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We have recently introduced a quantum mechanical polarizable
force field (QMPFF) fitted solely to high-level quantum mechanical
data for simulations of biomolecular systems. Here, we present an
improved form of the force field, QMPFF2, and apply it to simula-
tions of liquid water. The results of the simulations show excellent
agreement with a variety of experimental thermodynamic and
structural data, as good or better than that provided by special-
ized water potentials. In particular, QMPFF2 is the only ab initio
force field to accurately reproduce the anomalous temperature
dependence of water density to our knowledge. The ability of the
same force field to successfully simulate the properties of both
organic molecules and water suggests it will be useful for simu-
lations of proteins and protein–ligand interactions in the aqueous
environment.

General-purpose force fields, from Levitt’s early protein
potential (1) to modern models such as CHARMM, OPLS-AA,

MMFF, and AMBER (2–5), which approximate molecular poten-
tials by simple analytical formulas, are in wide use for compu-
tational studies of biological systems ranging from the simplest
molecular clusters to large complexes involving proteins. In the
latter case, the investigations encounter serious computational
problems, primarily related to proper conformational sampling
and adequate treatment of the long-range intermolecular inter-
actions; however, with advancements in simulation methodolo-
gies and the increase in computer speed these difficulties are
alleviated so the accuracy of the underlying models becomes the
dominant factor.

Protein and protein–ligand interactions usually take place in
an aqueous environment, which contributes critically to their
energetics, e.g., by hydrogen bonding and the hydrophobic effect.
Hence, a force field should accurately reproduce the properties
of both organic compounds and water if it is to be used for
precise calculations of protein–ligand binding, as required for
example in drug-design applications. Moreover, the quality of
the applications of a force field to water can be considered as a
criterion for the accuracy of the approach as a whole. Hence, it
is disconcerting that no general-purpose force field has previ-
ously succeeded in accurately describing key properties of liquid
water.

On the other hand, impressive progress has been made in
theoretical studies using specialized water potentials. Many of
these potentials are empirical, i.e., they have been fitted to
experimental data on the thermodynamics and kinetics of liquid
water and in some cases ice. The most advanced of these models,
such as the pairwise additive TIP5P (6) and polarizable (7–9)
potentials, generally provide an accurate description of the most
important properties of water and�or ice. However, no one
model is yet able to reproduce in detail the diversity of ther-
modynamic and kinetic experimental data on both gas and
condensed phases under a range of conditions. Moreover, these
empirical water potentials cannot be transferred to more general
molecular systems such as proteins because of the assumptions
incorporated and the lack of data on which to calibrate them.

Given these limitations, it would seem preferable to perform
simulations by using potentials fitted to high-quality ab initio
quantum mechanical (QM) data. Such calculations are now possi-
ble because of major advances in methods and vast increases in
computer speed. However, because of the complicated functional
form of advanced ab initio potentials, their direct use for many-
particle systems is very computationally intensive, impeding their
applicability to liquid-phase simulations (10–13). Moreover, such
studies have generally been performed by using classical molecular
dynamics (MD) applied to the QM potentials; application of
quantum statistics via the path integral MD (PIMD) technique is
even more time-consuming and rare (14). Yet quantum effects in
water are non-negligible because of the strong hydrogen-bond
interactions that depend sensitively on the positions of H atoms.
These positions, in turn, are sensitive to quantum zero-point
vibrations caused by the relatively small H atom mass. Thus,
quantum effects must be taken into account to obtain a proper
assessment of the accuracy of the ab initio approach. By contrast,
the empirical potentials, which use classical MD, implicitly include
the quantum effects in their parameterization.

We had previously presented a general-purpose ab initio QM
polarizable force field (QMPFF) (referred to here as QMPFF1),
which is based on physically well grounded considerations of
intermolecular interactions and is fitted to an extensive set of
high-quality vacuum QM data on properties of simple molecules
and their dimers. QMPFF1 accurately simulates the interactions
in many organic complexes (15). In this article we present the
results of classical and PIMD simulations of liquid water by using
a second, more refined version of the force field, QMPFF2. The
parameterization process used in QMPFF2 for the atom types
and bonds that appear in a water molecule is exactly the same as
that used for the types appearing in other molecules. Moreover,
in QMPFF there is no separate water model as such because the
parameters of the atom and bond types for water are fitted to
QM data on interactions in both homodimers of water molecules
and their heterodimers with other molecules.

Hence, the high accuracy of the water simulations described
below represents crucial validation of the overall QMPFF con-
cept and suggests that the same force field can be applied to both
the simulation of biomolecular interactions occurring in water
and the study of water itself.

Results
QMPFF2 Performance in Gas Phase. QMPFF2 parameters were
fitted to QM data on properties of 144 molecules and 79
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molecular dimers, the total number of dimer conformations
being 2,916. The relative rms deviations (RMSD) for absolute
values of dipole moments and quadrupole and polarizability
tensors were 6.2%, 23% and 3.7%, respectively. QMPFF2 fits the
QM energies of all of the dimers in the training set well with a
RMSD of 0.38 kcal�mol. For the 165 training dimers that have
been optimized to have minimum energy, the RMSD of the
energy and geometry calculated by QMPFF2 relative to ab initio
QM were 0.50 kcal�mol and 0.09 Å.

Table 1 compares QMPFF2 and QM values for basic prop-
erties of the water molecule: absolute value of dipole moment,
eigenvalues of quadrupole, and polarizability tensors. As seen,
QMPFF2 simulates dipole moment exactly, whereas relative
errors are 5.0% and 3.2% for quadrupole and polarizability,
respectively.

As for interactions of water molecules, Fig. 6, which is
published as supporting information on the PNAS web site,
illustrates the typical accuracy of QMPFF2 fit for different
conformation sets of water dimer, whereas Table 2 compares
QMPFF2 and QM energies for optimized water multimers. As
seen from Table 2, for the optimized dimer conformations
(presented in the QMPFF2 training set) the overall accuracy is
0.4 kcal�mol, which is comparable with the accuracy for dimers
of other molecules. On the other hand, QMPFF2 performance
outside the training set is validated by comparison of calculated
and QM energies of water multimers, which is a challenging test
because of the role of many-body effects. As seen the agreement
(including even correct ranking of the hexamer energies) is
excellent considering that no systems larger than dimer were
used in the parameterization of QMPFF2.

QMPFF2 also reasonably predicts dimerization Gibbs ener-
gies: rms deviations between calculated and experimental values
was found to be 0.35 kcal�mol for 27 different homodimers and
heterodimers, consistent with the overall QMPFF2 accuracy.
These values, which are closely related to the second virial
coefficients, were calculated by using standard methodology
neglecting the molecule flexibility with the quantum effects
being taken into account in the framework of semiclassical
approach. However, we have found from careful path integral
calculations that the molecular flexibility may contribute rather
essentially to the virial coefficient values (up to several dozen
percent in the relevant temperature range), especially in the case
of water vapor for which the quantum effects are not negligible.

Bulk Properties. Classical and PIMD simulations have been per-
formed to calculate water characteristics in liquid phase (see
Materials and Methods for details of MD protocols). The bulk
water properties calculated from the MD trajectories are com-
pared in Table 3 with experimental data taken from ref. 14,

except for the diffusion constant taken from ref. 15. As seen, the
QMPFF2 classical MD results are close to the experimental
values. With quantum MD the agreement is even better. Quan-
tum MD decreases the liquid binding energy by 1.3 kcal�mol to
give a value within 3% of experimental. A similar improvement
is seen for the heat capacity. The temperature dependence of the
liquid binding energy is also reasonably described by QMPFF2
as seen in Fig. 1.

Fig. 1 indicates that the classical simulations resulted in
essential underestimation of the liquid binding energy, whereas
the quantum effects taken into account by PIMD calculations
contribute up to 1–1.5 kcal�mol within the considered temper-
ature range, bringing the curve much closer to the experimental
one. This contribution is caused mainly by intermolecular mo-
tions, which are adequately treated by calculations with a
comparatively low PIMD discretization index, P � 4. As for
intramolecular vibrations, the change of QM zero point energy
transferring from gas to liquid is small for harmonic intramo-
lecular potentials used in QMPFF2 so the corresponding cor-
rections can be neglected. On the other hand, for essentially
anharmonic potentials the correction could lower the liquid
binding energy by about a half of kcal�mol (14). Note also that
the classical simulations with rigid molecules result in less-
bonded liquid phase, which mimics the quantum effects so the
liquid binding energy is incidentally very close to the PIMD
result (see Fig. 1).

It follows from Table 3 that the greatest improvement pro-
vided by quantum MD is a �50% increase in the diffusion
constant [which is in agreement with other results (18 and 19)]
to fit experiment much better. This finding is also illustrated by
Fig. 2 where the temperature dependence of water diffusivity is
plotted as found from both classical and PIMD calculations.
Note that this QM correction can only be considered an ap-
proximation, as the traditional path integral technique does not
simulate kinetic properties with sufficient accuracy.

Water Has a Density Maximum. At room temperature, the
QMPFF2 density calculated with either classical or quantum
MD fits experiment to 0.5%. The QMPFF2 results for other
temperatures are plotted in Fig. 3. As seen, the classical MD
curve reproduces the density maximum, which is certainly the
best-known anomalous property of water. The calculated value
�max � 1.005 g�cm�3 is in very good agreement with the
experimental value 1.000 g�cm�3. The temperature Tmax of the
maximum density turns out to be near 8°C, which is between
the experimental result 4°C and the value of �14°C recom-
mended in ref. 20 for comparison with the results of classical
MD. More generally, QMPFF2 with classical MD reproduces the
density of water over the entire range �25°C to 100°C to within

Table 1. Absolute value of dipole moment (D), eigenvalues of quadrupole (Q1, Q2, Q3), and
polarizability (P1, P2, P3) tensors for water molecule

Approach
D,

Debye

Q1 Q2 Q3

P1, Å3 P2, Å3 P3, Å3(Buckingham)

QMPFF2 1.87 �5.22 0.16 5.04 1.42 1.42 1.42
QM 1.87 �5.02 �0.12 5.14 1.37 1.41 1.48

Table 2. Water multimer energies (kcal�mol) in different optimized conformations

Approach

Dimer
Trimer
cyclic

Tetramer
cyclic

Pentamer
cyclic

Hexamer

Linear Cyclic Bifurcate Prism Book Ring

QMPFF2 �5.08 �3.39 �2.56 �15.2 �25.9 �32.9 �43.2 �42.2 �39.9
QM �4.68 �3.68 �2.92 �14.6 �25.4 �33.4 �42.7 �42.1 �41.4
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0.6% (Fig. 3). With quantum MD, the results are even slightly
better for temperatures �0°C, but the density for lower tem-
peratures is incorrectly high. The reason for this discrepancy
probably results from problems with the MD algorithm in the
supercooled region but more investigation is needed.

Radial Distribution Functions. The radial distribution functions that
characterize the structure of liquid water are presented in Fig. 4
for both classical and quantum MD. The QMPFF2 positions of
all of the extremes agree very well with the experimental values
to within 0.1 Å. The amplitudes are fairly good for OO and HH,
but the first OH peak height is overestimated, which is also
typical for other models. The quantum MD simulations result in
less structured water, giving better overall description of the
experiment than classical MD, in agreement with other results
(14, 18, 19). Thus, the amplitude of the first OO peak is
decreased from the classical MD value of 3.17 to the quantum
MD estimate of 2.87, which approaches the experimental value
(21, 22) of 2.8. Also, the height of the first OH peak is decreased
from 1.58 to 1.30, which should be compared with the experi-
mental value (21) of 1.10. As for the first HH peak, quantum
result is worse than the classical, which is likely because of too
soft f lap angle bending in potential energy surface for water
dimer.

Comparison to Specialized Water Models. The quality of QMPFF2
predictions of water properties is overall at least as good as the
best specially designed water models. For example, the classical
and QM estimates of the liquid binding energy are respectively
�11.34 and �9.8 kcal�mol for the MCDHO potential (14); for
other ab initio models the classical energy is �10.65, �9.49, and
�11.2 kcal�mol for NCC (10), NEMO (11), and TTM2-R (13),

respectively. The diffusion coefficient at ambient conditions is
found to be 2.6�10�5, 1.3�10�5, and 2.2�10�5 cm2�s�1 for the NCC,
NEMO, and TTM2-R potentials. As these values have been
determined from classical MD simulations, the diffusion con-
stants should probably be increased by a factor �1.5 or greater
to account for the increased mobility with quantum MD. Hence,
the values for TTM2-R and NCC are less accurate than appears
at first glance and the value for NEMO is more accurate.

Most significant is the success of QMPFF2 in reproducing the
density�temperature relationship. Water density at room tem-
perature was found to be 1.02 � 0.01, 0.983, and 1.046 g�cm�3 for
MCDHO, NEMO, and TTM2-R, respectively (11–13), which
differ from the experimental value by 2–4%, compared with
0.5% for QMPFF2. Moreover, for these models, there are no
data on the temperature dependence of the density except for
NEMO, where no density maximum was found. On the other
hand, a number of empirical water models do find a density
maximum, with the Tmax value varying from �40°C to �30°C;
nevertheless, most of these models give too sharp a dependence
of density on temperature (20) (e.g., see the curve for one of the
best models, TIP5P, plotted in Fig. 3).

Conclusions and Outlook
The results of MD simulations of liquid water with QMPFF2
demonstrate very good agreement with experimental results on
the structure of liquid water and a wide set of basic thermody-
namic properties, with the use of accurate quantum path integral
techniques generally needed to best realize this agreement. This
conclusion indicates that careful, physically grounded simulation
of intermolecular interaction in vacuum, taking into account its
main features and avoiding oversimplification, does allow accu-
rate simulation of the properties of the condensed phase. The
approach is further supported by successful results of MD

Fig. 2. Temperature dependence of water diffusivity. Red and blue curves
correspond to quantum and classical MD results, respectively. The crosses
represent the experimental data (17).

Table 3. Liquid water properties obtained from MD simulations with QMPFF2 compared with
experimental values

Approach
E � Eliq � Egas,

kcal�mol�1

Cp,
cal�mol�1�K�1

105 D,
cm2�s�1

�,
g�cm�3

105 �,
K�1

�max,
g�cm�3

Tmax,
°C

QMPFF2 (classical MD) �10.9 19.6 1.2 1.003 26 1.005 8
QMPFF2 (quantum MD) �9.6 18.6 1.9 0.992 30 — —
Experimental �9.9 18.0 2.3 0.998 26 1.000 4

E, liquid binding energy; Cp, specific heat capacity; D, diffusion constant; �, density; �, coefficient of thermal
expansion, all under ambient conditions; �max, maximum density; Tmax, temperature of occurrence of �max.

Fig. 1. Temperature dependence of liquid binding energy at normal pres-
sure. Red and blue curves correspond to quantum and classical MD simula-
tions, respectively; the cyan curve represents classical simulations with the
rigid molecules. For all of the curves the statistical errors are comparable with
the marker sizes except of the leftmost points for classical curves. The crosses
represent the experimental data (16).
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simulations with QMPFF2 of the solvation energies of small
organic molecules in water (unpublished data). The results are
especially promising because further progress is possible and its
direction is clear: extremely accurate ab initio calculations can be
performed with advanced methods, e.g., ref. 23, followed by
further refinement of the functional forms and parameterization
of the QMPFF interaction potentials to track the ab initio data.

In this connection, the alternative fully QM parameter free
approach based on Car-Parinello molecular dynamics (24)
should be mentioned. However, these calculations are too
computationally expensive so presently they are applicable
only to short-time simulations of simplest molecular systems
(25–27) that essentially restricts the performance capabilities
of the method in comparison with the force field approach, in
particular, preventing an adequate treatment of boundary
effects and therefore of the bulk properties. The relation
between the two approaches will change in the future with the
growth of computer speed and the sizes of simulated systems
providing a basis for joint QM�molecular mechanical meth-
odologies. Probably the most exciting feature of our results is

that the model is based strictly on ab initio-calculated QM data,
unlike empirical water potentials, which are fitted to experi-
mental data and therefore cannot be said to be predicting the
properties of water. Our results show that the state of the art
has now advanced to where even subtle properties of water
such as the anomalous density�temperature dependence can
be predicted solely from the basic principles of quantum
physics. Following this approach, a complete, accurate theo-
retical treatment of water may now be in sight, including
solution of the water structure problem recently highlighted as
one of the 125 outstanding problems of science (28).

Materials and Methods
Description of QMPFF2. Because QMPFF1 has already been de-
scribed (15), here we present QMPFF2 by reference to
QMPFF1. In both versions of QMPFF, a molecule is represented
as a set of interacting atoms, with each atom consisting of a
positive point charge (the core) and a diffuse negatively charged
electron density (the cloud). This electron density is represented
by an isotropic, exponential distribution, which is centered on the
core for an isolated atom, but which shifts in an external field,
e.g., in the presence of other atoms (see Fig. 5). It is this
movement of the electron clouds that provides a natural way to
simulate electronic molecular polarizability.

In both versions of QMPFF, nonbonded interactions between
atoms consist of four components: electrostatic, exchange, in-
duction, and dispersion. The functional form of the components
imitates that of their QM counterparts. Specifically, electrostat-
ics represent the classical Coulomb interaction of point charges
and exponential charge densities. Exchange repulsion is a result
of cloud–cloud interactions that decay almost exponentially with
distance; the precise form was modified from QMPFF1 to
QMPFF2, cf. ref. 15 and Eqs. 6 and 7 in Supporting Text, which
is published as supporting information on the PNAS web site.
Induction is simulated by a ‘‘spring’’ attaching each mobile
electron cloud to a reference position (Fig. 5). The restraint
potential provided by the spring is close to harmonic at small
distances, but the stiffness becomes infinite as the distance
approaches a limiting value, thus preventing the ‘‘polarization
catastrophe’’ (15). For QMPFF1 the induction term is isotropic,
whereas for QMPFF2 it is anisotropic (see Eq. 10 in Supporting
Text) to provide a better description of the molecular polariz-
ability tensor. Dispersion is represented by a term decaying as r�6

at large distances in QMPFF1, but as a sum of terms decaying

Fig. 3. Temperature dependence of water density at normal pressure. Red
and blue curves correspond to quantum and classical MD with QMPFF2,
respectively; the cyan curve represents results (6) for the TIP5P empirical water
potential. For all of the curves the statistical errors are comparable with or less
than the marker sizes. The crosses represent the experimental data (16).

Fig. 4. Radial distribution functions for HH (Bottom), OH (Middle), and OO
(Top) pairs in liquid water at room temperature and pressure. Blue and red
curves correspond to classical and quantum MD simulations with QMPFF2,
respectively. Black curves represent experiment (21).

Fig. 5. The QMPFF2 model of a representative molecule. Atomic cores are
shown for three atoms labeled as a, b, and c; the electron cloud is shown only
for atom a (proportions are distorted). The cloud is attached by a nonharmonic
spring to a reference point shifted with respect to the atomic core by vector
ta
0, which is the sum of the partial shifts tab and tac. Each partial shift vector is

directed along a bond to atom a, with a length that depends on the types of
the bonded atoms. In the presence of an external field (the force vector, F), the
cloud shifts by ta relative to its reference position so as to minimize the total
energy of the molecular system (generally ta is not parallel with F because of
anisotropic polarizability).
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as r�6 and r�8 in QMPFF2 for greater accuracy, cf. ref. 15 and
Eqs. 8 and 9 in Supporting Text.

In QMPFF1, only nonbonded interactions were taken into
account, i.e., molecules were assumed rigid. In QMPFF2, the
bonded interactions are conventionally subdivided into stretch-
ing, bending, and torsion terms. The first two terms use a
quadratic function, whereas the torsion term uses a threefold
cosine function. Also, more atom types are used in QMPFF2 to
allow better resolution of related, but electronically distinct,
atom types, and to cover other biologically important elements
not treated by QMPFF1, cf. ref. 15 and Tables 4 and 5, which are
published as supporting information on the PNAS web site. To
accommodate the more refined functional forms of the
QMPFF2 nonbonded interactions, each atom type requires eight
parameters, and each general bond type requires five parameters
(two parameters for symmetric bonds). For the bonded inter-
actions, each bond length, bond angle, and torsion angle function
uses two, two, and three parameters, respectively, which is
comparable with most advanced empirical force fields (2–5). The
atom and bond types in a water molecule use a total of 18
nonbonded and 4 bond parameters.

QMPFF parameterization of nonbonded interactions is based
on two fundamental principles. (i) The parameters of the model
are fitted only to data from high-level ab initio QM calculations
without use of any experimental data [for QMPFF1, the ab initio
data were calculated at the MP2�aTZ(-hp) level, whereas for
QMPFF2 more accurate QM techniques are used, see Support-
ing Text]. (ii) Each component of the interaction energy (elec-
trostatic, exchange, induction, and dispersion) is separately fitted
to the corresponding component in a decomposition of the
QM-derived interaction energies of representative conforma-
tions of simple dimers. Such separate fitting prevents errors in
various components from compensating for each other and is a

crucial requirement for reliable transferability of the force field.
In addition, we fit the QM components of dipole vectors and
quadrupole and polarizability tensors of single molecules. No-
tably, no systems with more than two molecules are used in the
parameterization. Parameters of bonded interactions, including
those in water, are fitted to ab initio calculations at the MP2�
TZ(-hp) level of the variation of bond lengths, bond angles, and
torsion angles about their equilibrium values.

MD Protocol. The QMPFF2 model was incorporated into our
in-house MD package, which allows both classical and quantum
(path integral) simulations. We performed simulations with an
isothermal–isobaric NPT ensemble consisting of 256 flexible
water molecules in a cubic box under periodic boundary condi-
tions. Equations of motion were generally integrated for 2 ns
with a 1-fs time step by using the velocity Verlet scheme (29)
combined with the Nose–Hoover chain thermostat (30) and
Berendsen barostat (31). The electron cloud positions were
optimized at every time step.

In our PIMD package the staging transform (32) of coordi-
nates is used as well as application of independent thermal bath
to every degree of freedom. To evaluate energy and pressure the
virial estimators are used. The path integral discretization index
P for quantum MD was generally chosen to be equal to 4.
Certainly simulations with P � 4 do not provide the convergence
with respect to internal molecular motions (e.g., bond stretch-
ing). However, this level is adequate to describe quantum effects
in intermolecular motions, as has been verified by a few calcu-
lations that were performed with simulation time up to 5 ns and
a P value of up to 20; for further details see Supporting Text.

We thank C. Queen for inspiring the QMPFF project and careful review
of the manuscript and M. Levitt for fruitful critical discussions.
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