Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1998 Nov;193(Pt 4):559–571. doi: 10.1046/j.1469-7580.1998.19340559.x

Identifying homologous anatomical landmarks on reconstructed magnetic resonance images of the human cerebral cortical surface

D D MAUDGIL 1 ,, S L FREE 1 , S M SISODIYA 2 , L LEMIEUX 2 , F G WOERMANN 1 , D R FISH 1 , S D SHORVON 1
PMCID: PMC1467881  PMID: 10029189

Abstract

Guided by a review of the anatomical literature, 36 sulci on the human cerebral cortical surface were designated as homologous. These sulci were assessed for visibility on 3-dimensional images reconstructed from magnetic resonance imaging scans of the brains of 20 normal volunteers by 2 independent observers. Those sulci that were found to be reproducibly identifiable were used to define 24 landmarks around the cortical surface. The interobserver and intraobserver variabilities of measurement of the 24 landmarks were calculated. These reliably reproducible landmarks can be used for detailed morphometric analysis, and may prove helpful in the analysis of suspected cerebral cortical structured abnormalities in patients with such conditions as epilepsy.

Keywords: Brain, morphometry, dysgenesis, epilepsy

Full Text

The Full Text of this article is available as a PDF (317.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong E., Curtis M., Buxhoeveden D. P., Fregoe C., Zilles K., Casanova M. F., McCarthy W. F. Cortical gyrification in the rhesus monkey: a test of the mechanical folding hypothesis. Cereb Cortex. 1991 Sep-Oct;1(5):426–432. doi: 10.1093/cercor/1.5.426. [DOI] [PubMed] [Google Scholar]
  2. Arndt S., Rajarethinam R., Cizadlo T., O'Leary D., Downhill J., Andreasen N. C. Landmark-based registration and measurement of magnetic resonance images: a reliability study. Psychiatry Res. 1996 Jul 31;67(2):145–154. doi: 10.1016/0925-4927(96)02904-6. [DOI] [PubMed] [Google Scholar]
  3. Ashburner J., Friston K. Multimodal image coregistration and partitioning--a unified framework. Neuroimage. 1997 Oct;6(3):209–217. doi: 10.1006/nimg.1997.0290. [DOI] [PubMed] [Google Scholar]
  4. Baker J. F., Petersen S. E., Newsome W. T., Allman J. M. Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): a quantitative comparison of medial, dorsomedial, dorsolateral, and middle temporal areas. J Neurophysiol. 1981 Mar;45(3):397–416. doi: 10.1152/jn.1981.45.3.397. [DOI] [PubMed] [Google Scholar]
  5. Burzaco J. Stereotactic pallidotomy in extrapyramidal disorders. Appl Neurophysiol. 1985;48(1-6):283–287. doi: 10.1159/000101144. [DOI] [PubMed] [Google Scholar]
  6. Campbell C. B., Hodos W. The concept of homology and the evolution of the nervous system. Brain Behav Evol. 1970;3(5):353–367. doi: 10.1159/000125482. [DOI] [PubMed] [Google Scholar]
  7. Chi J. G., Dooling E. C., Gilles F. H. Gyral development of the human brain. Ann Neurol. 1977 Jan;1(1):86–93. doi: 10.1002/ana.410010109. [DOI] [PubMed] [Google Scholar]
  8. Evrard P., Caviness V. S., Jr, Prats-Vinas J., Lyon G. The mechanism of arrest of neuronal migration in the Zellweger malformation: an hypothesis bases upon cytoarchitectonic analysis. Acta Neuropathol. 1978 Feb 20;41(2):109–117. doi: 10.1007/BF00689761. [DOI] [PubMed] [Google Scholar]
  9. Freeborough P. A., Fox N. C., Kitney R. I. Interactive algorithms for the segmentation and quantitation of 3-D MRI brain scans. Comput Methods Programs Biomed. 1997 May;53(1):15–25. doi: 10.1016/s0169-2607(97)01803-8. [DOI] [PubMed] [Google Scholar]
  10. Galaburda A. M., LeMay M., Kemper T. L., Geschwind N. Right-left asymmetrics in the brain. Science. 1978 Feb 24;199(4331):852–856. doi: 10.1126/science.341314. [DOI] [PubMed] [Google Scholar]
  11. Hofman M. A. On the evolution and geometry of the brain in mammals. Prog Neurobiol. 1989;32(2):137–158. doi: 10.1016/0301-0082(89)90013-0. [DOI] [PubMed] [Google Scholar]
  12. Kido D. K., LeMay M., Levinson A. W., Benson W. E. Computed tomographic localization of the precentral gyrus. Radiology. 1980 May;135(2):373–377. doi: 10.1148/radiology.135.2.7367629. [DOI] [PubMed] [Google Scholar]
  13. Kulynych J. J., Luevano L. F., Jones D. W., Weinberger D. R. Cortical abnormality in schizophrenia: an in vivo application of the gyrification index. Biol Psychiatry. 1997 May 15;41(10):995–999. doi: 10.1016/S0006-3223(96)00292-2. [DOI] [PubMed] [Google Scholar]
  14. Leutenegger W., Masterson T. J. The ontogeny of sexual dimorphism in the cranium of Bornean orang-utans (Pongo pygmaeus pygmaeus): I. Univariate analyses. Z Morphol Anthropol. 1989;78(1):1–14. [PubMed] [Google Scholar]
  15. Maudgil D. D. Changing interpretations of the human cortical pattern. Arch Neurol. 1997 Jun;54(6):769–775. doi: 10.1001/archneur.1997.00550180075016. [DOI] [PubMed] [Google Scholar]
