are done wit) W= 1 kb andlf) W= 2 kb. A window
step size 0b = 100 bp was used in both the cases.

only plotted on Figurdb, the values were identical in both casestendency to overlap one another. This could possibly leave one
It may be noted that in general, the larger window size tendswith a false impression that the results are noisy.
smooth the potential values and widen any peaks. This is to b&lo visualize the locations of these MARs, the analysis window
expected since a larger value )fshifts the Poisson density can be zoomed to the area of interest. This is illustrated in Figure
function to the right and increases the probability of observinggt where the displayed region spans locations 360 kb through 460
highf, under the null hypothesis. kb. The process is referred to as being intelligent since the
L _ ) ) o normalization of the potential values occurs only on the basis of
NormalizationFrom the formulation gf in Equatiorv, itisclear e potential values present in the zoomed region. That is, the

that value for MAR-potential is unbounded, i.& f < c. This  garation values for the entire sequence may be different than
warrants that the raw potential be normalized in some manneryés: used in the viewing window.

linear normalization technique is to scale every value by
[1.0/pmax- After such a scaling, the valueis restricted to fall
between [0..1] interval. However, there is a concern when usifRESULTS

this simple procedure. If the value pfax happens to be . - . :
extremely high, it will tend to attenuate the other. albeif Ne ability of the MAR prediction algorithm described above to

statistically significant, potential values. This becomes apparef§entify MARS is shown in Figuré. When physical evidence is
from observing the very high value in the potential graph showfv@ilable, as in the human-globin and PRMARM2- TNP2

in Figure5a, where the potential value at locaticf88 Kb is domains, the matrix attachment regions predicted by the software
substantially higher than the other peaks. In order to avoid tHioSely match those established experimentallg). (This
scenario, a saturation value can be sgh@ar Such a saturation analysis alsc_) successfully identified the MAR at tren8l of the
value can either be pre-set to an absolute value based on statisfi&ghan apolipoprotein B locusg,19). Based on these analyses,
constraints, or be dynamically chosen based on the peaquormahzed MAR-potential vaIL_Je 0f0.6—0.7_5 was considered to
observed in the sequence. In our implementation, a hybrYdP'd reas.onable results. The higher value is generally used for
approach was adopted. ffnax Was larger than a specified Smaller window size. , o _ _
threshold, a saturation value equal to a fraction of the largest peal N @lgorithm was then applied to identify candidate MARs in

potential is used. In the potential graph shown in Figoyeéhe e Drosophila melanogastebithorax region and the human
peaks were saturated to &.fmax T-cell receptor beta locus, for which the location of MARS are not

known. The results for the Drosophila bithorax region are shown
Intelligent zoomWhile processing a large sequence, caution must Figure4 while Figure5 shows the analysis for the hunfam
be exercised in the interpretation of a graphical plot of theell receptor locus. Potential MARs spacd&®—100 kb apart
potential values. Specifically, if a large number of bases awere identified, which is in accord with data suggesting that
packed into a single pixel location, multiple peaks will have th#1ARs in somatic nuclei occur at intervals of 60 kb to >100kb (
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Figure 5. The MARs detected in the 684 973 bp sequence of the Iimeell receptor locus (21)p)YThe normalized plot of potential values without any saturation,
(b) The MAR-potential with a saturation value of 8.8max (C) A zoomed view of the 360-460 kb region.

This suggests that reasonable candidate regions of interest faclear matrix are unknown. This is despite the lack of a clear
physical analysis were identified. consensus sequence for MARs. However, care should be taken
To the best of our knowledge, there is no data to define tlrghen applying this approach, as the results can vary when
spacing of MARs in the Drosophila genome. It is reasonable thfferent combinations of rules are applied. This may reflect the
assume that the spacing would be similar to that seen in othmginning of the mathematical resolution of the four classes of
eukaryotic nuclei. ThéB38 kb region queried in Figu® MARSs. The algorithm described should be readily applicable for
constitutes a region of the Drosophila genome that contaittge identification of any functional element for which a consensus
several homeotic genes. This has been suggested to be riclséquence is unclear or unknown. The utility of this approach is
constitutive type MARSs. The regions identified by this analysisanmediately obvious for the identification of regulatory regions
need to be verified experimentally, as they may represeaflocus control, which may contain multiple individual sequence

characteristic constitutive or class 2 MARS)( motifs. Such regulatory motifs, which may occur at random
throughout the genome, would be in close association with other
Conclusion regulatory and promoter motifs at regions of locus control, like

the well characterized locus control region of the multigenic
The method of analysis described above has successfuliyglobin domain. Use of this algorithm in conjunction with a
identified known MARs in several well characterized loci.database containing known regulatory motifs should enable the
Furthermore, it has determined MAR candidates in a reasonaidentification of potential regions of locus control in large
fashion in large sequences where sites of attachment to #exjuences, just as the current analysis identified MARSs.
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o Software Predicted MARs | Experimentally Determined
Sequence Length | No. Position No. Position
B-globin [7] 75,995 | - - 1 ~1.5 kb
(L22754 + HUMHBB) 2 ~15-18 kb 1 ~15-18 kb

1 50,550 1 ~46-54 kb

4 ~56-69 kb 2-4 ~58-70 kb
*PRM1—PRM2 40,573 | 1 8,700 1 ~9.3 kb
—TNP2 (U15422) 1 34,350 1 ~33 kb

1 38,150 1 ~38 kb

Apolipoprotein B 7,274 1 225 1 ~200 bp
D. Melanogaster 338234 | 1 12,250
Bithorax (U31961) 1 57,950

1 126,500 not known
2 ~218-229 kb
1 266,500
Human g T-Cell 684,973 | 1 42,600
Receptor (L36092) 1 149,900
1 198,000 not known
1 377,600
1 438,400
1 565,400

Figure 6. Veracity of MAR prediction:d) MARs detected in the hum@rglobin locus.f) Predicted and experimental MARs: comparison of the MAR locations predicted
and those determined experimentally. *Note that all MARs predicted for the protamine locus éxelddetthness ruldls, and all were experimentally verified.

Software

7
8

A beta-version of the software described in this paper may be

obtained by sending an e-mail message to gbs@acm.org.
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