Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1998 Jan;192(Pt 1):81–90. doi: 10.1046/j.1469-7580.1998.19210081.x

Thickness of the subchondral mineralised tissue zone (SMZ) in normal male and female and pathological human patellae

FELIX ECKSTEIN 1,, STEFAN MILZ 1, HERMANN ANETZBERGER 1, REINHARD PUTZ 1
PMCID: PMC1467741  PMID: 9568563

Abstract

The objective of this paper was to analyse sex differences of the thickness of the subchondral mineralised tissue zone (SMZ), and to find out whether systematic changes of SMZ thickness are associated with naturally occurring, non-full-thickness cartilage lesions of human patellae. In 32 methyl-methacrylate-embedded specimens (16 normal, 8 with focal medial, and 8 with lateral lesions) the SMZ thickness was determined, using a binocular macroscope and an image analysing system. In each case, the thickness distribution was reconstructed throughout the entire joint surface. The maximal and mean SMZ thicknesses were significantly higher in males than in females (P<0.01). In normal patellae and those with lateral lesions, the thickness was significantly thicker laterally than medially (P<0.05), but it was not in specimens with medial damage. Patellae with medial damage exhibited a significantly lower total mean and lateral mean (P<0.05). A lower SMZ thickness was found directly beneath medial lesions than beneath lateral ones, but the local thickness was always in the range of that observed in normal specimens. We conclude that differences of patellar SMZ thickness exist between males and females. Naturally occurring cartilage lesions appear, however, not to be associated with local changes of SMZ thickness, but they may be associated with an altered regional distribution pattern within the joint surface.

Keywords: Subchondral bone, cartilage lesions, femoropatellar joint, chondromalacia patellae

Full Text

The Full Text of this article is available as a PDF (549.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abernethy P. J., Townsend P. R., Rose R. M., Radin E. L. Is chondromalacia patellae a separate clinical entity? J Bone Joint Surg Br. 1978 May;60-B(2):205–210. doi: 10.1302/0301-620X.60B2.659466. [DOI] [PubMed] [Google Scholar]
  2. Ahmed A. M., Burke D. L., Yu A. In-vitro measurement of static pressure distribution in synovial joints--Part II: Retropatellar surface. J Biomech Eng. 1983 Aug;105(3):226–236. doi: 10.1115/1.3138410. [DOI] [PubMed] [Google Scholar]
  3. Armstrong S. J., Read R. A., Price R. Topographical variation within the articular cartilage and subchondral bone of the normal ovine knee joint: a histological approach. Osteoarthritis Cartilage. 1995 Mar;3(1):25–33. doi: 10.1016/s1063-4584(05)80035-4. [DOI] [PubMed] [Google Scholar]
  4. Armstrong S., Read R., Ghosh P. The effects of intraarticular hyaluronan on cartilage and subchondral bone changes in an ovine model of early osteoarthritis. J Rheumatol. 1994 Apr;21(4):680–688. [PubMed] [Google Scholar]
  5. Beaupré G. S., Orr T. E., Carter D. R. An approach for time-dependent bone modeling and remodeling-application: a preliminary remodeling simulation. J Orthop Res. 1990 Sep;8(5):662–670. doi: 10.1002/jor.1100080507. [DOI] [PubMed] [Google Scholar]
  6. Benske J., Schünke M., Tillmann B. Subchondral bone formation in arthrosis. Polychrome labeling studies in mice. Acta Orthop Scand. 1988 Oct;59(5):536–541. doi: 10.3109/17453678809148779. [DOI] [PubMed] [Google Scholar]
  7. Brown T. D., Radin E. L., Martin R. B., Burr D. B. Finite element studies of some juxtarticular stress changes due to localized subchondral stiffening. J Biomech. 1984;17(1):11–24. doi: 10.1016/0021-9290(84)90075-7. [DOI] [PubMed] [Google Scholar]
  8. Chai B. F., Tang X. M., Li H. Scanning electron microscopic study of subchondral bone tissues in osteoarthritic femoral head. Chin Med J (Engl) 1991 Jun;104(6):503–509. [PubMed] [Google Scholar]
  9. Choi K., Kuhn J. L., Ciarelli M. J., Goldstein S. A. The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J Biomech. 1990;23(11):1103–1113. doi: 10.1016/0021-9290(90)90003-l. [DOI] [PubMed] [Google Scholar]
  10. Christensen P., Kjaer J., Melsen F., Nielsen H. E., Sneppen O., Vang P. S. The subchondral bone of the proximal tibial epiphysis in osteoarthritis of the knee. Acta Orthop Scand. 1982 Dec;53(6):889–895. doi: 10.3109/17453678208992844. [DOI] [PubMed] [Google Scholar]
  11. Darracott J., Vernon-Roberts B. The bony changes in "chondromalacia patellae". Rheumatol Phys Med. 1971 Nov;11(4):175–179. doi: 10.1093/rheumatology/11.4.175. [DOI] [PubMed] [Google Scholar]
  12. Dedrick D. K., Goldstein S. A., Brandt K. D., O'Connor B. L., Goulet R. W., Albrecht M. A longitudinal study of subchondral plate and trabecular bone in cruciate-deficient dogs with osteoarthritis followed up for 54 months. Arthritis Rheum. 1993 Oct;36(10):1460–1467. doi: 10.1002/art.1780361019. [DOI] [PubMed] [Google Scholar]
  13. Dedrick D. K., Goulet R., Huston L., Goldstein S. A., Bole G. G. Early bone changes in experimental osteoarthritis using microscopic computed tomography. J Rheumatol Suppl. 1991 Feb;27:44–45. [PubMed] [Google Scholar]
  14. Eckstein F., Müller-Gerbl M., Putz R. Distribution of subchondral bone density and cartilage thickness in the human patella. J Anat. 1992 Jun;180(Pt 3):425–433. [PMC free article] [PubMed] [Google Scholar]
  15. Eckstein F., Müller-Gerbl M., Steinlechner M., Kierse R., Putz R. Subchondral bone density in the human elbow assessed by computed tomography osteoabsorptiometry: a reflection of the loading history of the joint surfaces. J Orthop Res. 1995 Mar;13(2):268–278. doi: 10.1002/jor.1100130215. [DOI] [PubMed] [Google Scholar]
  16. Eckstein F., Putz R., Müller-Gerbl M., Steinlechner M., Benedetto K. P. Cartilage degeneration in the human patellae and its relationship to the mineralisation of the underlying bone: a key to the understanding of chondromalacia patellae and femoropatellar arthrosis? Surg Radiol Anat. 1993;15(4):279–286. doi: 10.1007/BF01627879. [DOI] [PubMed] [Google Scholar]
  17. Goodfellow J., Hungerford D. S., Zindel M. Patello-femoral joint mechanics and pathology. 1. Functional anatomy of the patello-femoral joint. J Bone Joint Surg Br. 1976 Aug;58(3):287–290. doi: 10.1302/0301-620X.58B3.956243. [DOI] [PubMed] [Google Scholar]
  18. Goodship A. E., Lanyon L. E., McFie H. Functional adaptation of bone to increased stress. An experimental study. J Bone Joint Surg Am. 1979 Jun;61(4):539–546. [PubMed] [Google Scholar]
  19. Grynpas M. D., Alpert B., Katz I., Lieberman I., Pritzker K. P. Subchondral bone in osteoarthritis. Calcif Tissue Int. 1991 Jul;49(1):20–26. doi: 10.1007/BF02555898. [DOI] [PubMed] [Google Scholar]
  20. Heegaard J., Leyvraz P. F., Curnier A., Rakotomanana L., Huiskes R. The biomechanics of the human patella during passive knee flexion. J Biomech. 1995 Nov;28(11):1265–1279. doi: 10.1016/0021-9290(95)00059-q. [DOI] [PubMed] [Google Scholar]
  21. Hehne H. J. Biomechanics of the patellofemoral joint and its clinical relevance. Clin Orthop Relat Res. 1990 Sep;(258):73–85. [PubMed] [Google Scholar]
  22. Hille E., Schulitz K. P., Henrichs C., SchneiderT Pressure and contract-surface measurements within the femoropatellar joint and their variations following lateral release. Arch Orthop Trauma Surg. 1985;104(5):275–282. doi: 10.1007/BF00435942. [DOI] [PubMed] [Google Scholar]
  23. Huiskes R., Weinans H., Grootenboer H. J., Dalstra M., Fudala B., Slooff T. J. Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech. 1987;20(11-12):1135–1150. doi: 10.1016/0021-9290(87)90030-3. [DOI] [PubMed] [Google Scholar]
  24. Kiviranta I., Tammi M., Jurvelin J., Arokoski J., Sämänen A. M., Helminen H. J. Articular cartilage thickness and glycosaminoglycan distribution in the young canine knee joint after remobilization of the immobilized limb. J Orthop Res. 1994 Mar;12(2):161–167. doi: 10.1002/jor.1100120203. [DOI] [PubMed] [Google Scholar]
  25. Kühnel W. Zusammenfassungen der 1. Arbeitstagung der Anatomischen Gesellschaft in Würzburg, BRD, 7. und 8. September 1979. Anat Anz. 1980;147(5):477–506. [PubMed] [Google Scholar]
  26. Layton M. W., Goldstein S. A., Goulet R. W., Feldkamp L. A., Kubinski D. J., Bole G. G. Examination of subchondral bone architecture in experimental osteoarthritis by microscopic computed axial tomography. Arthritis Rheum. 1988 Nov;31(11):1400–1405. doi: 10.1002/art.1780311109. [DOI] [PubMed] [Google Scholar]
  27. Meachim G., Emery I. H. Quantitative aspects of patello-femoral cartilage fibrillation in Liverpool necropsies. Ann Rheum Dis. 1974 Jan;33(1):39–47. doi: 10.1136/ard.33.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mente P. L., Lewis J. L. Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J Orthop Res. 1994 Sep;12(5):637–647. doi: 10.1002/jor.1100120506. [DOI] [PubMed] [Google Scholar]
  29. Milz S., Eckstein F., Putz R. The thickness of the subchondral plate and its correlation with the thickness of the uncalcified articular cartilage in the human patella. Anat Embryol (Berl) 1995 Nov;192(5):437–444. doi: 10.1007/BF00240376. [DOI] [PubMed] [Google Scholar]
  30. Milz S., Eckstein F., Putz R. Thickness distribution of the subchondral mineralization zone of the trochlear notch and its correlation with the cartilage thickness: an expression of functional adaptation to mechanical stress acting on the humeroulnar joint? Anat Rec. 1997 Jun;248(2):189–197. doi: 10.1002/(SICI)1097-0185(199706)248:2<189::AID-AR5>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  31. Milz S., Putz R. Quantitative morphology of the subchondral plate of the tibial plateau. J Anat. 1994 Aug;185(Pt 1):103–110. [PMC free article] [PubMed] [Google Scholar]
  32. Mitrovic D., Stankovic A., Borda-Iriarte O., Uzan M., Quintero M., Ryckewaert A. Résultats de l'examen autopsique des cartilages des genoux chez 120 sujets décédés en milieu hospitalier. I. Articulation fémoro-patellaire. Rev Rhum Mal Osteoartic. 1987 Jan;54(1):15–21. [PubMed] [Google Scholar]
  33. Müller-Gerbl M., Putz R., Hodapp N., Schulte E., Wimmer B. Computed tomography-osteoabsorptiometry for assessing the density distribution of subchondral bone as a measure of long-term mechanical adaptation in individual joints. Skeletal Radiol. 1989;18(7):507–512. doi: 10.1007/BF00351749. [DOI] [PubMed] [Google Scholar]
  34. OUTERBRIDGE R. E. The etiology of chondromalacia patellae. J Bone Joint Surg Br. 1961 Nov;43-B:752–757. doi: 10.1302/0301-620X.43B4.752. [DOI] [PubMed] [Google Scholar]
  35. PAUWELS F. DIE DRUCKVERTEILUNG IM ELLENBOGENGELENK, NEBST GRUNDSAETZLICHEN BEMERKUNGEN UEBER DEN GELENKDRUCK. ELFTER BEITRAG ZUR FUNKTIONELLEN ANATOMIE UND KAUSALEN MORPHOLOGIE DES STUETZAPPARATES. Z Anat Entwicklungsgesch. 1963 Sep 30;123:643–667. [PubMed] [Google Scholar]
  36. Pedley R. B., Meachim G. Topographical variation in patellar subarticular calcified tissue density. J Anat. 1979 Jun;128(Pt 4):737–745. [PMC free article] [PubMed] [Google Scholar]
  37. Radin E. L., Abernethy P. J., Townsend P. M., Rose R. M. The role of bone changes in the degeneration of articular cartilage in osteoarthrosis. Acta Orthop Belg. 1978 Jan-Feb;44(1):55–63. [PubMed] [Google Scholar]
  38. Radin E. L., Burr D. B., Caterson B., Fyhrie D., Brown T. D., Boyd R. D. Mechanical determinants of osteoarthrosis. Semin Arthritis Rheum. 1991 Dec;21(3 Suppl 2):12–21. doi: 10.1016/0049-0172(91)90036-y. [DOI] [PubMed] [Google Scholar]
  39. Radin E. L., Paul I. L. Does cartilage compliance reduce skeletal impact loads? The relative force-attenuating properties of articular cartilage, synovial fluid, periarticular soft tissues and bone. Arthritis Rheum. 1970 Mar-Apr;13(2):139–144. doi: 10.1002/art.1780130206. [DOI] [PubMed] [Google Scholar]
  40. Radin E. L., Paul I. L., Lowy M. A comparison of the dynamic force transmitting properties of subchondral bone and articular cartilage. J Bone Joint Surg Am. 1970 Apr;52(3):444–456. [PubMed] [Google Scholar]
  41. Radin E. L., Paul I. L., Rose R. M. Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet. 1972 Mar 4;1(7749):519–522. doi: 10.1016/s0140-6736(72)90179-1. [DOI] [PubMed] [Google Scholar]
  42. Radin E. L., Rose R. M. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res. 1986 Dec;(213):34–40. [PubMed] [Google Scholar]
  43. Raux P., Townsend P. R., Miegel R., Rose R. M., Radin E. L. Trabecular architecture of the human patella. J Biomech. 1975 Jan;8(1):1–7. doi: 10.1016/0021-9290(75)90037-8. [DOI] [PubMed] [Google Scholar]
  44. Redler I., Mow V. C., Zimny M. L., Mansell J. The ultrastructure and biomechanical significance of the tidemark of articular cartilage. Clin Orthop Relat Res. 1975 Oct;(112):357–362. [PubMed] [Google Scholar]
  45. Rubin C. T., Lanyon L. E. Kappa Delta Award paper. Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone. J Orthop Res. 1987;5(2):300–310. doi: 10.1002/jor.1100050217. [DOI] [PubMed] [Google Scholar]
  46. Shimizu M., Tsuji H., Matsui H., Katoh Y., Sano A. Morphometric analysis of subchondral bone of the tibial condyle in osteoarthrosis. Clin Orthop Relat Res. 1993 Aug;(293):229–239. [PubMed] [Google Scholar]
  47. Simon S. R., Radin E. L., Paul I. L., Rose R. M. The response of joints to impact loading. II. In vivo behavior of subchondral bone. J Biomech. 1972 May;5(3):267–272. doi: 10.1016/0021-9290(72)90042-5. [DOI] [PubMed] [Google Scholar]
  48. Smith R. L., Thomas K. D., Schurman D. J., Carter D. R., Wong M., van der Meulen M. C. Rabbit knee immobilization: bone remodeling precedes cartilage degradation. J Orthop Res. 1992 Jan;10(1):88–95. doi: 10.1002/jor.1100100111. [DOI] [PubMed] [Google Scholar]
  49. Townsend P. R., Raux P., Rose R. M., Miegel R. E., Radin E. L. The distribution and anisotropy of the stiffness of cancellous bone in the human patella. J Biomech. 1975;8(6):363–367. doi: 10.1016/0021-9290(75)90071-8. [DOI] [PubMed] [Google Scholar]
  50. Weh L., Eickhoff W. Innervationsstörungen des Musculus quadriceps bei Chondropathia patellae. Eine kritische Revision des gültigen Chondropathia-Konzeptes. Z Orthop Ihre Grenzgeb. 1983 Mar-Apr;121(2):171–176. doi: 10.1055/s-2008-1051335. [DOI] [PubMed] [Google Scholar]
  51. Wu D. D., Burr D. B., Boyd R. D., Radin E. L. Bone and cartilage changes following experimental varus or valgus tibial angulation. J Orthop Res. 1990 Jul;8(4):572–585. doi: 10.1002/jor.1100080414. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES