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

This paper reviews recent work in radiological image registration and provides a classification of image

registration by type of transformation and by methods employed to compute the transformation. The

former includes transformation of 2D images to 2D images of the same individual, transformation of 3D

images to 3D images of the same individual, transformation of images to an atlas or model, transformation

of images acquired from a number of individuals, transformations for image guided interventions including

2D to 3D registration and finally tissue deformation in image guided interventions. Recent work on

computing transformations for registration using corresponding landmark based registration, surface based

registration and voxel similarity measures, including entropy based measures, are reviewed and compared.

Recently fully automated algorithms based on voxel similarity measures and, in particular, mutual

information have been shown to be accurate and robust at registering images of the head when the rigid

body assumption is valid. Two approaches to modelling soft tissue deformation for applications in image

guided interventions are described. Validation of complex processing tasks such as image registration is vital

if these algorithms are to be used in clinical practice. Three alternative validation strategies are presented.

These methods are finding application outside the original domain of radiological imaging.
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

Radiological images provide information on the size,

shape and spatial relationships between anatomical

structures and any pathology, if present. They also

provide distributions of physical and physiological

attributes of the tissues such as the -ray attenuation

coefficient from -ray computed tomography (CT),

proton density or proton relaxation times from

magnetic resonance (MR) imaging and blood flow or

glucose metabolism from positron emission tom-

ography (PET). Traditionally these images are inter-

preted by the radiologist viewing the images as film

transparencies on a back illuminated light box. Most

imaging modalities involve some digital manipulation

and computation and so, increasingly, these images

Correspondence to Dr D. J. Hawkes, Radiological Sciences, 5th Floor, Thomas Guy House, Guy’s Hospital, London Bridge, London

SE1 9RT, UK. email : d.hawkes!umds.ac.uk

are displayed on a workstation. Subjective judgments

of the relative size, shape and spatial relationships of

visible structures and physiology inferred from in-

tensity distributions are used for diagnosis, planning

therapy and monitoring disease progression or re-

sponse to therapy.

The radiologist, physician and surgeon now have

an impressive array of different imaging modalities

available for routine clinical investigation including

CT, a wide range of different types of MR images,

nuclear medicine PET or single photon emission

tomography (SPECT) scans, ultrasound, conven-

tional -ray radiographs and video images from such

devices as endoscopes and microscopes. These are

usually viewed separately, often using different media

or display technology. While this may often be



adequate there are situations where it would be useful

to know the precise spatial relationship between 2

structures, each visible on only 1 modality. Alter-

natively interpretation may require combining infor-

mation on structure with images of function, for

example from nuclear medicine which might lack

sufficient spatial resolution to be interpreted in

isolation. Computer assisted image registration pro-

vides a tool for combining these different sources of

information. Recent breakthroughs in computation

have led to the development of very robust and

accurate registration algorithms. Detailed reviews are

provided by Brown (1992), van den Elsen et al. (1993)

and Maintz (1996).

Sources of spatial information may include atlas or

computer models which have been generated from

one prototypical individual or a combination of

several individuals. These atlases assist in the identi-

fication and delineation of anatomical structures,

particularly in the brain. They also can assist

computer assisted image interpretation and can allow

identification of boundaries between structures which

provide little or no image contrast. A key step in using

these atlases is establishing correspondence between

atlas and image. A related problem is the registration

of images of a group of individuals in, for example,

cohort studies of brain function using PET or MR.

One experiment on an individual may not reveal

sufficient information either due to low signal in the

resulting images or to wide variations between

individuals. Bringing brain images from a cohort of

studies into correspondence may reveal more useful

information on brain function by improving the

statistical significance of the findings or establishing

intersubject variability (e.g. Friston et al. 1997).

Another important role of medical imaging is the

monitoring of changes in shape, size and function of

anatomical structures and pathology in a particular

individual. Computer assisted image registration in

combination with careful quality control of imaging

devices provides the means for monitoring changes

much more sensitively than by visual interpretation

alone (Hill et al. 1994b ; Hajnal et al. 1995; Free-

borough & Fox, 1997).

Recently there have been significant advances in

using images for navigation in certain types of surgery,

particularly in the brain, skull base, the maxillofacial

region, temporal bone and spine (Maciunas, 1993;

Taylor et al. 1995). Inherent in this process is

registration of the images, defined in a coordinate

system related to the original scanning devices, and

the physical space of the patient lying on the operating

table. This correspondence or registration can be

provided by marker pins or devices, such as the

stereotactic frame, which is fixed to the patient’s skull

during both scanning and the operation. Recently

frameless image guided surgery has been introduced,

in which anatomical features are used for registration.

This may be done by identification of corresponding

landmarks but could also be provided by intra-

operative images such as video, -ray imaging or

ultrasound. These images are therefore used primarily

to provide spatial localisation rather than for their

visual appearances. This localisation involves using

the methodologies of image registration. The same

principles apply to images used to plan and guide

other therapies, in particular radiotherapy.

This paper briefly reviews the range of registration

methods. The bulk of the paper describes recent work

at our laboratory to devise accurate and robust

algorithms for registration of different types of images

and briefly describes some of the applications that will

ensue.



Clarification of terminology is appropriate at this

stage. The task of image matching can be broken

down into the following processes : establishing the

type of transformation (e.g. 3D to 3D rigid body),

computing the transformation from, for example,

common features in the image pair to be registered,

and transformation of one of the images (the source

image) into the coordinate system of the other (the

destination image). Together these processes result in

registration in which points in each image will

correspond to the same points in the patient. There is

also a process of interpretation of the registered

images, in which information contained in the 2

images is combined or ‘fused’. Corresponding in-

formation can be used to check the transformation,

while complementary information can be used to

deduce useful new information either by qualitative

interpretation or by improving measurement. The

resulting combination of information is sometimes

termed the process of ‘data fusion’.

Image transformations

The process of registration involves computation of a

transformation between coordinate systems.

2D to 2D

If the geometry of image acquisition is tightly

controlled, 2D images may be registered purely via a
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rotation, 2 orthogonal translations and correction of

any scaling errors. Although computationally straight-

forward clinically relevant examples of this are rare as

controlling the geometry of image acquisition is

usually very difficult. One example that we have

developed is the registration of -ray radiographs of

the hand with **mTc methyl diphosphonate planar

nuclear medicine images for the diagnosis of suspected

scaphoid injury (Hawkes et al. 1991). In this example

a purpose built holding device constrains the hand to

be in identical positions in the 2 images.

3D to 3D

Of more widespread applicability is the accurate

registration of multiple 3D images such as MR and CT

volumes. The assumption is usually made that the

internal anatomy of the patient has not moved or

distorted and hence the 6 degrees of freedom of rigid

body motion (3 translations and 3 rotations) will

bring the images into registration. Careful calibration

of each scanning device is required to determine image

scaling, i.e. the size of the voxels in each modality.

Registration of images to an atlas or model and

registration of images between individuals

Establishing correspondence of an atlas with a set of

images or a number of images from a cohort of

individuals requires far more complex transfor-

mations. The transformation will need to reflect the

variation in anatomy between the atlas and the

individual patient. There will be changes in shape and

size as well as grosser changes in topology. This

remains an area of active research with several

approaches under investigation including multiscale

deformation, in which a rigid body transformation is

computed at a coarse scale followed by multiple rigid

body transformations for arrays of volume elements

at progressively finer scales with interpolation between

these elements (Collins et al. 1994), interpolation

based on radial basis functions such as the thin plate

spline (Bookstein, 1991), and models based on the

physical attributes of a deforming substrate such as

used in fluid models, spring models etc. (Christenson

et al. 1995). In general deformations are very poorly

constrained with a very large number of degrees of

freedom. The problem can be made more tractable by

using statistical shape models based on the analysis of

the variations observed across a population of

individuals (Cootes et al. 1994; Ruff et al. 1997). This

can dramatically decrease the potential number of

degrees of freedom necessary to describe the trans-

formation. For example principle component analysis

using the ‘point distribution model ’ (Cootes et al.

1992) has shown that only 5 modes (or additional

degrees of freedom) are required to capture 89% of

the variance in the fetal liver shape (Ruff et al. 1997).

Registration for image guided interventions and 2D to

3D registration

Image guided interventions usually rely on deter-

mining the rigid body transformation between image

space and the physical space of the operating room.

This will be achieved, for example, by identifying

sufficient corresponding anatomical landmarks to

establish the 6 degrees of freedom of the 3D rigid body

transformation. Intraoperative CT or ultrasound pro-

vides one or more 2D slices and the registration task

is to establish the pose of the slices with respect to the

preoperatively acquired 3D volume. X-ray or video

images are perspective 2D projections. Establishing

the pose of these projections with the 3D preoperative

volume, so-called 2D–3D match, will allow 3D

information to be projected on to the 2D image for

guidance purposes. Alternatively registration of 2 (or

more) 2D projections with a 3D volume will allow, via

triangulation, reconstruction of 3D locations from the

2D projections in the coordinates of the 3D volume.

In general the rigid body assumption is assumed to be

a reasonable approximation. Matching a perspective

projection to a volume will require establishing

between 6 and 10 degrees of freedom dependent on

the assumptions and constraints of the perspective

projections. If the focal length of the video system or

the distance between source and detector of the -ray

set is fixed, then a ‘one-off’ calibration will determine

the 4 parameters of perspective projection leaving the

6 parameters of the rigid body transformation to be

determined in the registration process.

Tissue deformation in image guided interventions

In image guided interventions tissue can distort and

deform between preoperative scans and the inter-

vention. Anatomical structures may move in relation

to each other. Intraoperative data may provide

updated information on location and deformation of

anatomical structures. This new information might be

used as a basis for predicting deformation of adjacent

tissues. The general problem, as in matching to an
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Fig. 1. Top left : a transaxial slice of an -ray CT volume. Top right : a transaxial slice of this volume registered and overlaid over the

corresponding transaxial slice of the gadolinium enhanced MR volume. Bottom left shows a lateral projection of the vasculature from an

MR angiogram and bottom right shows a rendering derived from all 3 image volumes. The bone in grey is derived from CT, the tumour

in green from gadolinium enhanced MR and the vasculature in red from the MR angiogram.

atlas, is very poorly constrained but in this case we

may use the physical constraints of the tissues

involved. For example bony structures will usually

remain rigid and soft tissues will obey the laws of

physics when deforming. Algorithms to exploit physi-

cal constraints will be discussed later.

Computation of transformations

Corresponding landmark based registration

One of the most intuitively obvious registration

procedures is based on identification of corresponding

point landmarks in the 2 images. Identification and

location of 3 noncolinear landmarks will be sufficient

to establish the transformation between 2 3D image

volumes. The algorithm for direct computation of the

transformation is well known and straightforward

(Arun et al. 1987) involving alignment of centroids of

the 2 sets of points followed by rotation to minimise

the sum of the squared displacements between source

and destination points. This is achieved by simple

matrix manipulation using the method of singular

valued decomposition.

The point-like features may be pins or markers

fixed to the patient and visible on each scan. These

may be attached to the skin or screwed into bone. The

latter can provide very accurate registration but are

more invasive and uncomfortable for the patient. Skin

markers in the other hand can easily move by several

millimetres due to the mobility of the skin and are

difficult to attach firmly. Care must be taken to ensure

that the coordinate of each marker is computed as

accurately as possible and that the coordinate com-

puted in each modality corresponds to the same point

in physical space. Subvoxel precision is possible, for

example using the intersection of 2 lines (Colchester et

al. 1996), the apex of a ‘V’ (van den Elsen &

Viergever, 1991) and the centre of gravity of spherical
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or cylindrical markers with a volume much larger

than the voxel sizes (Maurer et al. 1995). Automating

marker identification is possible.

Alternatively corresponding internal anatomical

landmarks may be identified interactively on each

image. These may correspond to truly point-like

anatomical landmarks such as the cochlea, structures

in which points can be unambiguously defined such as

bifurcations of blood vessels, the centre of the globes

of the eyes or surface curvature features that are well

defined in 3D. Several groups, including our own,

regularly register clinical images using corresponding

anatomical landmarks that have been identified

interactively by a skilled user (Evans et al. 1989; Hill

et al. 1991, 1994a). Registration errors are reduced by

increasing the number of fiducial markers. If the error

in landmark identification is randomly distributed

about the true landmark position, the error in

coordinates computed from the resulting trans-

formation reduces as the square root of the number of

points identified for a given distribution of points.

Typical intra- and inter-observer RMS errors on

corresponding point identification are 4 mm when

registering PET and MR images of the head and

1 mm when registering MR and CT images of the

head, when the points themselves are well defined.

Expected misregistration errors of about 2 mm at the

centre rising to about 4 mm at the periphery are to be

expected when registering MR and PET images of the

head using 12 anatomical landmarks. For registering

MR and CT images, including the skull base, typical

misregistration errors will be about 1 mm at the centre

rising to about 2 mm at the periphery for 12–16

landmarks (Hill et al. 1994a). Finding these land-

marks automatically and reliably is difficult and

remains a research issue.

Figure 1 shows an example CT volume registered

with a gadolinium-enhanced MR image by picking

point landmarks. The spatial relationships between

bone and tumour, an acoustic neuroma, are clearly

seen. Also shown is a volume rendered image of the

combined datasets registered with a further MR

image acquired to demonstrate the relationship

between the vasculature and tumour (Ruff et al. 1993).

The vasculature is shown in red and tumour in green

from the different MR acquisitions and bone is shown

in grey from CT. The slices are viewed according to

radiographic convention from below while the ren-

dering is generated as if viewing the skull and its

contents from above. Figure 2 shows example aligned

and overlaid MR images (grey) and PET 18-FDG (2-

deoxy-2[18-f]fluoro--glucose) images (green) of the

brain (2a) and aligned and overlaid CT images (grey)

and PET 18-FDG (green) images of the pelvis (2b)

showing separation of residual bladder activity from

the recurrent carcinoma.

Surface based registration

Corresponding surfaces may be identified and used

for registration. In these algorithms corresponding

surfaces are delineated in the 2 imaging modalities

and a transformation computed that minimises some

measure of distance between the 2 surfaces (Borgefors,

1986; Pelizzari et al. 1989; Jiang et al. 1992). At

registration this measure should be minimum. This

method uses more of the available data than landmark

identification and robust and accurate methods have

been reported for some applications. Unfortunately

the technique is highly dependent on identification of

corresponding surfaces, yet different imaging modali-

ties can provide very different image contrast between

different structures. The process of delineation is hard

to do accurately. Computer assisted segmentation will

almost always require some manual editing or

adjustment. The surface may also exhibit natural

symmetries to certain rotations leading to poorly

constrained transformations. Other features such as

lines and tubes as well as combinations of features

have also been used (Meyer et al. 1995). We have

shown how, in principle, adjacent surfaces may be

used for registration incorporating knowledge of the

spatial relationships of different surfaces (Hill &

Hawkes, 1994).

Registration of multiple images of the same patient

acquired using the same imaging modality

When images of the same patient are acquired with

the same modality then a strong correlation will exist

between the voxel intensities in one image and voxel

intensities in the other. In these cases cross correlation

is a powerful measure of alignment but the variance of

the ratio of image intensity and the sum of squares of

differences in intensities have also been used suc-

cessfully (Woods et al. 1992). As it is the small

differences in very similar images that may have

clinical significance care must be taken to ensure that

the computation of the transformation does not itself

remove this important information. Rescaling of

either size or intensity, for example, must not mask

real changes in volumes. If possible all images must be

rescaled by reference back to an image of a fixed

object or calibration phantom.

Subtle changes may be on the threshold of

observation above the noise inherent in the imaging

process. It is important therefore to ensure that
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(a)

(b)

Fig. 2. (a) Three orthogonal slices through registered and combined PET 18-FDG and MR volumes of the head, with the PET image overlaid

in green on the MR image displayed on a grey scale. (b) Superimposition of a transaxial slice from registered CT (grey) and PET 18-FDG

(green) image volumes of the pelvis, showing clear separation of residual bladder activity from recurrent cervical carcinoma.

computation of the transformed image is accurate.

Both images are discretely sampled in a voxel (or

pixel) array. Corresponding intensities in the des-

tination image are computed using the transformation

back to the original source image. This process will

require a resampling of the source image. A variety of

resampling and interpolation schemes have been used

ranging from nearest neighbour interpolation, tri-
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Fig. 3. Joint intensity histogram or feature space for MR and CT images of the head. The vertical axes correspond to the MR image intensity

and the horizontal axes to CT intensity, with the left plot corresponding to registration, the middle to 2 mm misregistration and the right to

5 mm (from Hill et al. 1994c).

linear interpolation, through to full sinc interpolation.

The latter will introduce minimal additional arte-

factual signal but it is computationally expensive. In

general some compromise between accuracy and speed

of computation has to be made. Recent work has

claimed registration to subvoxel accuracy (Hajnal

et al. 1995) with volume changes estimated to be

accurate to about 0.1% of total brain volume

(Freeborough & Fox, 1997).

Voxel similarity measures and entropy as a measure

of alignment

In the last 4 y there has been significant progress,

worldwide, in using relationships between voxel

intensity values to align images acquired from

different modalities. This work stems from the

observation that while images from different modali-

ties exhibit complementary information there is

usually a high degree of shared information between

images of the same structures. For example the

human observer is able to fuse very different images

such as MR and CT of the same structure provided

intensity look-up tables are adjusted appropriately.

The first successful application of voxel similarity

methods was the variance of intensity ratios proposed

by Woods et al. (1993) for registration of MR and

PET images of the brain. Alignment corresponds to

the transformation which minimises the variance of

corresponding PET intensities for all voxels within

defined ranges of MR intensity. The approach works

very well if all but the brain volume has been removed

from the MR images. Van den Elsen et al. (1994)

proposed a method based on intensity correlation for

MR and CT images. The CT image intensities are

remapped using a triangular look-up-table so that

both air and bone are dark with soft tissue bright, as

in the corresponding MR image. Successful reg-

istration of images of the head and spine were

reported.

There has been significant interest in measures of

alignment based on the information content or

entropy of the registered image. An important step to

understanding these methods is the formation of the

joint intensity histogram which is an estimate of the

joint probability distribution of image intensities (Hill

et al. 1994c). An example of such plots is shown in

Figure 3 for MR and CT images of the head of the

same patient and Figure 4 for MR and PET images.

The joint intensity histogram is formed by ac-

cumulating or binning the occurrences of pairs of

intensities in the 2 images for each trial alignment.

Figures 3 and 4 show histograms formed at alignment

and at 2 misalignments. It can be seen that the

histograms disperse as misalignment increases and

that each image pair has a distinctive joint intensity

histogram signature at alignment.

Minimising the entropy of this distribution, the

joint entropy, has been proposed by Studholme et al.

(1995) as a measure of misalignment. As an illustrative

example consider 2 images of the same individual,

each containing 2 eyes. Misaligned, the combined

images will contain 4 eyes while at alignment there will
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Fig. 4. Same plots for MR and PET images of the head as in Figure 3 with the MR intensities plotted on the vertical axes and the CT

intensities plotted on the horizontal axes (from Hill et al. 1994c).

only be 2 eyes. There is, therefore, less information in

the combined images at registration.

The Shannon–Wiener entropies, H(M ) and H(N )

of images M and N may be defined by

H(M )¯® 3
m`M

p(m´ log (p²m´)

and

H(N )¯®3
n`N

p²n´ log (p²n´)

where p²m´ is the probability that a voxel in image M

has value m and p²n´ is the probability that a voxel in

image N has a value n. The individual entropies H(N )

and H(M ) may be estimated from the histograms of

image values. The joint entropy H(M,N ) of the

overlapping region of image M and N may be defined

by

H(M,N )¯®3
n`N

3
m`M

p²m, n´ log (p²m, n´)

where p²m, n´ is the probability that a voxel in the

overlapping region of image M and N has values m

and n respectively. The joint probability may be

estimated from the joint histogram of image values.

While joint entropy can provide a useful measure of

alignment it has proved not to be very robust as other

misalignments can result in much lower joint entropy.

As an example, alignment of just the air surrounding

the patient will produce a global minimum of entropy.

An appropriate measure would be the difference in

information between the overlapping volume of the

combined image with respect to the information in the

overlapping volumes of the 2 original images. Such a

measure is provided by mutual information proposed

independently by Collignon et al. (1995) and the MIT

group (Wells et al. 1996). Mutual information is given

by

I(M ; N )¯H(M )­H(N )®H(M,N ).

At alignment we postulate that the joint entropy is

minimised with respect to the entropy of the over-

lapping part of the individual images. Mutual in-

formation is a measure of how one image ‘explains ’

the other. It makes no assumption of the functional

form or relationship between image intensities in the

2 images.

While these entropy measures provide a measure of

misalignment, they do not allow direct computation

of the best estimate of alignment. An optimisation

process is therefore required to compute a registration

estimate. Any optimisation process involving 6

degrees of freedom will require computation of

potentially a very large number of estimates. We have

implemented a multiresolution scheme for registration

in which a multiresolution stack of each image volume

is generated from the finest to the coarsest resolution.

Mutual information is computed at the coarsest

resolution from the joint intensity histogram. A simple

search strategy, at discrete steps in each of the 6

directions of the 6 dimensional search space of rigid

body motion, computes the optimal registration at

this resolution and then the search continues at the

next finer resolution. This simple procedure has the

advantage that large scale misalignments are retrieved

rapidly at the coarsest scale with smaller adjustments

computed at finer scales. We have tested the ro-
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(a)

(b)

Fig 5. Transaxial and coronal slices through CT and MR volumes of the head, registered fully automatically by multiresolution maximisation

of mutual information. (a) Panels on the left show side by side display of the aligned images and those on the right are zoomed versions

of the same images. (b) Alternative display with a contour corresponding to the surface of bone, obtained by intensity thresholding the CT

volume, superimposed on the MR images. Note the limited axial extent of the CT volume yet registration is visibly of high quality.

bustness and precision of the method to multiple

random starting misalignments on large numbers of

clinically acquired MR PET and MR CT image pairs

of the head. Results are reported in detail elsewhere

(Studholme et al. 1996, 1997; Studholme, 1997) but in

summary we found that the system was robust for

initial misalignments of up to 30 mm and 30° provided

sufficient axial sections of image data were available

(30 mm or more of axially overlapping images at

registration). Registration takes between 15 and

45 min on a medium range Unix workstation, depend-

ing on the image size and resolution. Figure 5 shows

example MR and CT images registered fully auto-

matically by this algorithm.

2D to 3D registration

We have also explored the use of voxel intensity based

methods in 2D to 3D image registration. Our task is

to establish the pose of digital fluoroscopic -ray

images in relation to a previously acquired CT volume,

for image guidance in interventional procedures

undertaken on or near to the spine. In, for example,

percutaneous laser discectomy it might be advan-

tageous to perform the intervention under -ray

guidance. Currently multiple slices of CT data are

acquired during a procedure. This is time consuming

and can deliver a high radiation dose. If the

preoperative CT could be mapped into the -ray

image then the procedure might safely be done under

digital fluoroscopy guidance, while preserving the 3D

guidance ability of the previously acquired CT images.

The method is based on digitally reconstructed

radiographs (DRR) first proposed for stereotactic

neurosurgical applications (Lemieux et al. 1994). Trial

estimates of pose are computed by integrating along

rays through the CT volume to simulate the process of

perspective projection in -ray imaging. The DRR is
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Fig. 6. A rendered abdominal aorta and aneurysm generated from

CT angiography, registered and superimposed on a digital

fluoroscopic image obtained during an interventional procedure to

place an aortic stent.

compared with the true -ray image using normalised

cross correlation as a measure of similarity (Penney et

al. 1997). Normalised cross correlation is used because

of the similarity between the physical processes of -

ray and CT image formation. Recently a more robust

measure based on pattern intensity has been proposed

(Weese et al. 1997). The -ray set is first calibrated

using an object of known dimensions (steel markers at

the apices and centres of the 6 faces of a 60 mm

Perspex cube) to determine the 4 perspective para-

meters. The confounding effect of soft tissue move-

ment is minimised by removing the soft tissue from

the CT image by intensity thresholding. A multi-

resolution gradient descent method is used to de-

termine alignment. An approximate starting estimate

is provided by a small number of user defined points.

Results on a spine phantom show registration ac-

curacy better than 1 mm and 1°, which is sufficient for

the clinical application. Clinical evaluation of this

process in percutaneous laser discectomy is about to

start. Figure 6 shows an example of a 2D to 3D

registration in which a rendered image from a CT

volume acquired of a large aortic aneurysm is

registered and overlaid on a digital fluoroscopic -ray

image acquired during an interventional procedure to

place an aortic stent.

Image registration with soft tissue deformation in

image guided surgery

This section briefly describes work in progress in our

laboratory to use information on spatial location,

derived from intraoperative images, to update 3D

models of the patient’s anatomy and pathology that

have been derived from preoperative images. We are

pursuing 2 approaches, one based on interpolation

using radial basis functions and the other on simplified

computational models of physical characteristics of

the tissue. Both approaches assume that each bony

structure can be represented by a rigid body. Each

separate bone (for example each vertebra of the spine)

is treated as a separate rigid body each with its own

transformation.

This work is based on deformable models which use

both ‘a priori ’ information, such as physical con-

straints, as well as image derived information. A

recent review of the literature is provided by

McInerney & Terzopoulos (1996). Little et al. (1997)

in our laboratory have recently shown how the

constraints of rigid bodies can be incorporated into

interpolation based on radial basis functions. This

results in an interpolating solution that is a summation

of a linear term corresponding to the rigid bodies and

a basis function which smoothly tends to zero at the

surface of the rigid bodies. The resulting trans-

formation is exact at rigid bodies, given the rigid body

transformation, and provides smooth interpolation

elsewhere. Initial results on MR images of the spines

of volunteers are promising but considerable further

work on validation is required before this meth-

odology can enter clinical practice. An example of this

transformation on a sagittal MR image of the head of

a volunteer who was scanned in 2 positions is shown

in Figure 7. Soft tissue structures close to the spine

and cranium are accurately registered.

An alternative strategy is to attempt to model soft

tissue deformation directly. We have demonstrated

plausible soft tissue deformation using a simple

multiresolution model in which the tissue is repre-

sented on as an array of discrete elements (Edwards et

al. 1997). Energy terms associated with these elements

include spring energy where the connection between

each node is represented by a spring providing forces

of compression and tension; stiffness energy asso-

ciated with bending of the connections of sets of 3

adjacent nodes; membrane energy associated with

changes in the area of triangular elements ; and

combinations of all 3. This method has been tested on

2D CT and MR slices of the brain acquired before

and after surgery for placement of electrode mats on
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Fig. 7. Example image that has been deformed using a modified radial basis function (from Little et al. 1997). The top pair of images show

sagittal MR slices through the head of a volunteer scanned with the head held in 2 very different positions. Landmarks used to constrain the

deformation are also shown. The middle pair show corresponding segmentations, hand drawn, of the individual vertebrae and part of the

cranium. The bottom right image shows the result of deforming the top left image to match the top right image, while the bottom left image

shows an edge map of the deformed image superimposed on the top right image.
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(a) (b)

(c) (d)

Fig. 8. Slice of a preoperative MR volume of a patient suffering from epilepsy (a). The corresponding CT slice is shown (b) after craniotomy

and placement of the electrode mat. Rigid body registration shows (c) significant displacement of the surface of the brain which is corrected,

in this case, with a deformation computed from a combined stiffness and membrane model (d ). (From Edwards et al. 1997.)

the brain surface prior to excision of areas of focal

activity in the treatment of epilepsy. We model the

scanned slice with a 3 component model, 1 component

representing rigid structures (bone), 1 representing

fluid (cerebrospinal fluid and air surrounding the

patient) which has zero energy associated with

deformation and the 3rd representing deforming soft

tissues. In this example the image data provided their

own internal standard, in this case electrodes placed in

the interhemispheric fissure. In this particular example

the combination of the stiffness and membrane model

proved to be most accurate. Results are shown in

Figure 8. The algorithm is currently being extended to

3D and further data for validation are being collected.

At present computing time is impractical, taking

several hours per transformation, but methods to

reduce these are in progress.

Both these approaches require significant further

development and validation before entering clinical

practice.



Any process that entails manipulation of data for

clinical purposes must undergo extensive validation.

For image registration work this will usually follow a

sequence of evaluation on computer generated models

(software phantoms), images of physical phantoms of

accurately known construction and dimensions and

images of patients or volunteers. The process must
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demonstrate both high robustness and high accuracy.

Robustness implies a very low failure rate and if

failure does occur that this is communicated to the

user.

Assessment of accuracy requires knowledge of a

‘gold standard’ or ‘ground truth’ registration. This is

difficult to achieve with clinical images but 3 methods

have recently been reported. In 1 approach 1 image is

simulated from another. Strother et al. (1994)

generated PET images from 6 MR images of the head

using the characteristics of the CTI-Siemens 953B PET

scanner. They tested 5 algorithms including using a

stereotactic frame, user identified anatomical land-

marks, surface matching and Woods algorithm for

MR to MR registration, MR to PET registration and

PET to PET registration. Woods algorithm, the only

voxel similarity technique tested, performed best.

Hemler et al. (1995) used a cadaver head in which

glass tubes had been inserted to provide a gold

standard registration of MR and CT images. They

compared surface based, stereotactic frame and voxel

intensity correlation, reporting that stereotactic frame

based registration was the most accurate.

By far the most extensive study to date is that

undertaken by Vanderbilt University (West et al.

1997). In this study 7 sets of MR and CT images and

7 sets of MR and PET images were made available to

researchers participating in the study. The patients

imaged had had marker pins inserted into the bone of

their skulls prior to imaging for image guided

neurosurgery. These markers provided a very accurate

‘gold standard’ registration. Prior to distribution the

markers were digitally removed from the images. The

registrations were undertaken at each site blind to

gold standard estimates. A number of surface and

voxel based methods were compared and the voxel

based methods performed significantly better and

required little or no user interaction. The results using

mutual information were amongst the most accurate.

The median registration errors for the MR and CT

images were 1.9 mm or better and for the MR and

PET images were 3.2 mm or better using our

implementation.

All these validation methods have only been applied

to the head and only in situations where the rigid body

transformation is a good approximation. Validation

of algorithms which incorporate deformations is

difficult and remains a research issue. Deformations

to account for variations across populations have

potentially a very large number of degrees of freedom,

although the principal component analysis of the

point distribution model shows one way of reducing

the dimensionality of the problem. Deformations

during surgical interventions will vary significantly

from patient to patient. We need to demonstrate that

the transformations predicted by either of our 2

approaches are more accurate than those provided by

the conventional rigid body assumptions. This could

be done using anatomical landmarks, but it is difficult

to define landmarks which can be identified ac-

curately. Paradoxically if these landmarks could be

identified then they should be used to aid registration.

It may be possible to use internal image visible

markers inserted in previous interventions. Alter-

natives include the use of cadavers or animals, both of

which pose significant logistic and ethical problems. It

might be possible to simulate imaging processes using

the widely available Visible Human Dataset (Spitzer

et al. 1995). This dataset consists of high resolution

MR and CT images all from the same individual,

obtained postmortem. All 3 datasets cover the whole

of the body.

   

Image registration and the subsequent integration of

corresponding and complementary information has

become an important area of computation in medical

imaging. Combining images from different modalities

or acquired at different times is proving useful in

interpreting lower resolution functional images, such

as those provided by nuclear medicine, in determining

spatial relationships of structures seen in different

modalities, in planning surgery and other therapies

such as radiotherapy, in monitoring subtle changes

over time and finally to register and update pre-

operative 3D images in image guided surgery and

therapy. Recent breakthroughs in the application of

information theory to medical image registration have

produced fully automated algorithms for registration

of 3D images of the head which are accurate and

robust. The same methodology is being applied

outside the head. Application to the spine and pelvis

for structures near bone are under evaluation. There

are similarities in the process of registration using the

joint intensity histogram and segmentation or classi-

fication using the same representation. A project is

underway to explore whether segmentation and

registration can proceed as a single iterative process.

We have introduced the concept of an imaging

device as a localiser. In image guided surgery and in

interventional radiology this often requires a match of

2D slices or projection images to the preoperative 3D

volume. We have described one method for registering

digital fluoroscopy projection -ray images to cor-

responding preoperative CT volumes for applications
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in interventional radiology. These applications are in

their infancy but significant progress is expected in

this area in the next few years.

The voxel similarity paradigm may also be applied

to matching video images to rendered 3D volumes of

MR or CT images (or the surface normal data that is

used to generate the rendered images). This opens up

the exciting possibility of registering video with MR

or CT images directly. This may have a profound

effect on the practicality of applying image guidance

methodology to a much wider range of interventions.

One of the main limitations of image guided

interventions is the, as yet, unpredictable movement

and deformation of soft tissue structures during

intervention. This is a very difficult area of computa-

tion but we have shown 2 examples of approaches

that may help to update 3D models derived from

preoperative CT using sparse or incomplete infor-

mation derived from intraoperative projection images.

Both methods assume that individual bony structures

will move as rigid structures within a deforming

matrix. One method computes a smooth interpolation

of this matrix based on radial basis functions while the

other constructs an explicit discrete model containing

some physical attributes of soft tissue, bone and fluid

filled regions. These methods are far from clinical use

but both methods show promise. Validation of

deformation algorithms remains a significant problem

with further research required to develop appropriate

validation strategies.

The methodologies described in this paper may

have application beyond radiology and surgery. It will

be interesting, for example, to examine whether the

registration methodologies described here could be

applied to the accurate registration of autoradio-

graphs to atlases of the mouse embryo obtained in

studies of gene expression. This area was the subject

of several of the other papers of the Symposium

‘Computer Modeling for Anatomists and Clinicians’

where this paper was presented. The registration and

fusion methodologies described here are being applied

outside medicine in, for example, oil exploration to

the registration of seismic mappings and other sources

of 3D information on geological structure.
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