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The theory of exponential dispersion models was applied to
construct a stochastic model for heterogeneities in regional organ
blood flow as inferred from the deposition of labeled micro-
spheres. The requirements that the dispersion model be additive
(or reproductive), scale invariant, and represent a compound Pois-
son distribution, implied that the relative dispersion (RD = stan-
dard deviation/mean) of blood flow should exhibit self-similar
scaling in macroscopic tissue samples of masses m and myer such
that RD(m) = RD(Myef). (M/Mmyef)’ 2, where D was a constant. Under
these circumstances this empirical relationship was a consequence
of a compound Poisson-gamma distribution that represented mac-
roscopic blood flow. The model also predicted that blood flow, at
the microcirculatory level, should also be heterogeneous but obey
a gamma distribution—a prediction supported by observation.

exponential dispersion model | fractals

Regional organ blood flow exhibits a significant degree of
spatial heterogeneity when measured by using labeled mi-
crospheres or by other means (1, 2). This heterogeneity is
apparently not random (there exist correlations between neigh-
boring regions of an organ) and over a certain range the relative
dispersion of blood flow reveals a self-similar scaling with respect
to the size of the region (3-5). Bassingthwaighte and colleagues
(1, 6), based on their observations from the deposition of labeled
microspheres, have inferred that the relative dispersion RD(m)
of blood flow (ml/min-g) within tissue pieces of mass m will scale
relative to that from pieces of reference mass m,.r according to
the equation,

m \1-D
RD(m) = RD(m,,y) * (7) . [1]

Myef.

In their work, the constant D has been identified as a spatial
fractal dimension.

This empirical scaling has been related to the self-similar
branching of vascular trees (3), and to the demands placed by
local tissue metabolism (4). As the regions under observation are
scaled down to the level of the microcirculation, this relationship
presumably would require some modification. We know that the
capillary network can contribute to the heterogeneity of capil-
lary perfusion through a complex and variable pattern of redis-
tributed blood flow (7). Blood flow, as indexed by erythrocyte
velocity within individual capillaries, also appears quite heter-
ogeneous; the related velocity distribution has been character-
ized by a gamma distribution (8, 9). How this microcirculatory
heterogeneity might relate to the observed macroscopic heter-
ogeneity will be considered here.

In this article, the theory of exponential dispersion models
(10) will be employed to provide a stochastic description for the
macroscopic and microscopic heterogeneities in regional organ
blood flow. The scaling relationship (Eq. 1) will be shown to be
a direct consequence of an exponential dispersion model based
on a scale invariant compound Poisson-gamma distribution. A
hypothesis, relating this Poisson-gamma distribution to possible
microcirculatory dynamics, will be presented.

Exponential Dispersion Models

A brief introduction to the relevant aspects of exponential
dispersion models that closely follows the work of Jgrgensen (10,
11) will be presented here. These models serve as error distri-
butions for generalized linear models (12), and they provide a
means to study a large variety of non-normal data. The term
exponential dispersion model reflects, in part, the exponential
form of the generalized linear model. One class of such models
may be expressed by the canonical equation using the interre-
lated measures vy,

P, 4(ZeA) = f exp{0 -z — Ak(0)} - v\(dz2),
A

which describes the distribution P, 4 corresponding to the ran-
dom variable Z defined upon the measurable sets 4; 6 is the
canonical parameter, x(0) = 1/A log [ e®w,(dz) is the
cumulant function, A the index parameter, and z the canonical
statistic. P) g, for a range of values of 6, represents a family of
distributions ED*(6,\) completely determined by the parame-
ters (0,A) and the cumulant function. This family has the property
that the distribution of the sum of independent random vari-
ables, Z, = Z, + ... +Z, with Z; ~ ED*(6,\;) corresponding
to fixed 0 and various values of A, belongs to the family of
distributions with the same 0, Z, ~ ED*(0,A1 + ... + A,).
These distributions, ED*(0,A), are called additive. An additive
exponential dispersion model will be employed below to describe
the quantity of radioactivity deposited by blood flow within
individual tissue fragments of equal mass.

Returning now to the cumulant function, «(6), this may be
used to construct what is known as a cumulant generating
function K*(s) for the additive exponential dispersion model
corresponding to the random variable Z:

K*(s) = logE(e*?) = Mk(0 + 5) — k(6)} . [2]

Here, s is a variable used to construct the generating function,
and E represents the expectation operator. The cumulant gen-
erating function determines the distribution function of Z; it is
particularly useful when the distribution function is not easily
expressed in closed form (as is the case with the blood flow
model). In addition, the first two derivatives of K*(s) ats = 0
provide the mean and variance of Z. And, K*(s) can be used to
construct new random variables from simpler variables, a prop-
erty exploited in the blood flow model.

The function 7(0) = «’(6) gives the relationship between the
canonical parameter 6 and the mean, u = «'(6), is called the
mean value mapping. Using this mapping we can define the
variance function, V(u) = 7 {771(n)}, where 7 (n) denotes
the inverse function rather than the reciprocal. This function is
designed to isolate how the variance behaves with respect to the
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Table 1. Summary of Tweedie exponential dispersion models (10)

Distributions p Domain on R Support a Domain on R 0 Domain n Domain
Extreme stable p<0 R 1T<a<?2 Ro R+
Normal p=0 R a=2 R R

(do not exist) 0<p<1 nil a>2 Ro R:
Poisson p=1 No a=—x R R+
Compound Poisson 1<p<2 Ro a<0 R- R+
Gamma p=2 R+ a=0 R_ R+
Positive stable 2<p<3 R+ 0<a<' (—20,0] R+
Inverse Gaussian p=3 R+ a="% (—,0] R+
Positive stable p>3 R+ h<a<1 (—,0] R+

R = real numbers, Ryg = positive real numbers with zero, R; = positive real numbers, R- = negative real

numbers, Ng = positive integers with zero.

mean. The mean and variance of an additive random variable can
be expressed by using these quantities as E(Z) = Ap and
var(Z) = AV(w). In the model for deposited radioactivity given
below, both Z and E(Z) will be expressed in units of counts,
whereas var(Z) will be in units of counts?.

At this point, a second class of exponential dispersion models
should be introduced, with random variable ¥ = Z/\ ~
ED(p,0?), where o> = 1/A. These models, ED(u,0?), are
termed reproductive exponential dispersion models, and they
are characterized by a convolution property: For n independent
random variables Y; ~ ED(u,0?/w;), where the weighting
factors w; are summed thus, w = Z'_; w;, we have under the
weighted averaging of the variables 1/w X, w;Y; ~
ED(p,0%/w). This weighted average of independent random
variables, corresponding to fixed u and o2 and various values of
wi, belongs to the family of distributions with the same u and o2
A reproductive exponential dispersion model will be employed
in the discussion to describe blood flow when expressed in the
physiologic units, ml/min-g.

Another property that certain exponential dispersion models
may possess is called scale invariance. For a reproductive expo-
nential dispersion model ED(u,0?) we can require that for any
positive constant ¢, ¢ - ED(p,0?) = ED(cp,c>"? 0?), where p is
a real-valued and unitless constant. Under this scale transfor-
mation, the new random variable ¥ = ¢Y belongs to the same
family of distributions with fixed w and o2, but different values
of c. Under such transformation the variance function obeys the
equation, V(cp) = g(c) - V(p), for an appropriate function g(c).
Scale invariance implies that g(c) = V(c) and V(u) = u?. Scale
invariant exponential dispersion models have been termed
Tweedie models, in recognition of M. C. K. Tweedie’s contri-
bution (13) in this area, and p has been called the Tweedie
exponent (10).

Two differential equations follow from the properties of
exponential dispersion models. The first equation,

ot~ ) 1

ap Viw)’

gives the relationship between the mean value mapping 7(6) and
the variance function; the second equation,

dk(0)
a0

=(6),

expresses how the mean value mapping relates to the cumulant
function k(). These two equations may be solved under specific
conditions to obtain the cumulant function «(6), and thus specify
different exponential dispersion models.

In the scale invariant case where V(u) = p” andp # 1 or 2
the cumulant function takes the form (10, 14),
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where the parameter « = (p — 2)/(p — 1). In this case, the
cumulant generating function for the additive form of the
distribution, K*(s) is (10, 14):

K*(s):)\K(G){(l-i-%)a—l}. [4]

By referring to the properties of cumulant generating functions,
Eq. 4 can be shown to represent a compound Poisson distribution
generated by a gamma distribution (10, 14, 15). This is essentially
the distribution of the sum of N independent identically distrib-
uted random variables with a gamma distribution where N is a
random variable with a Poisson distribution. Eq. 4, with the use
of Eq. 3, yields for this Poisson-gamma distribution a variance to
mean power function: var(Z) = a - E(Z)?, where a = \!/(¢=1
is a proportionality constant.

In general, the Tweedie exponent p characterizes the related
distribution (10). Table 1 gives the different distributions that
correspond to the values of p along with the domains of support
for the associated random variable, and the distributional pa-
rameters a, 6, and w. In the case of regional blood flow, a
compound Poisson-gamma distribution is employed with 1 <
p < 2 and the random variables being supported as positive real
values with 0. The value of p > 1, indeed, implies a degree of
clustering of blood flow within certain regions of a given organ.

From a practical standpoint, the basic mathematical tools
needed to construct a blood flow model would include the
properties of additivity and scale invariance, and the resultant
variance to mean power function. With these tools it is possible
to construct a model characterized by Bassingthwaighte’s equa-
tion (Eq. 1). Because of its nonlinearity, the Poisson-gamma
distribution is more difficult to work with. The reader is referred
to Jorgensen’s book (10) for details regarding exponential
dispersion models.

Regional Blood Flow Described by an Exponential Dispersion
Model

Here, a stochastic model for regional organ blood flow will be
presented that yields Bassingthwaighte’s relationship (Eq. 1).
One of the most common methods for measuring regional blood
flow employs radiolabeled microspheres (16). Here, micro-
spheres 10—15 um in diameter are injected intravascularly and
then become entrapped in the capillaries [diameters 2.5-9 um
(17)] of the target organ (16). The injected animals are killed, the
target organ is removed and sectioned into equally sized pieces
of tissue, and the amount of radioactivity deposited in each piece
is measured. The amount of deposited radioactivity within each
piece is assumed proportional to the relative amount of blood
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flow (ml/min). Blood flow through larger conduit vessels would
not be associated with any significant deposition, and thus would
be excluded by this approach. In this initial formulation, blood
flow will be considered in the context of engineering units
(ml/min) so that it can be treated as an additive quantity. A
generalization to include physiologic units (ml/min-g) will be
provided in the discussion to follow. In strict terms, the stochastic
model to be derived here describes the heterogeneity in the
deposited radioactivity within organs. Since the deposited ac-
tivity has been accepted in the context of experimental blood
flow measurements (16), it should similarly be considered a
reasonable surrogate for blood flow in the theoretical model.

To proceed with the model, consider an organ that can be
subdivided into n pieces of equal mass. The deposited radioac-
tivity within these pieces will be modeled using an additive
exponential dispersion model, and the deposited radioactivity
within the individual pieces (measured in terms of the number
of radioactive counts per piece) will be represented by the
independent random variables Z, . . . , Z,. Therefore, it should
be possible to sum the activity contained within adjacent organ
pieces to reconstitute larger pieces. Thus, in theory, one may
consider the regional distribution of deposited radioactivity
within a series of reconstituted organ pieces, where the recon-
structed pieces can be scaled upwards in size. For simplicity, the
development of this model was restricted to the case where the
volumes were scaled radially, through one degree of freedom.
Thus, the organ tissue was assumed isotropic with respect to all
of its properties, including the heterogeneity of deposited
radioactivity.

If the model were required to be scale invariant, the variance
of the deposited radioactivity within the reconstituted pieces
would relate to the mean radioactivity within the pieces accord-
ing to a power function,

var(Z) =a-EZ)Y . [5]

The variances for deposited radioactivity as measured for two
different sizes of reconstituted tissue pieces would then be
related by the scaling relationship,

Ei(2)

var((Z) = <m> var,(Z) .

Some further manipulation gives a relationship resembling
Bassingthwaighte’s:

\var(Z) _ (EI(Z)>(p/2) ! \;arz(Z)
E.(2) Ex(Z) Ex(2)

EI(Z) (p/2)—1
Bt (Ez(Z)> >

Here the exponent p corresponds to Bassingthwaighte’s dimen-
sion D such thatp = 4 — 2D, and the ratio of means corresponds
to that of the masses.

The distribution function for the model can now be specified.
If the deposited radioactivity in the ith tissue piece Z; is
represented by an additive and scale invariant exponential
dispersion model, and if the exponent p is restricted such that 1 <
p < 2, then the compound Poisson-gamma distribution in the
form given by Eq. 4 would be used to describe the distribution
of radioactivity among the tissue pieces.

The restricted range of the exponent p implies that Bassingth-
waighte’s spatial dimension D will also be restricted: 1 < D <
1.5. This restriction was consistent with the usual range observed
for D (18). Other values for p (that would be consistent with Eq.
1) were possible, but would have required the formulation of
different dispersion models (10, 14).
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A relationship resembling Bassingthwaighte’s equation (Eq.
1), therefore, can be derived to describe the regional heteroge-
neity in the macroscopic deposition of labeled microspheres
within an organ. This relationship can be viewed as a conse-
quence of an additive and scale invariant exponential dispersion
model based on a compound Poisson-gamma distribution. How
appropriate this dispersion model is to the description of blood
flow (in both engineering terms and physiologic terms) and how
it might relate to the microcirculation will be discussed in the
sections below, but first we will examine the implications of this
model at the level of the capillary circulation.

Implications for the Microcirculation

An exponential dispersion model thus seems reasonable to
describe the macroscopic heterogeneities in the regional depo-
sition of radioactivity as a result of organ blood flow. To
understand how this model might relate to the microcirculation
we need to first review how the deposition of microspheres
relates to blood flow, and to how blood flow is defined. The sizes
of the radiolabeled microspheres are chosen so that virtually all
injected microspheres become entrapped at restrictive sites
within the microcirculation. The probability that a restrictive site
might entrap a microsphere presumably depends upon the blood
flow through the site relative to the flow through all other
restrictive sites within the catchment volume (1). In the context
of an individual restrictive site, blood flow would be best
expressed in normal engineering units such as ml/min. It is this
flow through the restrictive site that presumably relates to the
chance that a microsphere might be carried to and entrapped
within the site.

To interpret the exponential dispersion model in the context
of the capillary entrapment of microspheres requires a number
of assumptions: (i) Within each equally sized sample of tissue,
there exists a random number (i.e., Poisson-distributed) of
restrictive sites; (if) the blood flow (ml/min), at the level of the
restrictive sites, obeys a gamma distribution; (iii) the probability
of entrapment is directly proportional to the blood flow through
the potential traps; and (iv) the blood flow between the indi-
vidual traps is uncorrelated. (Uncorrelated blood flow between
traps does not imply that the blood flow between adjacent pieces
of tissue is also uncorrelated—this will be discussed below.)
Granted these assumptions, a compound Poisson-gamma distri-
bution may be constructed, in accordance with the cumulant
generating function of Eq. 4. Scale invariance and additivity
represented additional properties that were imposed for reason
of macroscopic requirements to yield Eq. 1.

A relationship resembling Bassingthwaighte’s equation (Eq. 1)
can therefore be derived, granted certain assumptions regarding
both blood flow at the microscopic level and the macroscopic
deposition of radioactivity consequent to this blood flow. The
biophysical justification for these assumptions, and the validity of
the derived equations, will be discussed below.

Discussion

A number of assumptions were made that warrant closer exam-
ination. First, there was the use of an exponential dispersion
model to describe the deposition of labeled microspheres. Ex-
ponential dispersion models have been particularly useful in
describing overdispersed distributions, and they allow the de-
pendence of the variance upon the mean to be closely examined
(10). Because the observed range for D (1-5) specified an
overdispersed distribution and because Bassingthwaighte’s
equation (Eq. 1) implied a particular relationship between the
variance and the mean, an exponential dispersion model seemed
appropriate. Moreover, the use of an exponential dispersion
model allowed for the imposition of additivity and scale invari-
ance, two properties that were useful in characterizing the
macroscopic distribution of deposited radioactivity.

PNAS | January 30,2001 | vol.98 | no.3 | 839

APPLIED
MATHEMATICS



The assumption of additivity was reasonable, because the total
deposition of microspheres within a number of tissue samples
should represent the sum from individual samples. However, this
assumption did limit the description of blood flow to that of
engineering terms (ml/min), and it was not immediately obvious
that a model so derived would generalize to blood flow measured
in physiologic units (ml/min-g). Scale invariance was justified on
the basis of the scale invariance inherent to Bassingthwaighte’s
empirical relationship (Eq. 1), and that arising from work with
artificial networks (19).

In this model, the deposition of microspheres was considered
an indicator of macroscopic blood flow. Blood flow though large
conduit vessels is not associated with significant deposition of
microspheres, nor physiologically relevant materials, and thus
was excluded from consideration.

The physiologic definition of blood flow (ml/min-g) can be
problematic, particularly if one wishes to consider regional organ
blood flow within tissue pieces of nonuniform mass. Because of
the normalization with respect to mass, a flow measurement is
specific to the whole piece; one cannot apportion out regional
contributions of the (mass-normalized) flow from various seg-
ments of the piece. Similarly, to reconstitute the blood flow for
a collection of tissue pieces requires that the flow (ml/min-g) of
each piece be weighted by its individual mass, the weighted flows
summed, and then the sum divided by the total mass to obtain
the reconstituted flow (ml/min-g). The additive exponential
dispersion model, presented above, did not account for blood
flow measured in this manner.

Nevertheless, a closely related exponential dispersion model
can be applied to physiologic blood flow measurements. Let
the independent random variables Yy, ..., Y,, describe the
blood flow (ml/min-g) in n pieces of tissue that make up an
organ, each with corresponding masses wy, ..., w,. We can
estimate the blood flow in the reconstituted organ Y, = 1/w
2, w;Y;. With a nonadditive variable like Y, a reproductive
exponential dispersion models is appropriate. The reproduc-
tive model can also be made scale invariant, and thus can
possess a variance to mean power function. Scale invariant
reproductive models are also Tweedie models, and they have
a direct correspondence with their additive counterparts. The
reproductive form of the cumulant generating function K(s),
that corresponds to Eq. 2 is (10):

K(s) = Mk(6 +5s/)) — x(6)}

The imposition of scale invariance and the requirement that
p # 1 or 2 gives an equation analogous to Eq. 4 (10):

s o
K(s) = )\K(O){(l + 67\) - 1} . [6]

In short, regional blood flow in physiologic terms (ml/min-g) can
be represented by a scale invariant reproductive exponential
dispersion model that is characterized by a power function
relationship between the variance and the mean, var(Y) =
E(Y)? /A, resembling that seen with the additive model pre-
sented above (Eq. 5). Bassingthwaighte’s relationship can be
derived from this exponential dispersion model for blood flow
expressed in physiologic units (remembering that E(Y) =
E(Z)/\). The probability distribution that arises from this
reproductive model (Eq. 6) is also a compound Poisson-gamma
distribution, albeit parameterized differently.

The different parameterizations for the reproductive model
should be emphasized. The mean and variance of the reproduc-
tive random variable Y are, respectively, E(Y) = w and var(Y) =
V(). Despite the different parameterizations used in the
additive and reproductive models for blood flow, it is the
underlying scale invariance that yields the power function rela-
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tionship seen for the relative dispersion of blood flow. This
relationship is apparent for blood flow defined either in engi-
neering terms (ml/min) or physiologic terms (ml/min-g). Both
models are closely related and they rest upon the same biophys-
ical assumptions.

Another assumption that requires justification was that the
blood flow at the different restrictive sites should be uncorre-
lated. If significant correlations were to exist between the blood
flow of neighboring capillaries this could prevent the construc-
tion of a compound distribution. Nevertheless, light microscopic
studies of the microcirculation done by Ellis et al. (7) revealed a
highly complex and uncorrelated movement of blood cells within
adjacent vessels. In addition, Tyml (20) measured the coefficient
of variation of red cell velocity in skeletal muscle capillaries and
found this to range from 49% to 60%, reflecting a considerable
heterogeneity in the spatial distribution of the microcirculatory
blood flow. And finally, Groom et al. (21) observed a significant
temporal heterogeneity in capillary blood flow within skeletal
muscle, and they proposed that “even if arteriolar flow were
homogeneous, there would still be heterogeneity of capillary
flow, because of the structure of the capillary network.” On the
basis of these observations, the presumption that any such
correlations could be considered negligible therefore seemed
reasonable.

The assumption of uncorrelated flow between neighboring
capillary traps did not mean that the flows between adjacent
macroscopic tissue pieces would also be uncorrelated. Macro-
scopic correlations in regional blood flow have been well doc-
umented (22). Moreover, such correlations are in fact implied by
the Poisson-gamma distribution through the power variance
function.

The distinction here is that uncorrelated flow at the level of
the microcirculation does not imply a lack of correlation within
macroscopic flows. In the exponential dispersion model, the
gamma-distributed deposition of microspheres at the level of
multiple capillaries level was necessarily uncorrelated so that the
distributions could be summed to yield the Poisson-gamma
distribution. The total deposited activity within macroscopic
tissue fragments would involve the summed contributions from
multiple capillaries, and it would be these macroscopic deposits
that would exhibit near-neighbor correlations by virtue of the
imposed scale invariance. Correlations such as these have been
well studied for the one-dimensional case in the context of fractal
stochastic processes (23).

The assumption that the chance of entrapment should be
directly proportional to the blood flow through the restrictive
sites in any tissue sample seemed reasonable. This assumption
has been implicitly used and verified in macroscopic studies (2).
As for the assumption that the number of entrapment sites
should be distributed randomly within each tissue piece, accord-
ing to a Poisson distribution, this too seemed reasonable as a first
approximation. Indeed, the anatomic placement of microvessels
seems to obey a Poisson distribution (24), and presumably the
placement of restrictive sites would follow similar statistics.

We are left with the assumption that the blood flow through
the sites of entrapment should be gamma-distributed. Capil-
lary blood flow has been noted to obey a gamma distribution
(8, 9). Since the entrapment sites are likely associated with
capillaries, and the gamma distribution is additive, it seemed
reasonable that the flow through the restrictive sites should
also be gamma-distributed. Again, at this point it is important
to emphasize the distinction between the flow observed be-
tween tissue fragments at the macroscopic level and that
observed within capillaries. Bassingthwaighte has observed
macroscopic flow distributions that are fairly symmetrical (1),
and not as skewed as seen with those measured within
individual capillaries by microscopic techniques (8, 9). As
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noted above, and according to the proposed model, these
phenomena are described by two different distributions.

Some of these assumptions, made at the microcirculatory
level, may not be strictly accurate. However, in the context of our
incomplete understanding of microcirculatory hemodynamics,
these assumptions seemed reasonable. The scale invariance
inherent to Bassingthwaighte’s relationship (Eq. 1) may reflect
vascular structure; it may also reflect long-range and continuing
demands of local tissue metabolism. These two processes, more-
over, may be related. Other interpretations for the exponential
dispersion model at the level of the microcirculation, neverthe-
less, are also conceivable.

As previously mentioned, Bassingthwaighte’s relationship
(Eq. 1) has been attributed to the branching structure of the
vasculature (3), and to the demands of local tissue metabolism
(4). The stochastic model presented here provided a kinematic
description for the heterogeneities in blood flow, but it did not
specify the biophysical origins of scale invariance or additivity.
Presumably, these properties could be reflective of vascular
structure. Similarly, the reasons why microcirculatory flow might
be gamma-distributed remain unclear. A better understanding of
microcirculatory dynamics and the dynamics of blood flow in a
dichotomous vasculature would be required to pursue these
concerns.

This article presents an application of exponential dispersion
models, in particular Tweedie models (10, 13), to describe the
self-similar pattern of heterogeneous organ blood flow. The
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dispersion model provided a framework from which Bassingth-
waighte’s empirical relationship for blood flow (Eq. 1) was a
direct consequence of the scale invariance. Although the model
was itself stochastic, it nevertheless possessed a nonrandom
symmetry—scale invariance. This symmetry underlies
Bassingthwaighte’s empirical relationship for blood flow (Eq. 1),
and it relates to the correlations, which appear between neigh-
boring organ regions (22).

In conclusion, two stochastic models, based upon scale invari-
ant Poisson-gamma distributions, have been derived to describe
regional heterogeneities in organ blood flow. The additive model
was applied to blood flow described in engineering units
(ml/min); the reproductive model to blood flow in physiologic
units (ml/min-g). Both models implied power-law scaling of the
relative dispersion of their respective blood flows attributable to
scale invariance. These models were explained on the basis of
gamma-distributed blood flow through random restrictive sites
within the microcirculation; the scale invariance was attributed
to the structure of the vascular tree. The theory of exponential
dispersion models, used to derive these models, provides a
practical means to examine the effect of scale invariance upon
stochastic models, and thus potentially may provide descriptions
for other random processes with fractal symmetries.
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