  16. Mayhew T. M., Mwamengele G. L., Dantzer V., Williams S. The gyrification of mammalian cerebral cortex: quantitative evidence of anisomorphic surface expansion during phylogenetic and ontogenetic development. J Anat. 1996 Feb;188(Pt 1):53–58. [PMC free article] [PubMed] [Google Scholar]
  17. O'Rourke N. A., Dailey M. E., Smith S. J., McConnell S. K. Diverse migratory pathways in the developing cerebral cortex. Science. 1992 Oct 9;258(5080):299–302. doi: 10.1126/science.1411527. [DOI] [PubMed] [Google Scholar]
  18. Penhune V. B., Zatorre R. J., MacDonald J. D., Evans A. C. Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex. 1996 Sep-Oct;6(5):661–672. doi: 10.1093/cercor/6.5.661. [DOI] [PubMed] [Google Scholar]
  19. Rademacher J., Caviness V. S., Jr, Steinmetz H., Galaburda A. M. Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex. 1993 Jul-Aug;3(4):313–329. doi: 10.1093/cercor/3.4.313. [DOI] [PubMed] [Google Scholar]
  20. Rakic P. Specification of cerebral cortical areas. Science. 1988 Jul 8;241(4862):170–176. doi: 10.1126/science.3291116. [DOI] [PubMed] [Google Scholar]
  21. Rehkämper G., Zilles K. Parallel evolution in mammalian and avian brains: comparative cytoarchitectonic and cytochemical analysis. Cell Tissue Res. 1991 Jan;263(1):3–28. doi: 10.1007/BF00318396. [DOI] [PubMed] [Google Scholar]
  22. Reid C. B., Liang I., Walsh C. Systematic widespread clonal organization in cerebral cortex. Neuron. 1995 Aug;15(2):299–310. doi: 10.1016/0896-6273(95)90035-7. [DOI] [PubMed] [Google Scholar]
  23. Roland P. E., Zilles K. Brain atlases--a new research tool. Trends Neurosci. 1994 Nov;17(11):458–467. doi: 10.1016/0166-2236(94)90131-7. [DOI] [PubMed] [Google Scholar]
  24. Saeed N., Hajnal J. V., Oatridge A. Automated brain segmentation from single slice, multislice, or whole-volume MR scans using prior knowledge. J Comput Assist Tomogr. 1997 Mar-Apr;21(2):192–201. doi: 10.1097/00004728-199703000-00005. [DOI] [PubMed] [Google Scholar]
  25. Shea B. T. On aspects of skull form in African apes and orangutans, with implications for hominoid evolution. Am J Phys Anthropol. 1985 Nov;68(3):329–342. doi: 10.1002/ajpa.1330680304. [DOI] [PubMed] [Google Scholar]
  26. Sisodiya S. M., Stevens J. M., Fish D. R., Free S. L., Shorvon S. D. The demonstration of gyral abnormalities in patients with cryptogenic partial epilepsy using three-dimensional MRI. Arch Neurol. 1996 Jan;53(1):28–34. doi: 10.1001/archneur.1996.00550010038014. [DOI] [PubMed] [Google Scholar]
  27. Sobel D. F., Gallen C. C., Schwartz B. J., Waltz T. A., Copeland B., Yamada S., Hirschkoff E. C., Bloom F. E. Locating the central sulcus: comparison of MR anatomic and magnetoencephalographic functional methods. AJNR Am J Neuroradiol. 1993 Jul-Aug;14(4):915–925. [PMC free article] [PubMed] [Google Scholar]
  28. Steinmetz H., Fürst G., Freund H. J. Variation of perisylvian and calcarine anatomic landmarks within stereotaxic proportional coordinates. AJNR Am J Neuroradiol. 1990 Nov-Dec;11(6):1123–1130. [PMC free article] [PubMed] [Google Scholar]
  29. Thompson P. M., Schwartz C., Lin R. T., Khan A. A., Toga A. W. Three-dimensional statistical analysis of sulcal variability in the human brain. J Neurosci. 1996 Jul 1;16(13):4261–4274. doi: 10.1523/JNEUROSCI.16-13-04261.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Toga A. W., Ambach K., Quinn B., Hutchin M., Burton J. S. Postmortem anatomy from cryosectioned whole human brain. J Neurosci Methods. 1994 Oct;54(2):239–252. doi: 10.1016/0165-0270(94)90196-1. [DOI] [PubMed] [Google Scholar]
  31. Van Essen D. C. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature. 1997 Jan 23;385(6614):313–318. doi: 10.1038/385313a0. [DOI] [PubMed] [Google Scholar]
  32. Vannier M. W., Brunsden B. S., Hildebolt C. F., Falk D., Cheverud J. M., Figiel G. S., Perman W. H., Kohn L. A., Robb R. A., Yoffie R. L. Brain surface cortical sulcal lengths: quantification with three-dimensional MR imaging. Radiology. 1991 Aug;180(2):479–484. doi: 10.1148/radiology.180.2.2068316. [DOI] [PubMed] [Google Scholar]
  33. Williamson P. D., Spencer S. S. Clinical and EEG features of complex partial seizures of extratemporal origin. Epilepsia. 1986;27 (Suppl 2):S46–S63. doi: 10.1111/j.1528-1157.1986.tb05740.x. [DOI] [PubMed] [Google Scholar]
  34. Yousry T. A., Schmid U. D., Alkadhi H., Schmidt D., Peraud A., Buettner A., Winkler P. Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain. 1997 Jan;120(Pt 1):141–157. doi: 10.1093/brain/120.1.141. [DOI] [PubMed] [Google Scholar]
  35. Zilles K., Armstrong E., Schleicher A., Kretschmann H. J. The human pattern of gyrification in the cerebral cortex. Anat Embryol (Berl) 1988;179(2):173–179. doi: 10.1007/BF00304699. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES