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Evidence on how much medical interventions work may change over
time. It is important to determine what fluctuations in the treatment
effect reported by randomized trials and their metaanalyses may be
expected and whether extreme fluctuations signal future major
changes. We applied recursive cumulative metaanalysis of random-
ized controlled trials to evaluate the relative change in the pooled
treatment effect (odds ratio) over time for 60 interventions in two
medical fields (pregnancy/perinatal medicine, n = 45 interventions;
myocardial infarction, n = 15 interventions). We evaluated the scatter
of relative changes for different numbers of total patients in previous
trials. Outlier cases were noted with changes greater than 2.5 stan-
dard deviations of the expected. With 500 accumulated patients, the
pooled odds ratio may change by 0.6- to 1.7-fold in the immediate
future. When 2000 patients have already been randomized, the
respective figures are between 0.74- and 1.35-fold for pregnancy/
perinatal medicine and between 0.83- and 1.21-fold for myocardial
infarction studies. Extreme early fluctuations in the treatment effect
were observed in three interventions (magnesium in myocardial
infarction, calcium and antiplatelet agents for prevention of pre-
eclampsia), where recent mega-trials have contradicted prior meta-
analyses, as well as in four other examples where early large treat-
ment effects were dissipated when more data appeared. Past
experience may help quantify the uncertainty surrounding the treat-
ment effects reported in early clinical trials and their metaanalyses.
Early wide oscillations in the evolution of the treatment effect for
specific interventions may sometimes signal further major changes in
the future.

mega-trials | heterogeneity | randomized trials

Randomized trials and metaanalyses are often considered pri-
mary means for assessing the efficacy of medical interventions
(1-4). However, clinical evidence evolves over time: new trials
continue to be performed, replacing, updating, and supplementing
the knowledge obtained from earlier ones. Heterogeneity (i.e.,
variability) among trial results is unavoidable. New trials may
strengthen our prior beliefs about the magnitude of a treatment
effect (i.e., how much a treatment works), or, in some cases, they
may alter these beliefs or invalidate them. Several recent examples
(5-8) have been encountered where large randomized trials
reached entirely different conclusions when compared with meta-
analyses of earlier trials of small or even large sample size on the
same question. For example, recent large trials seemed to invalidate
our prior beliefs about the efficacy of treatments such as magnesium
salts and nitrates for reducing overall mortality in acute myocardial
infarction (9) or aspirin (10) and calcium supplementation (11) for
the prevention of preeclampsia during pregnancy. Prior expecta-
tions of 30—60% reductions in mortality and preeclampsia, respec-
tively, based on early trials, were not confirmed.

Important questions arise: Could we have anticipated these
discrepancies? Also, how uncertain should we be about the
treatment effects reported by metaanalyses? How much may
treatment effects change as data from trials accumulate? In
other words, how much uncertainty should there be on how much
treatments work?

Cumulative metaanalysis (12) provides a framework for updating
the summary results from all trials in a given question as evidence
accumulates. An extension of the method, recursive cumulative
metaanalysis (13), shows the relative change in the magnitude of the
treatment effect as each piece of evidence is obtained. With the
advent of evidence-based medicine, many metaanalyses have been
performed. These metaanalyses offer empirical evidence on how
much the treatment effect has changed over time for several
interventions in various medical fields. This empirical evidence may
be used to estimate our uncertainty about a given reported treat-
ment effect, based on what has ensued in previous similar circum-
stances. In the present report, we used two large databases of 60
metaanalyses to obtain empirical evidence of the expected range of
change in the treatment effect over time in two medical fields.
Furthermore, we attempted to determine whether the evolution of
the changes in the treatment effect for certain interventions over
time could predict major changes altering our belief in the efficacy
of these interventions in the future.

Methods

Databases. We used 60 metaanalyses of randomized trials of
therapeutic and preventive interventions in pregnancy and peri-
natal medicine (n = 45) and management of myocardial infarc-
tion (n = 15). These were derived from a previous database of
empirical work on metaanalysis, details on which are described
elsewhere (14). A metaanalysis was included if it contained more
than five trials that had been published in more than three
different calendar years. This rule was applied to target inter-
ventions where there was already some meaningful history on the
evolution of the treatment effect over time.

The pregnancy/perinatal database was derived by screening all
of the metaanalyses of the Cochrane Pregnancy and Childbirth
Database (1994 edition) (15). Pregnancy and perinatal medicine is
a field in which metaanalyses have been performed extensively. It
thus offers a unique opportunity for examining the evolution of
treatment effects over time in a given medical field, avoiding strong
selection biases. The metaanalyses of the management of myocar-
dial infarction (acute therapy and secondary prevention) were
derived from a comprehensive screening of six journals likely to
publish high-quality metaanalyses in this field (Lancet, JAMA, New
England Journal of Medicine, Annals of Internal Medicine, Archives
of Internal Medicine, and Circulation) for the years 1988 to 1995.
This field was chosen because there were already several large-scale
metaanalyses on the management of myocardial infarction. These
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Illustrative example of a standard metaanalysis on calcium supplementation for prevention of preeclampsia (Left), the respective cumulative

metaanalysis (Center), and the respective recursive cumulative metaanalysis (Right). Cumulative metaanalysis is performed at the end of each year when new
trials have been published in this year. The odds ratio of the cumulative metaanalysis at the end of each year is displayed according to the cumulative number
of patients. The relative change in the odds ratio is also displayed according to the same scale. Calculations are based on random effects. PTs, patients; Cum Pts,

cumulative patients; Cl, confidence interval.

also include some of the most hotly debated discrepancies between
metaanalyses and large randomized trials (16-19).

Trials published until early 1994 (Cochrane database) or early
1995 (myocardial infarction database) were considered in the
main analysis. The inclusion of these trials allowed us to evaluate
whether major discrepant results in trials published more re-
cently could have been predicted on the basis of the prior
evolution of the treatment effect for these interventions. To this
end, metaanalyses were updated (to June 1999) by consulting the
most recent Cochrane database, conducting MEDLINE
searches, and perusing bibliographies of recent retrieved articles.

Metaanalysis, Cumulative Metaanalysis, and Recursive Cumulative
Metaanalysis. For each intervention, trials were chronologically
ordered per publication year, and cumulative metaanalysis (12)
was performed to obtain pooled odds ratios at the end of each
calendar year. We also noted the total number of patients
randomized in published clinical trials (cumulative sample size)
at the end of each calendar year. Each calendar year was
considered as an information step, in which evidence was
updated by trials published in the interim.

We then estimated the relative change in the treatment effect
in each information step (13). The relative change was defined
as the pooled odds ratio at the next information step divided by
the pooled odds ratio at the current information step. Therefore,
it provided a measure of how much the treatment effect changes
as evidence accumulates. For example, if two trials were pub-
lished in 1987 and their pooled odds ratio was 0.80 and then
another two trials were published in 1990 and the pooled odds
ratio of all four trials was 0.96, the relative change at the 1987
information step was estimated as 0.96,/0.80 = 1.20.

In a typical recursive cumulative metaanalysis graph (13), the
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relative change in treatment effect is plotted as a function of the
information steps. In this case, we used the cumulative sample size
for each information step. Plots of the relative change as a function
of the cumulative sample size show the evolution of the relative
changes in the treatment effect for a specific intervention at
different numbers of accumulated randomized patients. For visual
comparison, Fig. 1 shows side by side a typical metaanalysis, a
cumulative metaanalysis, and a recursive cumulative metaanalysis.

Scatter of Relative Change of Treatment Effect for Various Cumulative
Sample Sizes. The scatter of the relative change values is expected
to be substantially wider in information steps where the cumu-
lative sample size is small and should shrink as cumulative
sample size increases. Pooled treatment effects may experience
greater change, when based on fewer patients. We therefore
obtained a measure of the scatter of the relative change for
different values of cumulative sample size across all metaanaly-
ses in each of the two medical fields. We searched with an
iterative algorithm for the power, g, that maximizes the log-
likelihood function in a linear regression of the form
logio(relative change in the pooled odds ratio) =
b-logio(cumulative sample size) + a, weighted by w = (cumula-
tive sample size)s. From this weighted regression, 95% prediction
intervals were obtained for the range of the relative change given
various cumulative sample sizes.

Fixed and Random Effects Calculations. For all analyses, separate
calculations were performed with fixed-effects (Mantel-
Haenszel) (20) and random-effects (DerSimonian-Laird) (21)
pooling methods. The fixed-effects approach assumes no signif-
icant heterogeneity between the results of the individual studies
being pooled, whereas random-effects calculations allow for
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Scatter plots of the relative change in the pooled odds ratio as a function of the cumulative number of patients in previously published randomized

trials. An outlier relative change of 0.05 for sample size = 50 is not shown in the myocardial infarction graph. A relative change greater than 1 means that the
odds ratio tends to increase with the accumulation of more data. Fixed effects graphs were similar.

such heterogeneity, and they add an empirical estimate of the
between-study variance 7> to the within-study variance (22).
Theoretically, if the sample size and event rates of the trial(s) at
information step ¢ + 1 are small, the odds ratio cannot move that
far with the fixed-effects approach, but it may still move sub-
stantially with random-effects calculations.

Determination of Extreme Cases/Outliers—Prediction of Major
Changes in the Future. Finally, we attempted to determine whether
extreme /outlier points with extreme width of treatment effect
fluctuations in a recursive cumulative metaanalysis for a specific
intervention also predicted large relative changes of the treatment
effect in the future, as suggested by large discrepancies in the results
of recent randomized trials as compared with prior evidence. For
each of the two medical fields we estimated for each point the
studentized residual from the weighted regression, i.e., how many
standard deviations away from the predicted value of relative
change each point was. Points that were 2.5 or more deviations away
from the value predicted by either fixed-effects or random-effects
calculations and 1.8 or more deviations away from the predicted
value by the other pooling method were considered as extreme
cases/outliers. The rule was set a priori to avoid determining
outliers largely dependent on the statistical modeling.

The change in the cumulative odds ratio is based on the ratio
of two measures that are mutually dependent to some extent; i.e.,
the information at step ¢ + 1 also contains the information at step
t. Therefore, in the evaluation of extreme fluctuations, we also
considered an approach comparing independent odds ratios. In
this approach, the pooled odds ratio at information step ¢ is
compared with the odds ratio of the new trials of information
step ¢ + 1. In this way, the two sets are independent. The extent
of heterogeneity between the natural logarithms of these two
independent odds ratios is calculated by the standardized z score:

z score = (In OR, ,o01ea — In OR, 1)/
[se(In OR, pooiea)” + se(In OR, , 1)*]*?

This latter approach answers the question “Do the results of the
recent trials differ from the results of the previous ones on the
same topic?” The disadvantage of this approach is that it does
not consider the evidence from other topics on the same medical
field. We evaluated the frequency of disagreements between
independent sets of trials and whether disagreements could
predict major discrepancies as compared with the recursive
cumulative metaanalysis approach. Furthermore, we examined
the evolution of the DerSimonian-Laird estimate of 7 at

loannidis and Lau

sequential information steps to see whether early inflations of 7>
might predict late large fluctuations in the treatment effect.

Results

Scatter and Predicted Range of Relative Changes in the Treatment
Effect. The graphs in Fig. 2 show the scatter of the relative
changes in the treatment effect for different numbers of accu-
mulated patients in the two chosen medical fields. As expected,
when evidence is based on only few patients, there is substantial
uncertainty about how much the pooled treatment effect will
change in the future. The scatter of the points was somewhat less
influenced by sample size in the case of pregnancy/perinatal
medicine than for myocardial infarction. The values of all of the
regression coefficients were very close to 0 and did not differ
significantly from 0 (P > 0.6 for all), suggesting that, at all
cumulative sample sizes, it would be equally likely for the pooled
odds ratio to increase or to decrease in the future. Table 1 shows
the 95% prediction intervals for the relative change in the
treatment effect for different numbers of patients in the two
medical fields. For both fields, when only 100 patients have been
randomized, tripling or making one-third of the pooled odds
ratio in the immediate future should not be surprising. Even
when 500 patients have been randomized, the 95% intervals for
the relative change in the odds ratio are between 0.6 and 1.7
approximately. When 2000 patients have already been random-
ized, it is expected that 95% of the time the relative change in
the odds ratio may be approximately between 0.74 and 1.35 for
pregnancy/perinatal medicine and between 0.83 and 1.21 for
myocardial infarction studies (fixed-effects calculations).

Extreme/Outlier Cases. Table 2 shows the identified extreme
value/outlier cases where the relative change in the treatment
effect was substantially more pronounced than what would have
been anticipated on the basis of the previously accumulated
sample size. The Fig. 3 panels show recursive cumulative meta-
analysis graphs for four examples of major discrepancies be-
tween prior evidence and recent mega-trials mentioned above,
along with several other examples of interventions without
extreme /outlier oscillations.

Pregnancy/Perinatal Medicine. Both cases where recent large trials
altered our prior beliefs in efficacy had shown prominent outliers
during the early accumulation of randomized evidence many
years before the hotly debated controversial data appeared. In
the case of calcium supplementation for the prevention of
preeclampsia, the random-effects odds ratio changed from 0.61
to 0.28 between 1987 (when there were 452 randomized patients)
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Table 1. 95% prediction intervals for the relative change in the
treatment effect (odds ratio) for different numbers of
accumulated patients (cumulative sample size, N)

Pregnancy/perinatal Myocardial infarction

Patients, Random Random
N Fixed effects effects Fixed effects effects

100 0.37-2.78 0.32-3.13 0.18-5.51 0.23-4.43
500 0.59-1.71 0.56-1.71 0.60-1.67 0.63-1.58
1,000 0.67-1.49 0.65-1.53 0.74-1.35 0.76-1.32
2,000 0.74-1.35 0.73-1.37 0.83-1.21 0.84-1.20
15,000 0.85-1.14 0.86-1.15 0.96-1.05 0.96-1.05

For example, if the observed treatment effect for drug A in the treatment
of myocardial infarction is provided by a fixed-effects odds ratio of 0.60 based
on N = 2000 patients randomized to date in published trials until now, then
we can be 95% certain that the odds ratio when a next trial(s) appear(s) would
be between 0.60-0.83 = 0.50 and 0.60-1.21 = 0.73.

The following regressions were the best-fit ones to the discipline-wide
scatter plots presented in the paper: Pregnancy/perinatal medicine—fixed-
effects calculations: logig(relative change in odds ratio) = 0.0208-0.0068
log(N). Regression weight: NO%; P values for coefficients: P = 0.60 and P = 0.60.

Pregnancy/perinatal medicine-random effects calculations: logig(relative
change in odds ratio) = 0.0048-0.0017 log(N). Regression weight: NO-85; p
values for coefficients: P = 0.91 and P = 0.90.

Myocardial infarction-fixed-effects calculations: logio(relative change in
odds ratio) = 0.0033-0.0013 log(N). Regression weight: N'45; P values for
coefficients: P = 0.87 and P = 0.78.

Myocardial infarction-random-effects calculations: logjo(relative change
in odds ratio) = 0.0002-0.0002 log(N). Regression weight: N'4%; P values for
coefficients: P = 0.91 and P = 0.996.

and 1989. It changed again from 0.26 to 0.38 between 1990 (when
there were 1205 patients) and 1991. Fixed-effects changes were
similar. All of this change preceded the appearance of a large
trial (n = 4589) (11) in 1997 showing no treatment benefit at all.
Of interest, still another trial published in 1999 (n = 456) showed
a large benefit suggesting a continuation of fluctuations and
controversy regarding the treatment effect. In the case of
antiplatelet agents for the prevention of preeclampsia, the
fixed-effects odds ratio changed dramatically from 0.52 to 0.95
between 1991 (when there were 825 randomized patients) and
1993. This change was before the CLASP trial, with almost
10,000 subjects, also showed no efficacy in 1994 (12).

Outliers were also observed in four other interventions in the
pregnancy/perinatal field. In the case of active management of
preterm rupture of membranes, the pooled random-effects odds

ratio for chorioamnionitis changed from 0.29 (1978) to 1.01
(1984) and continued to perform substantial oscillations [1.52 in
1986, 0.93 in 1992 (1585 patients), 0.86 in 1995 (3286 patients),
0.75 in 1996 (7068 patients)]. Actually, the most recent large trial
(23) showed a large, statistically significant effect that was not
apparent in any of the previous trials. In the case of elective
induction of labor at term, the fixed-effect odds ratio for
cesarean section changed from 0.40 to 0.84 between 1989 and
1992. Subsequent trials, including a large one (23), have consis-
tently given results showing a small benefit regarding this
outcome. It is conceivable that the large treatment effect re-
ported in the early trials may have been due to publication bias
or publication lag (24). Publication lag may have also operated
in the case of prophylactic syntometrine vs. ergot derivative,
where the pooled random-effects odds ratio for postpartum
hemorrhage dramatically changed from 4.33 in 1961 to 1.08 in
1963, and then further decreased to 0.80 by 1965; and in the case
of beta-mimetic tocolytics in preterm labor, where the pooled
random-effects odds ratio changed from 0.12 in 1979 to 0.85 in
1980 and 0.92 in 1992 and practically remained at this level for
the next 7 years. Beta-mimetic agents are very effective in
postponing delivery for short periods of time, but their effect on
serious complications is much more limited, probably because
such complications may be prevented by several other interven-
tions. For the last two examples, mega-trials have not been
performed.

Myocardial Infarction. Two of the three outliers occurred in the
case of magnesium salts for the treatment of acute myocardial
infarction (AMI). Well before the appearance of ISIS-4 data in
1995 (9), which changed dramatically our appreciation of the
efficacy of magnesium, in two other calendar times (1987 and
1988) the pooled efficacy of magnesium had changed dramati-
cally. By fixed effects, the pooled odds ratio changed from 0.38
in 1987 to 0.75 in 1988 and 0.51 in 1989. By random effects the
respective figures were 0.39, 0.79, and 0.52. Notably, the treat-
ment effect also changed substantially again in 1992, when with
the publication of the results of LIMIT-2 [a trial of 2316 patients
(25) added to the accumulated evidence of 1621 previously
randomized patients] the pooled odds ratio changed from 0.39
to 0.60 by fixed effects (3.92 deviations) and from 0.40 to 0.48 by
random effects (1.72 deviations).

The only other outlier case in the myocardial infarction field was
one in which an odds ratio of 20.5 had been reported by a small trial
on oral anticoagulation for secondary prevention of myocardial
infarction, where it would be obvious that the estimated effect

Table 2. Extreme changes/outliers in the relative change of treatment effect

Relative change in OR (s. res.)

Topic Patients, N Fixed effects Random effects
Pregnancy/perinatal medicine field
Prophylactic syntometrine vs. ergot derivative 600 0.37 (—4.02) 0.25 (=5.17)
Beta-mimetic tocolytics in preterm labor 59 7.00 (3.07) 7.08 (2.71)
Antiplatelet agents for prevention of preeclampsia 825 1.83 (2.75) 1.56 (1.90)
Elective induction of labor at term 1248 2.10 (4.01) 1.63 (2.49)
Active management of prelabor ROM 112 3.72 (2.67) 3.48 (2.27)
Calcium for prevention of preeclampsia 452 0.57 (—2.04) 0.46 (—2.57)
Myocardial infarction field
Magnesium salts in AMI* 500 1.97 (2.63) 2.03 (3.01)
Magnesium salts in AMI* 868 0.68 (—2.24) 0.66 (—2.66)
Oral anticoagulants for secondary prevention 50 0.04 (—2.35) 0.05 (—2.56)

*For magnesium salts in AMI, the formal criteria for an outlier were met at two early time-points. OR, odds ratio;
s. res., studentized residual (deviations away from predicted); AMI, acute myocardial infarction; ROM, rupture

of membranes.
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Fig. 3. Recursive cumulative metaanalyses for 10 perinatal topics (Upper)
and 10 myocardial infarction topics (Lower). The controversial cases of anti-
platelet agents (bold continuous line) and calcium (bold interrupted line) used
to prevent preeclampsia during pregnancy and magnesium salts (bold con-
tinuous line) and nitrates (bold interrupted line) to decrease mortality in acute
myocardial infarction (AMI) clearly show larger oscillations in the pooled
treatment effect over time than the other topics. Recent large trials for these
four topics have been included. Other topics depicted in the pregnan-
cy/perinatal interventions panel include balanced protein/energy supple-
mentation in pregnancy, extended spectrum vs. first-generation cephalospo-
rins with cesarean section, prophylactic administration of synthetic surfactant,
birthing chair vs. recumbent position for second stage of labor, prophylactic
phenobarbital in very-low-birth-weight neonates, prophylacticindomethacin
in preterm infants, prophylactic oral betamimetics in pregnancy, and cortico-
steroids after preterm prelabor rupture of membranes. Other topics depicted
in the myocardial infarction interventions panel include beta-blockers in AMI,
beta-blockers for secondary prevention, calcium channel blockers for AMI,
calcium channel blockers for secondary prevention, oral anticoagulants for
AMI, class | antiarrhythmics in AMI, prophylactic lidocaine in AMI, and i.v.
streptokinase in AMI. Calculations are based on fixed effects, but random-
effects graphs are verysimilar. Arelative change greater than 1 means that the
odds ratio tends to increase with the accumulation of more data.

would be unrealistic. In the case of nitrates for myocardial infarc-
tion, there were no typical outlier changes before the appearance of
the ISIS-4 data, which altered dramatically our appreciation of their
efficacy. Nevertheless, the change in the pooled treatment effect
between 1984 (when 1731 patients had accumulated) and 1985 was
close to the definition of an outlier (2.28 deviations by fixed effects,
1.72 deviations by random effects).

Comparisons of Independent Sets of Odds Ratios. Thirteen meta-
analyses (at 17 time points) had absolute z scores greater than 2.50
and 22 metaanalyses had absolute z scores greater than 1.96
(random-effects calculations), when independent odds ratios of
past trials and current trials were compared at each year when new
trials appeared. These z scores suggest that it is common to see new
evidence that disagrees beyond chance with the prior accumulated
evidence. However, in the large majority of these cases (10 of the
13, and 17 of the 22), once the new evidence had been incorporated
into the past data, the relative change of the treatment effect was
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not extreme, given the prior sample size and the medical field. More
importantly, none of the four metaanalyses where recent mega-
trials changed markedly the pooled treatment effect had shown a z
score of more than 2.50 in the past, and only one had shown a z score
of more than 1.96 at some prior time point. Thus, disagreements
between past evidence and new evidence are frequent, but typically
the varying new evidence does not change the pooled treatment
effect by much, and the presence of such variation does not seem
to predict major changes in the future.

Evolution of Between-Study Variance. The 7> was greater than 0 in
at least one information step in 7/15 myocardial infarction
metaanalyses and in 41 /45 perinatal metaanalyses. Estimates of
72 greater than 0.10 were seen at some point in 4 /15 and 35/45
metaanalyses, respectively. These included three of the four
metaanalyses where large subsequent fluctuations were ob-
served, whereas for antiplatelet agents to prevent preeclampsia,
7 was 0 at all information steps. Inflation of the estimated 7 at
three successive information steps was seen in 4/15 and 10/45
metaanalyses, respectively. These analyses included magnesium
and nitrates for myocardial infarction, but not calcium or
antiplatelet agents for preeclampsia.

Discussion

Recursive cumulative metaanalysis provides insight into how
much evidence-based beliefs about the efficacy of treatments
change over time as evidence accumulates. Our empirical anal-
ysis from two different medical fields allows us to estimate what
uncertainty there is about how much a treatment works when the
evidence is based on different numbers of randomized patients.
For both disciplines, the uncertainty decreased drastically with
increasing cumulative sample size. With 500 randomized pa-
tients, interpretations of treatment benefits have to be cautious,
because odds ratios in the range of 0.6-1.7 can easily be
dissipated by future evidence. At 2000 patients, odds ratios may
still change by as much as 0.74- to 1.35-fold, in the case of the
pregnancy/perinatal discipline, and somewhat less in the case of
myocardial infarction trials. More than 10,000 patients are
required to relieve uncertainty about the first decimal point in
the odds ratio of a treatment effect reported by a metaanalysis.

One may estimate whether the new effect seen with a new trial
is significantly different from the pooled effect that had been
estimated based on previous trials. Significance testing is
straightforward because the ratio of the odds ratios and its
variance can be calculated from the number of observations in
the previous and in the new trials and from the observed effects.
In our approach, we go one step further in that instead of basing
inferences on the data of one specific metaanalysis, inferences
are based on data from many metaanalyses. The prediction
intervals aim at estimating what uncertainty there is for the
change in effect, given an accumulated number of observations
and the previous experience from several other metaanalyses in
the same field. Within the same field, trials with the same
accumulated number of observations may have different effects
and/or different event rates and/or may be followed by trials
with different effects and event rates; thus variances in the effect
change may indeed be different. The prediction intervals gen-
erate empirical estimates for the observed fluctuations in the
whole medical field rather than for one specific sequential
metaanalysis. We have shown in this paper empirically that the
extreme fluctuations identified by this approach have predictive
ability for future extreme fluctuations, whereas predictive ability
is limited when extreme fluctuations are identified by using
inferences based on one specific metaanalysis.

We performed calculations with both fixed and random
effects, and inferences were generally similar. However, theo-
retically it is conceivable that if there is very large between-study
heterogeneity, then with random-effects calculations the com-
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bined estimate may nearly be the unweighted average of the n
studies’ log(odds ratios) and variability then would depend on n
and not so much on the actual number of accumulated obser-
vations. Both models should thus be considered and potential
discrepancies screened.

The modest difference in uncertainty between preg-
nancy/perinatal trials and myocardial infarction trials may be
real, the result of selection bias or a chance finding due to
sampling error. Myocardial infarction metaanalyses were more
selected and derived from influential journals. They may there-
fore deal with more established treatments, and the average
quality of trial design and conduct may have been superior.

Typically, clinical trials are reported with P values for the null
hypothesis that the treatment does not work at all. However,
these are derived from the data of the specific trial. Trials take
into account neither the previous evidence on the same question
(12, 13) nor the empirical evidence from other interventions
studied in the same medical field. What we propose here is an
empirical approach that allows researchers to determine how
stable a treatment effect is likely to be on the basis of what has
typically ensued in similar settings from past experience. For
clinical purposes, knowing how much a treatment is likely to
work is usually more important than knowing that we are
probably correct in rejecting the null hypothesis (26). The
strength borrowed from external evidence is the basic advantage
of our approach. Nevertheless, it may also be the main source of
limitations, if past experience is not generalizable to the current
experience. For example, perhaps quality defects are better
addressed in current trials as compared with older ones.

The regular updating of randomized evidence by metaanalyses
at annual or biannual intervals is becoming common standard
practice in initiatives such as the International Cochrane Col-
laboration (27). There is justified interest in disseminating
high-quality, updated information on how much treatments work
to keep medical practice up to date and maximally cost-effective
(27). Tt is important to caution that pooled estimates from
metaanalyses may sometimes offer a misleading reassurance
with their tight confidence intervals. The recursive metaanalysis
approach (13) acknowledges and quantifies the uncertainty
inherent in pooled estimates. Moreover, the advent of evidence-
based medicine has also allowed the accumulation of several
metaanalyses in various medical fields. Thus the empirical
estimation of uncertainty should become more precise. We
should acknowledge that defining which metaanalyses should be
included in a medical field is partly subjective, similar to defining
criteria for which trials should be included in a single meta-
analysis. With more evidence, comparisons of the magnitude of
uncertainty in variously defined medical fields may also show
whether treatment effect fluctuations differ substantially in
various medical fields and settings.
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Recursive cumulative metaanalysis also predicts major changes
in the treatment effect estimate that may occur in the future.
Unexpectedly wide oscillations in the treatment effect early in the
course of accumulating clinical evidence are associated with major
changes in the treatment effect in the future. Early fluctuations
preceded the major surprises of the discordant results of mega-trials
evaluating magnesium in acute myocardial infarction and calcium
and antiplatelet agents used to prevent preeclampsia in pregnant
women. Figuratively, this pattern is similar to that observed when
minor earthquakes precede major catastrophic earthquakes. Al-
though our method cannot predict exactly when the “earthquake”
will occur, it nevertheless suggests that when cumulative treatment
effect estimates change widely over time, results should be inter-
preted with caution because large changes, in either direction, may
sometimes be observed again in the future. We have also identified
examples of wide oscillations where large effects reported in early
trials have been dissipated in the presence of more data. Early
reported treatment benefits have to be interpreted cautiously. In the
presence of wide early oscillations, clinicians should also wait for a
more complete picture to evolve.

The definition of “extremes” is not absolute, and there is no
reason to believe that specific cut-offs of standardized residuals are
necessarily better than others; however, to avoid post hoc interpre-
tations we agreed a priori to examine prespecified cut-offs. The
standardized residuals may also be seen as a continuous variable
without cut-offs. The empirical data suggest that all four major
future discrepancies were preceded by early fluctuations of at least
1.72 standardized residuals by random effects and 2.04 standardized
residuals by fixed effects in their respective medical fields. Obvi-
ously, when extremes are defined by less stringent criteria, then the
rate of false positives may also increase (a traditional tradeoff
between specificity and sensitivity), and “extreme” changes in the
odds ratio may be less significant from a clinical viewpoint.

Several mechanisms may be responsible for large fluctuations of
the treatment effect. Potential candidates include publication lag
and publication bias (24), heterogeneity in the baseline risk of the
studied patient populations (14), quality defects in the conduct and
design of trials (28), variability in the treatments used over time, and
other unknown sources of diversity. Publication bias and publica-
tion lag in particular may provide an explanation for the cases where
early large treatment effects are subsequently gradually dissipated
with the appearance of more evidence. Full registration and
publication of all trials is an ethical imperative (29).

The notion that treatment effects reported in randomized trials
and their metaanalyses are absolute constants is unrealistic. Many
factors could generate diversity in different populations under
different circumstances (30). Heterogeneity in the treatment effects
is important to detect and, if possible, to predict. In this regard,
recursive cumulative metaanalysis offers a means of appreciating
the evolution of evidence over time and may offer some insight into
what uncertainty there is about how much a treatment works.
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