Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 May 15;25(10):1991–1998. doi: 10.1093/nar/25.10.1991

Triple helix formation with purine-rich phosphorothioate-containing oligonucleotides covalently linked to an acridine derivative.

J Lacoste 1, J C François 1, C Hélène 1
PMCID: PMC146674  PMID: 9115367

Abstract

Purine-rich (GA)- and (GT)-containing oligophosphorothioates were investigated for their triplex-forming potential on a 23 bp DNA duplex target. In our system, GA-containing oligophosphorothioates (23mer GA-PS) were capable of triplex formation with binding affinities lower than (GA)-containing oligophosphodiesters (23mer GA-PO). The orientation of the third strand 23mers GA-PS and GA-PO was antiparallel to the purine strand of the duplex DNA target. In contrast, (GT)-containing oligophosphorothioates (23mer GT-PS) did not support triplex formation in either orientation, whereas the 23mer GT-PO oligophosphodiester demonstrated triplex formation in the antiparallel orientation. GA-PS oligonucleotides, in contrast to GT-PS oligonucleotides, were capable of self-association, but these self-associated structures exhibited lower stabilities than those formed with GA-PO oligonucleotides, suggesting that homoduplex formation (previously described for the 23mer GA-PO sequence by Noonberg et al.) could not fully account for the decrease in triplex stability when phosphorothioate linkages were used. The 23mer GA-PS oligonucleotide was covalently linked via its 5'-end to an acridine derivative (23mer Acr-GA-PS). In the presence of potassium cations, this conjugate demonstrated triplex formation with higher binding affinity than the unmodified 23mer GA-PS oligonucleotide and even than the 23mer GA-PO oligonucleotide. A (GA)-containing oligophosphodiester with two phosphorothioate linkages at both the 5'- and 3'-ends exhibited similar binding affinity to duplex DNA compared with the unmodified GA-PO oligophosphodiester. This capped oligonucleotide was more resistant to nucleases than the GA-PO oligomer and thus represents a good alternative for ex vivo applications of (GA)-containing, triplex-forming oligonucleotides, allowing a higher binding affinity for its duplex target without rapid cellular degradation.

Full Text

The Full Text of this article is available as a PDF (159.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alunni-Fabbroni M., Manfioletti G., Manzini G., Xodo L. E. Inhibition of T7 RNA polymerase transcription by phosphate and phosphorothioate triplex-forming oligonucleotides targeted to a R.Y site downstream from the promoter. Eur J Biochem. 1994 Dec 15;226(3):831–839. doi: 10.1111/j.1432-1033.1994.00831.x. [DOI] [PubMed] [Google Scholar]
  2. Asseline U., Toulme F., Thuong N. T., Delarue M., Montenay-Garestier T., Hélène C. Oligodeoxynucleotides covalently linked to intercalating dyes as base sequence-specific ligands. Influence of dye attachment site. EMBO J. 1984 Apr;3(4):795–800. doi: 10.1002/j.1460-2075.1984.tb01887.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beal P. A., Dervan P. B. Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science. 1991 Mar 15;251(4999):1360–1363. doi: 10.1126/science.2003222. [DOI] [PubMed] [Google Scholar]
  4. Cooney M., Czernuszewicz G., Postel E. H., Flint S. J., Hogan M. E. Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro. Science. 1988 Jul 22;241(4864):456–459. doi: 10.1126/science.3293213. [DOI] [PubMed] [Google Scholar]
  5. Durland R. H., Kessler D. J., Gunnell S., Duvic M., Pettitt B. M., Hogan M. E. Binding of triple helix forming oligonucleotides to sites in gene promoters. Biochemistry. 1991 Sep 24;30(38):9246–9255. doi: 10.1021/bi00102a017. [DOI] [PubMed] [Google Scholar]
  6. Duval-Valentin G., Thuong N. T., Hélène C. Specific inhibition of transcription by triple helix-forming oligonucleotides. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):504–508. doi: 10.1073/pnas.89.2.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Escudé C., François J. C., Sun J. S., Ott G., Sprinzl M., Garestier T., Hélène C. Stability of triple helices containing RNA and DNA strands: experimental and molecular modeling studies. Nucleic Acids Res. 1993 Dec 11;21(24):5547–5553. doi: 10.1093/nar/21.24.5547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Escudé C., Giovannangeli C., Sun J. S., Lloyd D. H., Chen J. K., Gryaznov S. M., Garestier T., Hélène C. Stable triple helices formed by oligonucleotide N3'-->P5' phosphoramidates inhibit transcription elongation. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4365–4369. doi: 10.1073/pnas.93.9.4365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evertsz E. M., Rippe K., Jovin T. M. Parallel-stranded duplex DNA containing blocks of trans purine-purine and purine-pyrimidine base pairs. Nucleic Acids Res. 1994 Aug 25;22(16):3293–3303. doi: 10.1093/nar/22.16.3293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fox K. R. Kinetic studies on the formation of acridine-linked DNA triple helices. FEBS Lett. 1995 Jan 9;357(3):312–316. doi: 10.1016/0014-5793(94)01387-g. [DOI] [PubMed] [Google Scholar]
  11. Ghosh M. K., Ghosh K., Cohen J. S. Phosphorothioate-phosphodiester oligonucleotide co-polymers: assessment for antisense application. Anticancer Drug Des. 1993 Feb;8(1):15–32. [PubMed] [Google Scholar]
  12. Giovannangeli C., Thuong N. T., Hélène C. Oligonucleotide clamps arrest DNA synthesis on a single-stranded DNA target. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10013–10017. doi: 10.1073/pnas.90.21.10013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grigoriev M., Praseuth D., Guieysse A. L., Robin P., Thuong N. T., Hélène C., Harel-Bellan A. Inhibition of gene expression by triple helix-directed DNA cross-linking at specific sites. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3501–3505. doi: 10.1073/pnas.90.8.3501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grigoriev M., Praseuth D., Guieysse A. L., Robin P., Thuong N. T., Hélène C., Harel-Bellan A. Inhibition of interleukin-2 receptor alpha-subunit gene expression by oligonucleotide-directed triple helix formation. C R Acad Sci III. 1993;316(5):492–495. [PubMed] [Google Scholar]
  15. Grigoriev M., Praseuth D., Robin P., Hemar A., Saison-Behmoaras T., Dautry-Varsat A., Thuong N. T., Hélène C., Harel-Bellan A. A triple helix-forming oligonucleotide-intercalator conjugate acts as a transcriptional repressor via inhibition of NF kappa B binding to interleukin-2 receptor alpha-regulatory sequence. J Biol Chem. 1992 Feb 15;267(5):3389–3395. [PubMed] [Google Scholar]
  16. Guieysse A. L., Praseuth D., Francois J. C., Helene C. Inhibition of replication initiation by triple helix-forming oligonucleotides. Biochem Biophys Res Commun. 1995 Dec 5;217(1):186–194. doi: 10.1006/bbrc.1995.2762. [DOI] [PubMed] [Google Scholar]
  17. Guvakova M. A., Yakubov L. A., Vlodavsky I., Tonkinson J. L., Stein C. A. Phosphorothioate oligodeoxynucleotides bind to basic fibroblast growth factor, inhibit its binding to cell surface receptors, and remove it from low affinity binding sites on extracellular matrix. J Biol Chem. 1995 Feb 10;270(6):2620–2627. doi: 10.1074/jbc.270.6.2620. [DOI] [PubMed] [Google Scholar]
  18. Hacia J. G., Dervan P. B., Wold B. J. Inhibition of Klenow fragment DNA polymerase on double-helical templates by oligonucleotide-directed triple-helix formation. Biochemistry. 1994 May 24;33(20):6192–6200. doi: 10.1021/bi00186a019. [DOI] [PubMed] [Google Scholar]
  19. Hacia J. G., Wold B. J., Dervan P. B. Phosphorothioate oligonucleotide-directed triple helix formation. Biochemistry. 1994 May 10;33(18):5367–5369. doi: 10.1021/bi00184a002. [DOI] [PubMed] [Google Scholar]
  20. Hélène C., Toulmé J. J. Specific regulation of gene expression by antisense, sense and antigene nucleic acids. Biochim Biophys Acta. 1990 Jun 21;1049(2):99–125. doi: 10.1016/0167-4781(90)90031-v. [DOI] [PubMed] [Google Scholar]
  21. Ing N. H., Beekman J. M., Kessler D. J., Murphy M., Jayaraman K., Zendegui J. G., Hogan M. E., O'Malley B. W., Tsai M. J. In vivo transcription of a progesterone-responsive gene is specifically inhibited by a triplex-forming oligonucleotide. Nucleic Acids Res. 1993 Jun 25;21(12):2789–2796. doi: 10.1093/nar/21.12.2789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jetter M. C., Hobbs F. W. 7,8-Dihydro-8-oxoadenine as a replacement for cytosine in the third strand of triple helices. Triplex formation without hypochromicity. Biochemistry. 1993 Apr 6;32(13):3249–3254. doi: 10.1021/bi00064a006. [DOI] [PubMed] [Google Scholar]
  23. Kibler-Herzog L., Kell B., Zon G., Shinozuka K., Mizan S., Wilson W. D. Sequence dependent effects in methylphosphonate deoxyribonucleotide double and triple helical complexes. Nucleic Acids Res. 1990 Jun 25;18(12):3545–3555. doi: 10.1093/nar/18.12.3545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kibler-Herzog L., Zon G., Whittier G., Mizan S., Wilson W. D. Stabilities of duplexes and triplexes of dA19 + dT19 with alternating methylphosphonate and phosphodiester linkages. Anticancer Drug Des. 1993 Feb;8(1):65–79. [PubMed] [Google Scholar]
  25. Kim S. G., Tsukahara S., Yokoyama S., Takaku H. The influence of oligodeoxyribonucleotide phosphorothioate pyrimidine strands on triplex formation. FEBS Lett. 1992 Dec 7;314(1):29–32. doi: 10.1016/0014-5793(92)81454-t. [DOI] [PubMed] [Google Scholar]
  26. Kim S. W., Lajara R., Rotwein P. Structure and function of a human insulin-like growth factor-I gene promoter. Mol Endocrinol. 1991 Dec;5(12):1964–1972. doi: 10.1210/mend-5-12-1964. [DOI] [PubMed] [Google Scholar]
  27. Latimer L. J., Hampel K., Lee J. S. Synthetic repeating sequence DNAs containing phosphorothioates: nuclease sensitivity and triplex formation. Nucleic Acids Res. 1989 Feb 25;17(4):1549–1561. doi: 10.1093/nar/17.4.1549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Liquier J., Letellier R., Dagneaux C., Ouali M., Morvan F., Raynier B., Imbach J. L., Taillandier E. Triple helix formation by alpha-oligodeoxynucleotides: a vibrational spectroscopy and molecular modeling study. Biochemistry. 1993 Oct 12;32(40):10591–10598. doi: 10.1021/bi00091a008. [DOI] [PubMed] [Google Scholar]
  29. Musso M., Van Dyke M. W. Polyamine effects on purine-purine-pyrimidine triple helix formation by phosphodiester and phosphorothioate oligodeoxyribonucleotides. Nucleic Acids Res. 1995 Jun 25;23(12):2320–2327. doi: 10.1093/nar/23.12.2320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Noonberg S. B., François J. C., Garestier T., Hélène C. Effect of competing self-structure on triplex formation with purine-rich oligodeoxynucleotides containing GA repeats. Nucleic Acids Res. 1995 Jun 11;23(11):1956–1963. doi: 10.1093/nar/23.11.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Noonberg S. B., François J. C., Praseuth D., Guieysse-Peugeot A. L., Lacoste J., Garestier T., Hélène C. Triplex formation with alpha anomers of purine-rich and pyrimidine-rich oligodeoxynucleotides. Nucleic Acids Res. 1995 Oct 25;23(20):4042–4049. doi: 10.1093/nar/23.20.4042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Olivas W. M., Maher L. J., 3rd Competitive triplex/quadruplex equilibria involving guanine-rich oligonucleotides. Biochemistry. 1995 Jan 10;34(1):278–284. doi: 10.1021/bi00001a034. [DOI] [PubMed] [Google Scholar]
  33. Olivas W. M., Maher L. J., 3rd Overcoming potassium-mediated triplex inhibition. Nucleic Acids Res. 1995 Jun 11;23(11):1936–1941. doi: 10.1093/nar/23.11.1936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Orson F. M., Kinsey B. M., McShan W. M. Linkage structures strongly influence the binding cooperativity of DNA intercalators conjugated to triplex forming oligonucleotides. Nucleic Acids Res. 1994 Feb 11;22(3):479–484. doi: 10.1093/nar/22.3.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pilch D. S., Levenson C., Shafer R. H. Structure, stability, and thermodynamics of a short intermolecular purine-purine-pyrimidine triple helix. Biochemistry. 1991 Jun 25;30(25):6081–6088. doi: 10.1021/bi00239a001. [DOI] [PubMed] [Google Scholar]
  36. Postel E. H., Flint S. J., Kessler D. J., Hogan M. E. Evidence that a triplex-forming oligodeoxyribonucleotide binds to the c-myc promoter in HeLa cells, thereby reducing c-myc mRNA levels. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8227–8231. doi: 10.1073/pnas.88.18.8227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rando R. F., Ojwang J., Elbaggari A., Reyes G. R., Tinder R., McGrath M. S., Hogan M. E. Suppression of human immunodeficiency virus type 1 activity in vitro by oligonucleotides which form intramolecular tetrads. J Biol Chem. 1995 Jan 27;270(4):1754–1760. doi: 10.1074/jbc.270.4.1754. [DOI] [PubMed] [Google Scholar]
  38. Reynolds M. A., Arnold L. J., Jr, Almazan M. T., Beck T. A., Hogrefe R. I., Metzler M. D., Stoughton S. R., Tseng B. Y., Trapane T. L., Ts'o P. O. Triple-strand-forming methylphosphonate oligodeoxynucleotides targeted to mRNA efficiently block protein synthesis. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12433–12437. doi: 10.1073/pnas.91.26.12433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rippe K., Fritsch V., Westhof E., Jovin T. M. Alternating d(G-A) sequences form a parallel-stranded DNA homoduplex. EMBO J. 1992 Oct;11(10):3777–3786. doi: 10.1002/j.1460-2075.1992.tb05463.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Samadashwily G. M., Dayn A., Mirkin S. M. Suicidal nucleotide sequences for DNA polymerization. EMBO J. 1993 Dec 15;12(13):4975–4983. doi: 10.1002/j.1460-2075.1993.tb06191.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Samadashwily G. M., Mirkin S. M. Trapping DNA polymerases using triplex-forming oligodeoxyribonucleotides. Gene. 1994 Nov 4;149(1):127–136. doi: 10.1016/0378-1119(94)90421-9. [DOI] [PubMed] [Google Scholar]
  42. Shimizu M., Konishi A., Shimada Y., Inoue H., Ohtsuka E. Oligo(2'-O-methyl)ribonucleotides. Effective probes for duplex DNA. FEBS Lett. 1992 May 11;302(2):155–158. doi: 10.1016/0014-5793(92)80428-j. [DOI] [PubMed] [Google Scholar]
  43. Singleton S. F., Dervan P. B. Equilibrium association constants for oligonucleotide-directed triple helix formation at single DNA sites: linkage to cation valence and concentration. Biochemistry. 1993 Dec 7;32(48):13171–13179. doi: 10.1021/bi00211a028. [DOI] [PubMed] [Google Scholar]
  44. Sun J. S., De Bizemont T., Duval-Valentin G., Montenay-Garestier T., Hélène C. Extension of the range of recognition sequences for triple helix formation by oligonucleotides containing guanines and thymines. C R Acad Sci III. 1991;313(13):585–590. [PubMed] [Google Scholar]
  45. Sun J. S., François J. C., Montenay-Garestier T., Saison-Behmoaras T., Roig V., Thuong N. T., Hélène C. Sequence-specific intercalating agents: intercalation at specific sequences on duplex DNA via major groove recognition by oligonucleotide-intercalator conjugates. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9198–9202. doi: 10.1073/pnas.86.23.9198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sun J. S., Lavery R. Strand orientation of [alpha]-oligodeoxynucleotides in triple helix structures: dependence on nucleotide sequence. J Mol Recognit. 1992 Sep;5(3):93–98. doi: 10.1002/jmr.300050304. [DOI] [PubMed] [Google Scholar]
  47. Svinarchuk F., Debin A., Bertrand J. R., Malvy C. Investigation of the intracellular stability and formation of a triple helix formed with a short purine oligonucleotide targeted to the murine c-pim-1 proto-oncogene promotor. Nucleic Acids Res. 1996 Jan 15;24(2):295–302. doi: 10.1093/nar/24.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Trapane T. L., Hogrefe R. I., Reynolds M. A., Kan L. S., Ts'o P. O. Interstrand complex formation of purine oligonucleotides and their nonionic analogs: the model system of d(AG)8 and its complement, d(CT)8. Biochemistry. 1996 Apr 30;35(17):5495–5508. doi: 10.1021/bi960070b. [DOI] [PubMed] [Google Scholar]
  49. Tsukahara S., Kim S. G., Takaku H. Inhibition of restriction endonuclease cleavage site via triple helix formation by homopyrimidine phosphorothioate oligonucleotides. Biochem Biophys Res Commun. 1993 Oct 29;196(2):990–996. doi: 10.1006/bbrc.1993.2347. [DOI] [PubMed] [Google Scholar]
  50. Tu G. C., Cao Q. N., Israel Y. Inhibition of gene expression by triple helix formation in hepatoma cells. J Biol Chem. 1995 Nov 24;270(47):28402–28407. doi: 10.1074/jbc.270.47.28402. [DOI] [PubMed] [Google Scholar]
  51. Xodo L., Alunni-Fabbroni M., Manzini G., Quadrifoglio F. Pyrimidine phosphorothioate oligonucleotides form triple-stranded helices and promote transcription inhibition. Nucleic Acids Res. 1994 Aug 25;22(16):3322–3330. doi: 10.1093/nar/22.16.3322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Young S. L., Krawczyk S. H., Matteucci M. D., Toole J. J. Triple helix formation inhibits transcription elongation in vitro. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10023–10026. doi: 10.1073/pnas.88.22.10023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. de Bizemont T., Duval-Valentin G., Sun J. S., Bisagni E., Garestier T., Hélène C. Alternate strand recognition of double-helical DNA by (T,G)-containing oligonucleotides in the presence of a triple helix-specific ligand. Nucleic Acids Res. 1996 Mar 15;24(6):1136–1143. doi: 10.1093/nar/24.6.1136. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES