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Abstract
Identifying genetic variations predictive of important phenotypes, such as disease susceptibility, drug
efficacy, and adverse events, remains a challenging task. There are individual polymorphisms that
can be tested one at a time, but there is the more difficult problem of the identification of combinations
of polymorphisms or even more complex interactions of genes with environmental factors. Diseases,
drug responses or side effects can result from different mechanisms. Identification of subgroups of
people where there is a common mechanism is a problem for diagnosis and prescribing of treatment.
Recursive partitioning (RP) is a simple statistical tool for segmenting a population into non-
overlapping groups where the response of interest, disease susceptibility, drug efficacy and adverse
events are more homogeneous within the segments. We suggest that the use of RP is not only more
technically feasible than other search methods but it is less susceptible to multiple-testing problems.
The numbers of combinations of genegene and gene environment interactions is potentially
astronomical and RP greatly reduces the effective search and inference space. Moreover, the certain
reliance of RP on the presence of marginal effects is justifiable as was found by using analytical and
numerical arguments. In the context of haplotype analysis, results suggest that the analysis of
individual SNPs is likely to be successful even when susceptibilities are determined by haplotypes.
Retrospective clinical studies where cases and controls are collected will be a common design. This
report provides methods that can be used to adjust the RP analysis to reflect the population incidence
of the response of interest. Confidence limits on the incidence of the response in the segmented
subgroups are also discussed. RP is a straightforward way to create realistic subgroups, and prediction
intervals for the within-subgroup disease incidence are easily obtained.

Introduction
Despite the remarkable success in mapping single genes affecting important human traits, such
as disease predisposition, relatively little progress has been made in finding multiple interacting
genes. Many traits, including disease risk, appear highly heritable; however, often only a small
proportion of the phenotypic variation can be attributed to a single polymorphism. The implied
involvement of many genes is through epistatic or heterogeneous mechanisms. Unfortunately,
such combinations of genetic polymorphisms are very difficult to pin down. When large
collections of polymorphisms (e.g., SNPs) are screened, multiple testing becomes an important
issue. Association genome scans may require over 100,000 SNPs (Goldstein et al., 2003), so
the multiple testing becomes a formidable problem even when testing single markers for
association with the trait. The goal of identifying genuine relationships with the trait using
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combinations of markers is even more difficult and many seemingly strong associations are
likely to turn out to be false positives. This is a consequence of increasing the prior probability
of the hypothesis of no association, Pr(H0), as will be discussed later.

Yet another additional challenge is the characterization of the nature of the relationship, which
can be complicated and nonlinear. Recursive partitioning (RP) is a simple data mining tool that
can, nevertheless, adequately handle these problems (Young et al., this issue). RP has been
previously applied to genetic problems as a tool for dealing with the detection of interaction
and identification of homogeneous subgroups (Rao 1998; Zhang et al., 2000; Czika et al.,
2001; Province et al., 2001; Shannon et al., 2001; Costello et al., 2003). However, RP can be
criticized for over-reliance on the presence of “marginal effects”.

When RP makes the first sweep through predictor variables (e.g., a set of genetic markers) it
tries to identify those variables that result in a significant association with the trait. The data
are then divided into subgroups corresponding to selected predictor categories, and the
association test is repeated in the subgroups using the remaining predictors. At this stage the
interaction can be detected. Suppose the first RP split divides the sample into two subgroups
with individuals carrying the genotype AA vs. Aa + aa; the test among individuals in the AA
group can detect interaction of AA with another marker. This interaction can only be detected
if the first split is “significant” (i.e. there is substantial “marginal” effect at the marker A). One
purpose of this article is to illustrate that it is reasonable to assume that most interactions will
induce such marginal effects at one or more of the markers involved in the interacting set.

From the clinical perspective, a most useful characteristic of a predictive set of genetic
polymorphisms is its ability to provide estimates of the probability of an event (condition) Y,
such as an adverse event or disease. For a binary trait (event present/absent, denoted by Y, N),
we also describe estimates of probabilities of developing the condition Y given that a random
individual is classified into a particular node of the RP tree according to its multilocus genetic
profile. Along with these estimates, interval estimates will also be provided. These are available
by using a hold-out sample (i.e., part of the sample set aside for the validation purposes).

In this paper, frequencies of haplotypes, which are defined by joint frequencies of SNPs on the
same gamete, are used to illustrate the approach and the analysis. More generally, RP is
concerned with describing interactions among predictors. In practice, genetic data are likely
to be in the form of diploid genotypes and haplotypes, which may not be directly observed.

Reliance on marginal effects and the recursive partitioning justification
Searching for sets of predictive markers results in many putative models being taken into
consideration. In the extreme case, all possible combinations are evaluated and a criterion, such
as a measure of statistical association, is scored; the combination with the best score is taken.
This combination may be examined in an independent follow-up study to verify that it is not
a “false positive”. If there are k markers to start with, there are k(k − 1)/2 pairs, and, at most,
L = 2k − 1 combinations, including individual markers, all possible marker pairs, triples, and
so on. A considerable problem with this approach is that the probability of a false positive
increases with the number of combinations. The probability that a p-value of p or smaller
represents a false positive is related to the false discovery rate, FDR (Morton 1998, Storey,
2002). At a given fixed value of p,

FDR =
Pr (H0)p

Pr (H0)p + (1 − Pr (H0))F (p)
(1)
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where F(p) is the p-value cumulative distribution function under the alternative hypothesis,
which reflects the power. For example, with the χ2 test, F (p) = 1 − Ψd,λ(Ψd,0

−1 (1 − p)) where
Ψd,λ and Ψd,0 are the cumulative distribution functions of central and non-central χ2,
respectively, and d denotes the degrees of freedom.

Supposing that statistical tests and their p-values are used to rank the hypotheses and that there
is a single “true” association, HA, among L−1 null hypotheses, H0, where L is the number of
combinations, then the probability that a randomly picked hypothesis represents a false
discovery is

Pr (H0) ≈ 1 − 1/ L .

If we let ℒ(FDR) = FDR/(1 − FDR), then this is an increasing function of FDR. Using Pr
(H0) = 1 − 1/L,

ℒ(FDR) = (L − 1) × p
F (p) (2)

One interpretation of this formula is that the power gained by considering combinations must
increase more sharply than the number of combinations, L, otherwise FDR is going to increase.
If L is an exponential function of the number of markers, k, the condition that FDR should not
increase is difficult to achieve. Practically, this means that when L is large, the chances that a
claimed association turns out to be a false positive are high.

For example, assume the power to detect a single true combination at α = 0.05 is 80%. Our
analysis depends on the definition of a “true combination” and for illustrative purposes we
assume that there is only a single subset. One can use a different definition, whereby every
subset that partially overlaps with the combination of interest does represent a true discovery,
which will reduce L in half. If we start with k = 10 markers and examine all L = 2k−1 = 1023
combinations, then among p-values ≤ 0.05, 98% are going to be false positives, with the
assumption of a single true combination.

It is worthy to note that simple multiple testing correction alone does not easily get around this
problem: suppose the testing is at the Bonferroni-corrected α = 0.05/1023 and that the
proportion of false positives among p-values as small as 0.05/1023 ≈ 4.9 × 10−5 is examined.
The proportion of false positives still remains high; about 32%. The situation worsens with a
larger k. For example, when k = 15 the proportion of false positives among significant p-values
after applying the Bonferroni correction (1.5 × 10−6 or smaller) is 69%.

This problem is very hard to circumvent, because L quickly increases with the number of
markers, but the sample size does not increase correspondingly (see Witte et al., 2000, for
requirements on that). On the other hand, RP has the implicit assumption that at least one of
the individual markers in the “true” associated set, as well as the smaller subsets (combinations)
of markers in this set, should show some degree of association. As a consequence, the number
of combinations remains linear as a function of the number of markers, keeping FDR relatively
low (e.g., a tree with three splits will make approximately 3 × k comparisons).

How reasonable is the assumption that at least one of the individual effects will be present?
One might think it is easy to come up with examples of marker interactions that preclude
“marginal” effects. Consider the simplest possible scenario: a binary case (e.g., the presence/
absence of a disease) and the control phenotype (Y, N) and two diallelic loci (two binary
predictors), x1 = {0, 1} and x2 = {0, 1}. If one considers a situation where allele ”1” has to be
present at both markers in order for the disease risk to be high, then this is a clear case of
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interaction; however, the “case” category is likely to be enriched with the alleles of type ”1”
at both markers compared to controls. A more subtle and seemingly “no-marginal effects”
scheme is the following: ”1,1” or ”0,0” combinations are both associated with high risk,
whereas ”0,1” and ”1,0” have low risk. Similar situations have been considered as justification
for methods that go after “pure interactions”. Jannot et al. 2003 considered such interactions
for the case of genotypic interactions where the penetrance array is 3 × 3 for two loci. They
evaluated an approach wherein all 2k−1 marker combinations were analyzed and p-values
associated with the best combination were obtained by a permutation algorithm. Lin et al.
2004 took a similar approach using transmission disequilibrium tests. They state that because
of the usage of the permutation approach to multiple tests “the gains from considering
haplotypes in our exhaustive allelic method are not overshadowed by the penalty paid for doing
far more tests”. These approaches assume that the accurate type-I error protection through
permutations is balanced with the appropriate increase in power provided by considering the
proper subset. Ritchie et al. 2001 proposed an algorithm that starts with a multi-dimensional
table that allows for all possible interactions for a given subset of markers. The multi-
dimensional table is represented by one of 2k−1 combinations of k markers. The high-risk cells
are then pooled into one group and the low-risk cells into another group, and a cross-validation
is used to assess robustness of the reduced model. A combinatorial partitioning method (CPM)
proposed by Nelson et al. 2001 evaluates all partitions of a cells (multilocus genotypes) into
b groups. The number of partitions is given by:

1/b ! ∑
i=0

b−1
( − 1)i(bi )(b − i)a,

which is substantially larger than the number of marker subsets. For example, with three
diallelic markers there are 23−1 = 7 marker subsets that could be tested separately. However,
assuming we start with the binary classification at each locus and a = 23 multilocus
combinations, there are 127 ways to partition the genotypes into two groups, and 966 ways to
partition them into three groups. Another combinatorial algorithm by Tahri-Daizadeh et al.
2003 considers increasingly complex models and evaluates proposed models on the basis of
information criterion (Akaike, 1974). For quantitative traits, Culverhouse et al. 2004 proposed
a modification of CPM that reduces this number of putative models by successfully merging
cells with similar values of response. Such short-cut algorithms may consider a single model
after the collapsing is finished. Significance levels are adjusted accordingly by a permutation
algorithm. Nevertheless, the null distribution obtained via permutations essentially accounts
for the number of looks through the data. This can be thought of as the adjustment by the
”effective” number of tests, Le ≤ L.

While methods optimized for discovery of pure interactions are important, even the most
contrived penetrance configurations allow for marginal effects – the feature exploited by the
RP. The advantage of the RP method is in drastically reducing the number of potential models,
thus lowering Pr(H0) in (1) and, therefore, reducing the probability of a false discovery. Cordell
and Clayton (2002) proposed a stepwise logistic regression procedure for evaluating the effects
of the different polymorphisms within a gene. Curran (2003) compared such approach using
the combination of forward and backward selection with the performance of RP. The research
indicated a remarkable similarity between the two methods in terms of the predictive power
and the effects and interactions entering the final model.

Returning to the “no-marginal effects” scheme (”1,1”/”0,0” vs. ”0,1”/”1,0”) it may seem that
all alleles are going to be present at equal frequencies in both phenotype groups. However, this
is generally not the case and it is possible to discover such haplotype-trait associations by
looking at just a single marker. The single marker effect may be smaller than a multilocus
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effect; however the reduction in degrees of freedom or the number of tests may balance a
reduction in the effect magnitude.

The four possible haplotypes formed by the two SNPs are X = {00, 01, 10, 11}, with frequencies
P = {p00, …, p11}. Four haplotype penetrance values are:

Γ = {γ00 = Pr (Y | X = 00), γ01 = Pr (Y | X = 01),

γ10 = Pr (Y | X = 10), γ11 = Pr (Y | X = 11)}

With random pairing of haplotypes and multiplicativity, the population prevalence of Y is:

γ = Pr (Y ) = ∑
i, j

pijγij (3)

In terms of the two SNPs that constitute a haplotype, the values γij define two-locus interactions
with respect to the binary phenotype. For example, a high value of Pr(Y | X = 11) relative to
γ indicates that both x1 = 1 and x2 = 1 are required for this probability to be above the population
average. Suppose we have allele information at one of the markers, x1. Then the association
can be detected if the penetrance of one of the alleles, e.g. γ1·. = Pr(Y | x1 = 1) is different from
γ. This marginal allele penetrance value is

γ1⋅ =
Pr (x1 = 1 | Y )γ

Pr (x1 = 1 | Y ) γ + Pr (x1 = 1 | N )(1 − γ) (4)

using the allele probabilities among the case and the control groups:

Pr (x1 = 1 | Y ) = Pr (X = 11 | Y ) + Pr (X = 10 | Y )

Pr (x1 = 1 | N ) = Pr (X = 11 | N ) + Pr (X = 10 | N )

In turn, these are calculated from the frequencies of haplotypes and the penetrance values as

Pr (X = 11 | Y ) = p11γ11/γ
Pr (X = 10 | Y ) = p10γ10/γ
Pr (X = 11 | N ) = p11(1 − γ11) / (1 − γ)

Pr (X = 10 | N ) = p10(1 − γ10) / (1 − γ)

Equation (4) can also be written as

γ1⋅ =
γ11p11 + γ10p10

p11 + p10
(5)

When γ1· ≠ γ, the marginal effect of a SNP can be detected. Thus, in general, this effect depends
not only on the haplotype penetrances but on the population frequencies of the haplotypes as
well. Looking at the “no marginal effect” difference,

γ1⋅ − γ = 0 (6)

it can be seen that for a plausible “pure interaction” penetrance configuration,
(γ00 = γ11) ≠ (γ01 = γ10), the additional requirement on the population frequencies of
haplotypes is such that the two pairs of frequencies should match:
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{p00 = p11, p01 = p10} (7)

As an example let the haplotype penetrance array {γ00, γ01, γ10, γ11} be Γ = {0.9, 0.2, 0.2, 0.9},
which may seem to imply that an SNP effect is unlikely, because of the ”orthogonal” structure
of Γ. As often happens in reality, one of the four haplotypes can be of relatively high population
frequency. In such a case, the marginal (SNP) effects can be quite pronounced, as can be seen
from two following examples.

Example 1. Consider a situation when one of the low penetrance haplotype has a high
frequency, P = {0.05, 0.05, 0.85, 0.05}. In this case, γ = 0.27 and γ1· = 0.55. The frequencies
among the cases and the controls are Pr(x1 = 1 | Y) = 0.204 and Pr(x1 = 1 | N) = 0.062
corresponding to the loge of relative risk of 1.191.

Example 2. Now suppose that one of the high penetrance haplotypes has a high frequency,
P = {0.05, 0.05, 0.05, 0.85}. The values become γ = 0.83 and γ1· = 0.55. The frequencies among
the cases and the controls are Pr(x1 = 1 | Y) = 0.066 and Pr(x1 = 1 | N ) = 0.265 corresponding
to the log relative risk of −1.39. Such value provides 99% power (at α = 0.05) with samples of
160 cases and 160 controls.

Allelic penetrance equation (5) can be easily generalized to multiple genetic loci. Let ”j” index
all possible haplotypes that contain allele ”1” at the locus of interest. Then the marginal effect
associated with allele ”1” is

γ1⋅ =
∑ j γ j p j
∑ j p j

(8)

where the denominator gives the frequency of ”1”. The condition of no marginal effect
associated with allele ”1” is again γ1· = γ.

Example 3. As a three-locus illustration using RP, consider three diallelic loci, x1, x2, x3, with
eight possible haplotype combinations, {000, 001, ..., 111}, with penetrances and population
frequencies sampled from the Dirichlet(1/4, ..., 1/4) distribution, as given in Table 1.

In this example there are two high risk haplotypes (000 and 111) carrying different alleles. By
looking at the penetrance values alone, a technique that relies on the marginal effects associated
with one of the three SNPs may appear unlikely to be successful. For simplicity, we considered
a haploid population and sampled 250 case and 250 control haplotypes. A sample RP tree using
HelixTree® is shown in Figure 1. HelixTree is a software system that uses recursive partitioning
algorithms customized to the field of genetics (www.goldenhelix.com).

The first split is on x3 with a p-value 4.6 ×10−4, signifying a substantial effect associated with
this SNP. Allele ”0” at this SNP appears predictive of the cases, with the sample prevalence
increasing from 0.5 in the root node to 0.86 at the first split. Following splits yield even smaller
p-values. It appears that as the interaction is successfully uncovered, the p-values can still get
progressively smaller even though the sample size is decreased. The right branch involving all
three SNPs is significant with a p-value of 1.1 × 10−17, indicating that there is substantial
interaction among SNPs, i.e. “haplotype effect”. Therefore, even in this odd situation, RP found
one haplotype perfectly (x1 = x2 = x3 = 1). It also found two of the three alleles defining the
second high penetrance haplotype (x1 = x2 = x3 = 0).

To examine the “no marginal effect” condition in more detail, the haplotype classes need to
be reordered so that the first i = 1, ..., k of the total of m haplotypes contain the SNP of interest.
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For example, suppose we are looking at the effect of allele ”0” at the first SNP in Table 1. Then
i = 1, ..., 3. The marginal penetrance of allele ”0” is

γ0⋅ =
∑i=1
k γi pi

∑i=1
k pi

(9)

The marginal penetrance of allele ”1” (or all remaining alleles) is

γ1⋅ =
∑i=k+1
m γipi

∑i=k+1
m pi

(10)

and the population prevalence is

γ = ∑
i=1

k
γi pi + ∑

i=k+1

m
γipi (11)

The condition of ”no marginal effect” can be expressed as

∑
i=1

k
γi pi = ∑

i=k+1

m
γipi

∑i=1
k pi

1 −∑i=1
k pi

(12)

Consider some specific situations.

1. Obviously, the equality holds when all susceptibilities γi are the same.

2. Next, assume very high haplotype diversity. In the extreme, pi = 1/m for all i. In this
case (12) simplifies to

∑
i=1

k
γi =

k
m − k ∑

i=k+1

m
γi

If markers are diallelic, k = m/2, then (12) simplifies to

∑
i=1

k
γi = ∑

i=k+1

m
γi

The ”pure interaction” penetrance considered above with the condition given in (7)
corresponds to this case.

3. To examine the “orthogonal penetrance” case across various frequencies of
haplotypes, we simulated the penetrance configuration similar to that given in Table
1 with haplotype population frequencies following the Dirichlet(1) distribution. In
each of the 50,000 simulations we uniformly sampled penetrances of high risk
haplotypes (000, 111) between 0.2 and 0.9. Penetrances of low risk haplotypes were
set equal to each other and sampled from the interval (0, 0.1) at each simulation. Figure
2 shows the simulation results. Haplotype and SNP risk distribution refer to the risk
of high susceptibility haplotype or SNP relative to the population prevalence that is
specific to a particular simulation run. We denote this quantity by RRP: “risk of a
genetic variant relative to the population prevalence”. The overall distribution of the
population prevalence, as well as the prevalence among the carriers of a susceptibility
SNP, is given in the second row. The 95% quantile of the population prevalence is
0.326. However, the last graph (SNP penetrance) is shifted to the right relative to the

Zaykin and Young Page 7

Pharmacogenomics. Author manuscript; available in PMC 2006 May 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



prevalence distribution, and 25% of its distribution is above the 95% quantile for the
population prevalence, indicating the presence of effects associated with SNPs.

4. Many penetrance configurations, e.g. the case of a single highly penetrant haplotype,
will induce marginal effects associated with SNPs. It is noteworthy to mention that
even if the equality (12) holds for a particular SNP, the indices i = 1, ...k, i = k +
1, ...m would need to be rearranged each time a different SNP is considered, which is
likely to result in the marginal effect at one of the SNPs. A situation we examined
numerically is when there is one high frequency haplotype with the frequency p′ and
the penetrance γ′, while other haplotypes are relatively rare. When all haplotypes
except p′ are of the same frequency, the condition (12) becomes

p ′ = a

a + b + γ ′(1 − m)
− b(m − 2)

m a + b + γ ′(1 − m)

where a = ∑i=2
k γiand b = ∑i=k+1

m γi. The following results are based on 150,000 simulations.

• The high susceptibility haplotype has the lowest frequency (Figure 3). Mean SNP
relative risk (RRP, as defined above) was 1.903. Mean haplotype RRP was 5.843.
The prevalence 95% quantile was 0.089. The proportion of SNP penetrance
distribution above that value was 0.627.

• The high susceptibility haplotype has an intermediate (random) but never the highest
frequency (Figure 4). Mean SNP relative risk was 2.076. Mean haplotype RRP was
5.269. The prevalence 95% quantile was 0.097. The proportion of SNP penetrance
distribution above that value was 0.695.

• The high susceptibility haplotype has the highest frequency (Figure 5). Mean SNP
relative risk was 1.243. Mean haplotype RRP was 1.516. The prevalence 95% quantile
was 0.348. the proportion of SNP penetrance distribution above that value was 0.170.

Examples and simulation results presented in this section suggest that even in situations where
the penetrance configuration is in favor of no marginal SNP effect, there needs to be a very
specific set of population frequencies of haplotypes in order for the marginal effect to be absent.
We considered highly interacting models so that the effect of a high-penetrance joint set of
predictors (e.g., “haplotype”) is expected to be larger than that of a SNP. Nevertheless, one
would need to balance the potential increase in the effect size with the number of looks through
potential models. In this light, an analyst using the RP algorithm makes a very reasonable “bet”
that marginal effects are going to be present among the markers that form the best predictive
combination. The multiple testing implication of this sequence of order k searches is the
reduction in the false discovery rate.

An interesting observation from Figures (3–5) is that the difference in magnitude between the
haplotypic and SNP effects decreases as the frequency of the high-penetrance haplotype
increases. It follows that “common” susceptibility haplotypes can be mapped by looking at
individual SNP associations. The relative risk discrepancy is higher for rare susceptibility
haplotypes. This case deserves further consideration. Low frequency of high-risk haplotypes
implies problems with frequency estimation in the case of an unobserved haplotype phase, as
well as a lack of statistical power for analysis using haplotypes as predictors. In this case, the
relatively higher frequency of SNPs may still provide better power despite the smaller effect
size.

Predictive values and interval estimation
Samples from clinical trials are likely to be cast in case-control form. To optimize power,
observations may be collected in pairs – one case and one control – so the proportion of cases
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in the sample may be considerably different from the population prevalence, φ0 = Pr(Y). It is
desirable and possible to estimate genetic susceptibility (penetrance) associated with a genetic
marker M for the population. Suppose one of the genotypes (AA) is considered. Then φ1 = Pr
(Y | AA) is obtained using the relation

φ1 =
φ0p

φ0p + (1 − φ0)q
(13)

where p = Pr(AA | Y), and q = Pr(AA | N). An estimate φ̂1 is obtained by plugging in estimates
of p, q, using sample frequencies of AA in cases and controls, p̂, q̂. If the genotype AA is
predictive of Y, then φ̂1 is the positive predictive value (PPV) of AA.

Quite usefully, the very first split of a RP tree allows a direct calculation of φ̂1. Figure 6 shows
a two-level tree where the first split is made based on the presence of a predictive marker M.

We can classify Figure 6 observations at the first split as follows:

AA AĀ: (Aa + aa)

Cases (Y) n1u1 m1v1
Controls (N) n1(1 − u1) m1(1 − v1)

(For multi-way RP splits, the counts in the second ”not-AA”(AĀ) column are obtained by
adding up the counts from all nodes except ”AA”). The frequency estimates in cases and
controls are

p̂1 =
n1u1

n1u1 +m1υ1

q̂1 =
n1(1 − u1)

n1(1 − u1) + m1(1 − υ1)

Now we can estimate susceptibilities at the first two ”AA” and ”Aa + aa” nodes as

φ̂1 =
p̂1φ0

p̂1φ0 + q̂1(1 − φ0)
(14)

φ̂2 = 1 −
(1 − q̂1)(1 − φ0)

(1 − q̂1)(1 − φ0) + (1 − p̂1)φ0
(15)

Note that φ̂2 (PPV at the right node) is one minus the quantity referred to as the “negative
predictive value”, NPV, (Pepe, 2003) at the left (”AA”) node.

Susceptibility estimation can proceed to subsequent RP splits using the same approach.
Consider φ̂3, which is the probability that an individual with the genotype ”Aa or aa” and
”BB” will develop the condition Y,

φ3 = Pr (Y | (Aa or aa) & BB)

The estimate is
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φ̂3 =
p̂2φ̂2

p̂2φ̂2 + q̂2(1 − φ̂2)
(16)

where

p̂2 =
n3u3

n3u3 + n4u4

q̂2 =
n3(1 − u3)

n3(1 − u3) + n4(1 − u4)

Note that equation (16) is similar to (14), except that it is based on the estimates conditional
on the previous (”AA” vs. ”Aa + aa”) split. For example, φ̂2 in (16) is the estimated prevalence
among individuals carrying ”Aa + aa” genotypes, whereas φ̂0 in (14) is the unconditional
population prevalence. Thus, node-specific genetic susceptibility φ̂i can be calculated
recursively by using counts and proportions of cases at the node that give ( p̂i, q̂i) estimates,
as well as the susceptibility at the previous split,φ̂i−1.

A more direct estimate of φ̂i is obtained by recursively substituting the definition of φ̂1 into
φ̂2, etc. up to φ̂i. After simplification, this leads to the following general formula:

φ̂i = =
φ0∏ j=1

i−1 p̂ j

φ0∏ j=1
i−1 p̂ j + (1 − φ0)∏ j=1

i−1 q̂ j

(17)

with products giving joint multilocus (defined by the RP branch above the node) frequencies
in cases and controls. This expression assumes that the population prevalence, φ0, is known or
well estimated from the external data. When interval statements are made about φ̂i, the
uncertainty in φ0 may become an issue. For clarity, we will assume here that φ0 is known,
however it is possible to incorporate uncertainty in φ0 into the interval estimate of susceptibility
(Zaykin et al., 2004).

The right hand side of (17) simplifies on the logit scale:

ln ( φ̂i
1 − φ̂i

) = ln ( φ0
1 − φ0

∏ j=1
i−1 p̂ j

∏ j=1
i−1 q̂ j

)
= ln ( φ0

1 − φ0
) + ln P̂i − ln Q̂i

(18)

where P̂ i, Q̂i are estimated frequency of the multilocus genetic profile defining the ith node
in cases and controls respectively. Referring to Figure 1, node ”N12”, containing 5 observations
with the proportion of cases 0.4, the frequency of the profile (x3 = 0, x1 = 1) in the cases is
P̂ i = 5 × 0.4 / 250 = 0.008 and the frequency of that profile in the controls is
Q̂i = (5 − 5 × 0.4) / 250 = 0.012.

Define η̂i = ln φ̂i / (1 − φ̂i) . Assuming φ0 is constant, the variance of the logit is
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V (η̂i) ≈
V (P̂i)

Pi
2 +

V (Q̂i)

Qi
2 (19)

using first-order Taylor series approximation. Assuming binomial sampling,

V̂ (P̂ i) =
P̂i(1 − P̂i)

ncases

V̂ (Q̂i) =
Q̂i(1 − Q̂i)

ncontrols

(20)

Then the estimated variance in terms of the node counts is

V̂ (η̂i) ≈
1

niui
− 1

ncases
+ 1
ni(1 − ui)

− 1
ncontrols

(21)

The binomial assumption in (20) implies random sampling from the case and the control
population as well as that the tree is not built in “exploratory” mode. Typically, a tree is built
using either the most significant predictor for a split or is “guided” by the scientist. Both
situations can result in biased phenotypic proportions in the nodes. In this exploratory mode,
the RP splits are usually chosen so that the association test statistic value is one of the largest
among potential split variables (genetic markers). The distribution of niui will follow the
distribution of one of the first order statistics from the binomial distribution. Thus, the variance
calculated by (21) may be underestimated. If there is a hold-out sample, it can be used to
validate a particular RP tree built in the exploratory mode and will provide unbiased estimates.
Using such a hold-out sample, it is possible to construct confidence intervals for φ̂i estimates.
The asymptotic normal-based confidence interval for the logit is calculated as:

η̂i ± zα/2 V̂ (η̂i) (22)

Then the interval endpoints (l, u) are inverted as e u

1 + e u
 and e l

1 + e l
, respectively to produce an

approximate (1 − α)% interval estimate of φi.

Discussion
Methods for the detection of an association between traits and interacting genetic
polymorphisms are being rapidly developed. Many approaches are considering important
situations where haplotypes of consecutive markers can be defined and tested for association
with the trait. This can incorporate different sampling designs, as well as the haplotype phase
uncertainty (Schaid et al. 2002; Zaykin et al. 2002; Stram et. al. 2003; Epstein and Satten
2003; Lin 2004). These methods are most successful when a relatively small set of tightly
linked markers can be selected a priori, such as a set of physically ordered markers within a
gene that could, for example, tag a common transcript. It is a much more complex problem to
identify associations caused by markers that are located in different genes or genomic regions.
The problem is not only of searching through an inconceivably large number of marker
combinations; even if an effective algorithm is designed that can identify the most predictive
combination, the chances of it representing a false positive are unacceptably high. This issue
is not solved by applying stringent significance levels because of the reduced power. When
power is low, true positives are not guaranteed to rank among the most significant results and
can appear among the bulk of the results after sorting by the significance or the association
statistic value. In this paper we do not distinguish between the issues of identification of
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etiological polymorphisms and the detection of markers associated with causative variants
through the population linkage disequilibrium. Nielsen and Weir (2001) expressed marker
penetrance values via the actual penetrances at the susceptibility locus, allele frequencies, and
link- age disequilibrium. Unless there is perfect correlation between the marker and the
susceptibility locus, the induced effects are expected to be lower at the marker, reducing
statistical power.

Although RP does not provide a perfect solution, its appealing feature is the remarkably reduced
number of putative models. Given that the distribution of haplotype frequencies is often skewed
and is unlikely to match the corresponding susceptibilities in the sense of satisfying the
condition (12), we suggest that marginal effects at individual markers are likely to be expected.
Moreover, the indices in the sums of that condition need to be rearranged for every different
SNP that is considered, greatly increasing chances of marginal effects associated with at least
one of the SNPs.

Practically, RP algorithm is computationally very efficient. The resulting partitioning tree
provides clear biological and statistical interpretation. According to the multilocus profile, each
individual can always be uniquely classified into one of the terminal RP nodes with readily
defined population risks and corresponding interval estimates.

Highlights
• Many data-mining methods share the unfortunate feature of making a multitude of

‘looks’ through the data. The more you look, the more likely a statistically promising
result is a false positive.

• Shotgun approaches that blindly evaluate all conceivable models increase the number
of false associations so that true associations end up buried in the bulk of statistical
noise; type I error control through permutations or otherwise does not resolve this
issue. In other words, the false discovery rates associated with most significant results
can be prohibitively high.

• It is important to design and evaluate algorithms that minimize the number of
comparisons. Recursive partitioning has the advantage over shotgun search
approaches since it minimizes the number of comparisons, which is justified by the
likelihood of marginal effects (e.g., effects associated with SNPs or their small
subsets).

• As the molecular technology improves, we predict that it will soon be feasible to
directly discover genetic polymorphisms in study-specific, casecontrol samples. This
will be done without relying on common variation that mostly represents ’wild-type’
polymorphisms, characteristic of population controls.

• Large parts of candidate genes or genomic regions will be sequenced using samples
enriched with individuals sharing the phenotype of interest. The potential for
uncovering disease- and drug-related variation should improve. At the same time, the
number of polymorphisms and the number of their putative explanatory combinations
will further increase. Advances in statistical methodology are important for finding
models that decrease the odds of finding false associations.
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Figure 1.
“No marginal effects” RP tree with 3 predictors; ’x1’, ’x2’, ’x3’ – predictor (SNP) labels; ’n’
– node-specific sample size; ’u’ – node-specific mean response value (proportion of cases in
the node; ’P’ – association p-value; ’bP’ – Bonferroni-corrected association p-value (adjusted
by the number of non-monomorphic SNPs at the current split)
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Figure 2.
Results of simulations with two “orthogonal penetrance”, high risk (000, 111), random
frequency haplotypes.
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Figure 3.
Results of simulations with a single high risk lowest frequency haplotype.
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Figure 4.
Results of simulations with a single high risk random frequency haplotype.
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Figure 5.
Results of simulations with a single high risk highest frequency haplotype.
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Figure 6.
Sample RP tree
n0, u0: sample size and the proportion of cases in the whole sample
ni, mi: node-specific numbers of subjects in the right and the left nodes
ui, vi: proportion of cases in the right and the left nodes
φi: node-specific positive predictive value
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Table 1
Population parameters for the RP example

Haplotype Penetrance Population frequency

000 0.9 0.010668810
001 0.1 0.000005347
010 0.1 0.000000255
011 0.1 0.446030100
100 0.1 0.016740010
101 0.1 0.477861900
110 0.1 0.007107833
111 0.9 0.041585780
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