Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Jun 1;25(11):2114–2120. doi: 10.1093/nar/25.11.2114

Specific binding of sso II DNA methyltransferase to its promoter region provides the regulation of sso II restriction-modification gene expression.

A Karyagina 1, I Shilov 1, V Tashlitskii 1, M Khodoun 1, S Vasil'ev 1, P C Lau 1, I Nikolskaya 1
PMCID: PMC146720  PMID: 9153310

Abstract

The regulation of the Sso II restriction-modification system from Shigella sonnei was studied in vivo and in vitro . In lacZ fusion experiments, Sso II methyltransferase (M. Sso II) was found to repress its own synthesis but stimulate expression of the cognate restriction endonuclease (ENase). The N-terminal 72 amino acids of M. Sso II, predicted to form a helix-turn-helix (HTH) motif, was found to be responsible for the specific DNA-binding and regulatory function of M. Sso II. Similar HTH motifs are predicted in the N-terminus of a number of 5-methylcytosine methyltransferases, particularly M. Eco RII, M.dcm and M. Msp I, of which the ability to regulate autogenously has been proposed. In vitro, the binding of M. Sso II to its target DNA was investigated using a mobility shift assay. M. Sso II forms a specific and stable complex with a 140 bp DNA fragment containing the promoter region of Sso II R-M system. The dissociation constant (Kd) was determined to be 1.5x10(-8) M. DNaseI footprinting experiments demonstrated that M. Sso II protects a 48-52 bp region immediately upstream of the M. Sso II coding sequence which includes the predicted -10 promoter sequence of M. Sso II and the -10 and -35 sequences of R. Sso II.

Full Text

The Full Text of this article is available as a PDF (209.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bannister D., Glover S. W. Restriction and modification of bacteriophages by R+ strains of Escherichia coli K12. Biochem Biophys Res Commun. 1968 Mar 27;30(6):735–738. doi: 10.1016/0006-291x(68)90575-5. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Chang A. C., Cohen S. N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol. 1978 Jun;134(3):1141–1156. doi: 10.1128/jb.134.3.1141-1156.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dodd I. B., Egan J. B. Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. Nucleic Acids Res. 1990 Sep 11;18(17):5019–5026. doi: 10.1093/nar/18.17.5019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Drutsa V. L., Kaberdin V. R., Koroleva O. N., Shilov I. A. Effektivnyi metod napravlennogo vvedeniia mutatsii v plazmidy i klonirovaniia odnotiazhevykh fragmentov DNA. Bioorg Khim. 1991 Nov;17(11):1487–1493. [PubMed] [Google Scholar]
  6. Fitzgerlad G. F., Daly C., Brown L. R., Gingeras T. R. ScrFI: a new sequence-specific endonuclease from Streptococcus cremoris. Nucleic Acids Res. 1982 Dec 20;10(24):8171–8179. doi: 10.1093/nar/10.24.8171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hanck T., Gerwin N., Fritz H. J. Nucleotide sequence of the dcm locus of Escherichia coli K12. Nucleic Acids Res. 1989 Jul 25;17(14):5844–5844. doi: 10.1093/nar/17.14.5844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Itohara S., Sekikawa K. Molecular cloning of infectious proviral genomes of bovine leukemia virus. Virology. 1987 Jul;159(1):158–160. doi: 10.1016/0042-6822(87)90359-x. [DOI] [PubMed] [Google Scholar]
  9. Ives C. L., Nathan P. D., Brooks J. E. Regulation of the BamHI restriction-modification system by a small intergenic open reading frame, bamHIC, in both Escherichia coli and Bacillus subtilis. J Bacteriol. 1992 Nov;174(22):7194–7201. doi: 10.1128/jb.174.22.7194-7201.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Karreman C., de Waard A. Cloning and complete nucleotide sequences of the type II restriction-modification genes of Salmonella infantis. J Bacteriol. 1988 Jun;170(6):2527–2532. doi: 10.1128/jb.170.6.2527-2532.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Karyagina A. S., Lunin V. G., Degtyarenko K. N., Uvarov V. Y., Nikolskaya I. I. Analysis of the nucleotide and derived amino acid sequences of the SsoII restriction endonuclease and methyltransferase. Gene. 1993 Feb 14;124(1):13–19. doi: 10.1016/0378-1119(93)90756-s. [DOI] [PubMed] [Google Scholar]
  12. Karyagina A. S., Lunin V. G., Levtchenko IYa, Labbé D., Brousseau R., Lau P. C., Nikolskaya I. I. The SsoII and NlaX DNA methyltransferases: overproduction and functional analysis. Gene. 1995 May 19;157(1-2):93–96. doi: 10.1016/0378-1119(94)00667-h. [DOI] [PubMed] [Google Scholar]
  13. Karyagina A. S., Lunin V. G., Nikolskaya I. I. Characterization of the genetic determinants of SsoII-restriction endonuclease and modification methyltransferase. Gene. 1990 Mar 1;87(1):113–118. doi: 10.1016/0378-1119(90)90501-h. [DOI] [PubMed] [Google Scholar]
  14. Lin P. M., Lee C. H., Roberts R. J. Cloning and characterization of the genes encoding the MspI restriction modification system. Nucleic Acids Res. 1989 Apr 25;17(8):3001–3011. doi: 10.1093/nar/17.8.3001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pósfai J., Bhagwat A. S., Pósfai G., Roberts R. J. Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res. 1989 Apr 11;17(7):2421–2435. doi: 10.1093/nar/17.7.2421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Som S., Bhagwat A. S., Friedman S. Nucleotide sequence and expression of the gene encoding the EcoRII modification enzyme. Nucleic Acids Res. 1987 Jan 12;15(1):313–332. doi: 10.1093/nar/15.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Som S., Friedman S. Autogenous regulation of the EcoRII methylase gene at the transcriptional level: effect of 5-azacytidine. EMBO J. 1993 Nov;12(11):4297–4303. doi: 10.1002/j.1460-2075.1993.tb06114.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Som S., Friedman S. Regulation of EcoRII methyltransferase: effect of mutations on gene expression and in vitro binding to the promoter region. Nucleic Acids Res. 1994 Dec 11;22(24):5347–5353. doi: 10.1093/nar/22.24.5347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stankevicius K., Povilionis P., Lubys A., Menkevicius S., Janulaitis A. Cloning and characterization of the unusual restriction-modification system comprising two restriction endonucleases and one methyltransferase. Gene. 1995 May 19;157(1-2):49–53. doi: 10.1016/0378-1119(94)00796-u. [DOI] [PubMed] [Google Scholar]
  20. Szilák L., Venetianer P., Kiss A. Cloning and nucleotide sequence of the genes coding for the Sau96I restriction and modification enzymes. Nucleic Acids Res. 1990 Aug 25;18(16):4659–4664. doi: 10.1093/nar/18.16.4659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tao T., Blumenthal R. M. Sequence and characterization of pvuIIR, the PvuII endonuclease gene, and of pvuIIC, its regulatory gene. J Bacteriol. 1992 May;174(10):3395–3398. doi: 10.1128/jb.174.10.3395-3398.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Taylor J. D., Badcoe I. G., Clarke A. R., Halford S. E. EcoRV restriction endonuclease binds all DNA sequences with equal affinity. Biochemistry. 1991 Sep 10;30(36):8743–8753. doi: 10.1021/bi00100a005. [DOI] [PubMed] [Google Scholar]
  23. Yoshimori R., Roulland-Dussoix D., Boyer H. W. R factor-controlled restriction and modification of deoxyribonucleic acid: restriction mutants. J Bacteriol. 1972 Dec;112(3):1275–1279. doi: 10.1128/jb.112.3.1275-1279.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zabeau M., Stanley K. K. Enhanced expression of cro-beta-galactosidase fusion proteins under the control of the PR promoter of bacteriophage lambda. EMBO J. 1982;1(10):1217–1224. doi: 10.1002/j.1460-2075.1982.tb00016.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES