Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2000 Apr;196(Pt 3):313–326. doi: 10.1046/j.1469-7580.2000.19630313.x

Leucocyte phenotypes in involuting and fully involuted mammary glandular tissues and secretions of sheep

L TATARCZUCH 1, C PHILIP 1, R BISCHOF 1, C S LEE 1,
PMCID: PMC1468068  PMID: 10853954

Abstract

Mammary glandular tissues and mammary secretions were obtained from sheep at 2–60 d after weaning to study the leucocyte phenotypes associated with mammary involution. From 2–4 d after weaning, neutrophils were the predominant leucocytes in the alveolar and ductal lumina. Lymphocytes were present in the alveolar and ductal epithelium, interalveolar and periductal areas. Most of the lymphocytes in the alveolar and ductal epithelium (IEL) were CD8+, some were CD45R+ and few were CD4+. In the periductal clusters and in the interalveolar areas most of the lymphocytes were CD4+. There was a significant increase (P < 0.05) in the percentages of CD45R+ granulated IEL from 2 to 7 d after weaning, and this paralleled the increase in the percentages of apoptotic cells in the glandular epithelium. By 7–60 d after weaning, most cells within the alveolar and ductal lumina were macrophages followed by predominantly CD8+ lymphocytes. CD8+ lymphocytes were still predominant in the alveolar and ductal epithelium while CD4+ cells were predominant in the interalveolar areas. Very few γδ+ T cells were observed at all the stages examined. The cells in the mammary secretions correlated with those observed in the alveolar and ductal lumina. At the early stages of involution, the neutrophils and macrophages were heavily laden with lipid droplets, casein and cellular debris. The most interesting feature was the presence of cells either with extensive cytoplasmic processes (LCA+ MHC class II+) or cytoplasmic veils (LCA+ MHC class II+CD1+), probably dendritic cells. It is concluded that the cellular constituents of the mammary gland at the latter part of involution may afford the mammary gland more resistance to infection than the lactating gland and the gland at early stages of involution. The CD45R+ IEL may trigger apoptotic cell death in the mammary glandular epithelium during mammary involution.

Keywords: Lactation, granulated lymphocytes, mammary regression, dendritic cells

Full Text

The Full Text of this article is available as a PDF (890.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayoub I. A., Yang T. J. The regulatory role of transforming growth factor-beta in activation of milk mononuclear cells. Am J Reprod Immunol. 1997 Aug;38(2):121–128. doi: 10.1111/j.1600-0897.1997.tb00286.x. [DOI] [PubMed] [Google Scholar]
  2. Cooray R. Casein effects on the myeloperoxidase-mediated oxygen-dependent bactericidal activity of bovine neutrophils. Vet Immunol Immunopathol. 1996 May;51(1-2):55–65. doi: 10.1016/0165-2427(95)05496-0. [DOI] [PubMed] [Google Scholar]
  3. Gamen S., Hanson D. A., Kaspar A., Naval J., Krensky A. M., Anel A. Granulysin-induced apoptosis. I. Involvement of at least two distinct pathways. J Immunol. 1998 Aug 15;161(4):1758–1764. [PubMed] [Google Scholar]
  4. Geissmann F., Prost C., Monnet J. P., Dy M., Brousse N., Hermine O. Transforming growth factor beta1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells. J Exp Med. 1998 Mar 16;187(6):961–966. doi: 10.1084/jem.187.6.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Holt P. G., Oliver J., Bilyk N., McMenamin C., McMenamin P. G., Kraal G., Thepen T. Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J Exp Med. 1993 Feb 1;177(2):397–407. doi: 10.1084/jem.177.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Holt P. G., Oliver J., McMenamin C., Schon-Hegrad M. A. Studies on the surface phenotype and functions of dendritic cells in parenchymal lung tissue of the rat. Immunology. 1992 Apr;75(4):582–587. [PMC free article] [PubMed] [Google Scholar]
  7. Lee C. S., Gogolin-Ewens K., Brandon M. R. Identification of a unique lymphocyte subpopulation in the sheep uterus. Immunology. 1988 Jan;63(1):157–164. [PMC free article] [PubMed] [Google Scholar]
  8. Lee C. S., Gogolin-Ewens K., Brandon M. R. Identification of a unique lymphocyte subpopulation in the sheep uterus. Immunology. 1988 Jan;63(1):157–164. [PMC free article] [PubMed] [Google Scholar]
  9. Lee C. S., Gogolin-Ewens K., White T. R., Brandon M. R. Studies on the distribution of binucleate cells in the placenta of the sheep with a monoclonal antibody SBU-3. J Anat. 1985 Jun;140(Pt 4):565–576. [PMC free article] [PubMed] [Google Scholar]
  10. Lee C. S., Meeusen E., Brandon M. R. Local immunity in the mammary gland. Vet Immunol Immunopathol. 1992 Apr;32(1-2):1–11. doi: 10.1016/0165-2427(92)90064-w. [DOI] [PubMed] [Google Scholar]
  11. Lee C. S., Meeusen E., Gogolin-Ewens K., Brandon M. R. Quantitative and qualitative changes in the intraepithelial lymphocyte population in the uterus of nonpregnant and pregnant sheep. Am J Reprod Immunol. 1992 Sep;28(2):90–96. doi: 10.1111/j.1600-0897.1992.tb00766.x. [DOI] [PubMed] [Google Scholar]
  12. Lee C. S., Outteridge P. M. Leucocytes of sheep colostrum, milk and involution secretion, with particular reference to ultrastructure and lymphocyte sub-populations. J Dairy Res. 1981 Jun;48(2):225–237. doi: 10.1017/s0022029900021646. [DOI] [PubMed] [Google Scholar]
  13. Lee C. S., Wooding F. B., Morgan G. Quantitative analysis of intraepithelial large granular lymphocyte distribution and maternofetal cellular interactions in the synepitheliochorial placenta of the deer. J Anat. 1995 Oct;187(Pt 2):445–460. [PMC free article] [PubMed] [Google Scholar]
  14. Lee C. S., Wooding F. B., Morgan G. Quantitative analysis throughout pregnancy of intraepithelial large granular and non-granular lymphocyte distributions in the synepitheliochorial placenta of the cow. Placenta. 1997 Nov;18(8):675–681. doi: 10.1016/s0143-4004(97)90009-6. [DOI] [PubMed] [Google Scholar]
  15. Mackay C. R., Beya M. F., Matzinger P. Gamma/delta T cells express a unique surface molecule appearing late during thymic development. Eur J Immunol. 1989 Aug;19(8):1477–1483. doi: 10.1002/eji.1830190820. [DOI] [PubMed] [Google Scholar]
  16. Mackay C. R., Maddox J. F., Brandon M. R. A monoclonal antibody to the p220 component of sheep LCA identifies B cells and a unique lymphocyte subset. Cell Immunol. 1987 Nov;110(1):46–55. doi: 10.1016/0008-8749(87)90100-6. [DOI] [PubMed] [Google Scholar]
  17. Mackay C. R., Maddox J. F., Brandon M. R. Three distinct subpopulations of sheep T lymphocytes. Eur J Immunol. 1986 Jan;16(1):19–25. doi: 10.1002/eji.1830160105. [DOI] [PubMed] [Google Scholar]
  18. Mackay C. R., Maddox J. F., Gogolin-Ewens K. J., Brandon M. R. Characterization of two sheep lymphocyte differentiation antigens, SBU-T1 and SBU-T6. Immunology. 1985 Aug;55(4):729–737. [PMC free article] [PubMed] [Google Scholar]
  19. Maddox J. F., Mackay C. R., Brandon M. R. Surface antigens, SBU-T4 and SBU-T8, of sheep T lymphocyte subsets defined by monoclonal antibodies. Immunology. 1985 Aug;55(4):739–748. [PMC free article] [PubMed] [Google Scholar]
  20. Maddox J. F., Mackay C. R., Brandon M. R. The sheep analogue of leucocyte common antigen (LCA). Immunology. 1985 Jun;55(2):347–353. [PMC free article] [PubMed] [Google Scholar]
  21. Meeusen E., Fox A., Brandon M., Lee C. S. Activation of uterine intraepithelial gamma delta T cell receptor-positive lymphocytes during pregnancy. Eur J Immunol. 1993 May;23(5):1112–1117. doi: 10.1002/eji.1830230520. [DOI] [PubMed] [Google Scholar]
  22. Nickerson S. C. Immunological aspects of mammary involution. J Dairy Sci. 1989 Jun;72(6):1665–1678. doi: 10.3168/jds.S0022-0302(89)79278-X. [DOI] [PubMed] [Google Scholar]
  23. Oliver S. P., Sordillo L. M. Approaches to the manipulation of mammary involution. J Dairy Sci. 1989 Jun;72(6):1647–1664. doi: 10.3168/jds.S0022-0302(89)79277-8. [DOI] [PubMed] [Google Scholar]
  24. Otsuki Y., Maxwell L. E., Magari S., Kubo H. Immunogold-silver staining method for light and electron microscopic detection of lymphocyte cell surface antigens with monoclonal antibodies. J Histochem Cytochem. 1990 Aug;38(8):1215–1221. doi: 10.1177/38.8.2365991. [DOI] [PubMed] [Google Scholar]
  25. Persson-Waller K., Colditz I. G. Expression of surface antigens on blood and mammary leukocytes in lactating and dry ewes. Vet Immunol Immunopathol. 1998 Apr 16;62(3):273–278. doi: 10.1016/s0165-2427(97)00169-4. [DOI] [PubMed] [Google Scholar]
  26. Puri N. K., Gorrell M. D., Brandon M. R. Sheep MHC class II molecules. I. Immunochemical characterization. Immunology. 1987 Dec;62(4):567–573. [PMC free article] [PubMed] [Google Scholar]
  27. Smith K. L., Schanbacher F. L. Lactoferrin as a factor of resistance to infection of the bovine mammary gland. J Am Vet Med Assoc. 1977 May 15;170(10 Pt 2):1224–1227. [PubMed] [Google Scholar]
  28. Sordillo L. M., Nickerson S. C., Akers R. M., Oliver S. P. Secretion composition during bovine mammary involution and the relationship with mastitis. Int J Biochem. 1987;19(12):1165–1172. doi: 10.1016/0020-711x(87)90098-x. [DOI] [PubMed] [Google Scholar]
  29. Tatarczuch L., Philip C., Lee C. S. Involution of the sheep mammary gland. J Anat. 1997 Apr;190(Pt 3):405–416. doi: 10.1046/j.1469-7580.1997.19030405.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES