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Issues in Arsenic Cancer Risk
Assessment
We respond to Mushak and Crocetti's
recent publication (1), which criticizes sever-
al of our recently published analyses related
to arsenic cancer risk assessment (2-5).
Basically, their criticism is that evidence of
an overestimate of arsenic risk using the pre-
sent cancer slope factor (CSF) is poorly sup-
ported. We present here additional informa-
tion which demonstrates flaws in these argu-
ments showing that 1) considerable amounts
of inorganic arsenic are present in rice and
yams; 2) a water ingestion rate of 4.5 1/day
for Taiwanese farmers is scientifically justifi-
able; 3) consideration of these alternative
estimates of arsenic intake from food and
water, when calculating a cancer slope fac-
tor, will yield lower cancer risks; 4) analysis
of monomethyl arsenic/dimethyl arsenic
(MMA/DMA) ratios supports a threshold
for arsenic methylation and detoxification;
and 5) dietary protein deficiencies, even in
the range experienced by the Taiwanese,
have been shown to affect methylation effi-
ciencies. Thus, application of cancer risk
estimates derived from Taiwanese popula-
tions may indeed overestimate risks to U.S.
populations.

Inorganic arsenic intake from food.
Accurate assessment of arsenic intake from
food is critical in quantifying total exposure
of the Taiwanese farmers. In their commen-
tary, Mushak and Crocetti critique the
methods used by Yost et al. (4) to analyze
speciated arsenic content of rice and yams in
the Taiwanese diet. They assert that Yost et
al. (4) noted that their methods ". . . required
chemically forcing conditions," suggesting
that observed inorganic arsenic was due to
breakdown of organic arsenic during sample
digestion. The available evidence indicates
that methods used by Yost et al. (4) are no
more likely to break down organic arsenic
species than other analytical methods used
to examine arsenic speciation. For example,
the Ontario Ministry of the Environment
(OMOE) (6) reports high concentrations of
organic arsenic in seafood despite use of con-
centrated nitric acid (15.9 M) and sulfuric
acid (18 M) digestions, which constitute a
much more chemically forcing method than
the hydrochloric acid (2 M) used by Yost et
al. (4). Sanders (7) also reports high con-
centrations of organic arsenic in algae fol-
lowing digestion with concentrated nitric
acid.

In contrast to Mushak and Crocetti's
assertion, the work of Pyles and Woolson
(8) and the OMOE (6) are consistent with
the findings ofYost et al. (4), demonstrating
that inorganic arsenic accounts for a large
fraction of total arsenic in some foods
(58-61% in polished rice, 83% in rice grain,

and 48-88% in yams). Pyles and Woolson
(8) recovered 40% of the total arsenic in
potato flesh as inorganic arsenic, whereas
only a trace of organic arsenic was detected
in analyses of these tissues. Mushak and
Crocetti (1) mischaracterize their data in
stating that inorganic arsenic comprised only
8% of total arsenic. OMOE studies found
that inorganic arsenic makes up 42% of total
arsenic in rice, 50% in whole wheat bread,
and 73% in apple juice (6,9). Mushak and
Crocetti incorrectly cite OMOE data as the
basis for stating that 10% of arsenic in pota-
toes occurs in inorganic forms, when in fact,
OMOE has not conducted a speciation
analyses of arsenic in potatoes. [OMOE staff
were not aware of the report cited by
Mushak and Crocetti entitled "Percentage of
Inorganic Arsenic in Food: A Preliminary
Analysis," document number 87-48-45000-
057; the authors appear to be referring to a
report with that number titled "Organic vs.
Inorganic Arsenic in Selected Food Samples"
(6).]

Inorganic arsenic intake from water.
There is considerable evidence to suggest
that a total fluid intake rate of 4.5 1/day
(EPA's current assumption) represents a
conservative estimate for an agrarian
Taiwanese population working outdoors in
a warm climate. In their commentary,
Mushak and Crocetti criticize this value,
suggesting that Taiwanese adult males and
females require about 2 liters of total water,
based on an estimated fluid requirement of
38 ml/kg body weight for an adult in a
37.8°C environment (10). However, this
value represents a minimum requirement to
maintain fluid balance and assumes "the
most favorable conditions oflow solute load,
minimal physical activity, and absence of
sweating" (10), and does not account for the
impact of physical activity on fluid require-
ments.

Sweat loss rates of 1 I/hr are not uncom-
mon for individuals performing moderate
physical activity in a hot climate (11-13).
For example, Szlyk et al. (14,15) monitored
fluid balance in healthy men during consec-
utive cycles of 30 min walking/30 min rest
at 400C and a relative humidity (RH) of
40%. Water requirements, represented by
the total volume of sweat lost, averaged 4.1
liters over 6 hr. Similar sweat loss rates
(0.71-0.99 l/hr) were reported by Pitts et al.
(16) for individuals marching in dry heat
conditions (37.8°C, 35% RH); higher rates
(1.17-1.48 l/hr) were reported in moist heat
conditions (32-35°C, 80-83% RH).

The climate in Taiwan is mostly warm
and humid, with temperatures averaging
30°C in the summer months. Even at light
work intensity, the U.S. Army recommends
consuming approximately 1 liter water/hr to

sustain fluid balance at temperatures of
30°C and 20% RH (17). Assuming this rec-
ommendation is based on a 70-kg man, the
corresponding drinking water requirements
for a 55-kg Taiwanese farmer performing
moderate physical activities would be about
0.8 l/hr, or roughly 5-6 /day.

Mushak and Crocetti note that "children
9-10 years old would consume 1.3 1/day of
water at an ambient temperature of 37.8°C,"
based on data presented by Galagan et al.
(18). This statement is not completely accu-
rate; the temperature cited represented the
maximum temperature reached during the
day, and water represented only 43% of the
direct fluid intake. Thus, direct fluid intake
would total 3 1/day for a 35-kg child, corre-
sponding to 61/day for an adult.

Individuals acclimated to a hot environ-
ment do not ingest less water than those not
acclimated, as Mushak and Crocetti suggest.
Studies indicate an earlier onset of sweating,
increased sweat volumes, and an improved
relationship between thirst and body fluid
needs, resulting in greater fluid intakes in
acclimatized individuals (19,20).

Voluntary dehydration is primarily
attributed to a sluggish thirst mechanism in
humans (11) and is not a conscious decision
by the individual as Mushak and Crocetti
state. Dehydration commonly reaches 2-3%
of body weight and may go as high as 5%
(i.e., 3.5 liters for a 70-kg individual) (21).
Thirst stimulation is triggered upon reach-
ing a fluid deficit equivalent to a 0.5-1%
loss in body weight (11). Although urine
volume can decrease as a result of voluntary
dehydration [from typical volumes of 1-2
1/day to as little as 0.3-0.5 I/day (10,11)],
reductions in urine volume alone can only
account for a water deficit of about 1.5
liters. Such reductions are insufficient to
fully compensate for water losses due to vol-
untary dehydration (up to 3.5 liters) or to
extensive sweat loss (estimated above to be
roughly 5-6 liters for a Taiwanese farmer).
Furthermore, water deficits resulting from
voluntary dehydration are usually made up
after one or two meals and a night's rest
(11,21). Because an individual could not
continually lose water without suffering the
effects of dehydration, voluntary dehydra-
tion must be a transient phenomenon and
has no effect on average total water con-
sumption rates.

Mushak and Crocetti are mistaken in
arguing that Beck et al. (3) and Yost et al.
(4) have failed to consider arsenic intake
from the preparation of rice and tea. In fact,
EPA's recommended drinking water intake
level of 4.5 1/day accounts for both direct
water consumption (3.5 liters; including tap
water and other beverages made from tap
water, such as tea) and indirect water con-
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sumption through the preparation of rice
and dried sweet potatoes (1 liter) (22).

Implications ofalternative estimates of
arsenic intake from food and water
on the arsenic cancer slope factor.
Consideration of inorganic arsenic intake
from food is important in estimating the
arsenic CSF. Mushak and Crocetti incor-
rectly conclude that added inorganic arsenic
from the diet would have no effect on the
calculation of the arsenic CSF. In fact, as
arsenic intakes increase and the
dose-response curve shifts to the right, the
y-intercept can not fall below zero because
zero intake can not produce "negative can-
cers." Thus, the low-dose portion of the
curve must flatten to keep the intercept zero
or positive. Brown and Abernathy (23) have
also recently completed an analysis of the
impact of revised food and water intake rates
on estimates of cancer risk and reached simi-
lar conclusions.

Evidence for nonlinearities in the
arsenic dose response. Several lines of evi-
dence (in particular, studies on the impact of
high doses of arsenic on saturation of arsenic
methylation) indicate that the dose-response
relationship for arsenic may be nonlinear.
Mushak and Crocetti argue that because the
percentage of inorganic arsenic excreted in
the urine often does not vary with increasing
exposure [reviewed by Hopenhayn-Rich et al.
(24)], the hypothesis that methylation
becomes saturated at high doses is implausi-
ble. However, the percentage of arsenic
excreted in the urine may not be the only
valid indicator for methylation. Recent stud-
ies suggest that the ratio ofMMA and DMA
metabolites, which reflects the efficiency of
MMA methylation to DMA, may be a more
sensitive indicator of changes in the methyla-
tion process.

We have reviewed additional studies since
our previous response (3) and found multiple
study results, in addition to Froines et al.
(25) and Del Razo et al. (26), which indicate
higher MMAIDMA ratios in exposed groups
compared to controls within a given study.
For example, Farmer and Johnson (27)
found MMA/DMA ratios of 0.007 in con-
trols, compared to ratios of 0.016, 0.11, 0.22,
0.21, 0.26, and 0.29 in exposed populations,
listed in order of low exposure to high expo-
sure. Similarly, Hopenhayn-Rich et al. (28),
Hseuh et al. (29), and Yamauchi et al. (30)
have also found higher MMA/DMA ratios in
exposed versus control populations. These
findings indicate that humans may not able
to convert MMA to DMA as efficiently at
higher arsenic exposures and suggest a satura-
tion of the methylation reaction at higher
doses. Furthermore, additional evidence sup-
porting this trend in MMA/DMA ratios
comes from recent evidence that, even among

a group of individuals with chronic arsenic
exposure, those exhibiting cutaneous signs of
arsenicism have greater MMA/DMA ratios
than exposed individuals without cutaneous
signs (31).

A more dramatic change in MMA/DMA
ratios with dose was observed in a recent ani-
mal study; Hughes et al. (32) exposed mice
to acute doses ranging from 0.5 to 5000 pg
arsenate per kilogram body weight. The
resulting MMA/DMA ratios were 10-fold
higher in the highest exposure group com-
pared to the lowest exposure group, suggest-
ing that methylation ofMMA to DMA was
impaired with increasing exposure. While this
study involved acute and not chronic expo-
sures, it nonetheless provides valuable infor-
mation about the saturation of arsenic
methylation.

Mushak and Crocetti (1) question the
method sensitivity of blood arsenic analyses
by Valentine et al. (33), based on the practi-
cal quantitation limit (PQL) of4 pg/l derived
in Eaton's study of arsenic in water (34).
However, in a single, well-controlled study
where there is minimal variability in method,
matrix type, instrument and operator perfor-
mance, and quality control, the method
detection limit is the appropriate measure of
the level of detection, not the practical quan-
titation limit derived from a multi-laboratory
study. Hydride generation-atomic absorp-
tion, the method used by Valentine et al.
(33), can reach nanogram-per-liter levels of
detection in biological samples including
blood (34). At the time of Valentine's study
(33), detection limits for arsenic in blood
were about 0.1-1 pg/l for most techniques
(35). Recently, Vahter et al. (36) achieved a
method detection limit of 1 pg/l arsenic in
blood using similar methods.

Effects ofprotein deficiencies. The
impact of protein deficiency on arsenic
methylation may be a factor in explaining dif-
ferential susceptibility to arsenic across popu-
lations. Mushak and Crocetti (1) conclude
that this is not likely to be an important fac-
tor based on a calculation of the molar ratio
of arsenic to methionine and cysteine intake
in the Taiwanese population, indicating that
less than 1% of the daily donor methyl avail-
ability would be required to completely
methylate total available arsenic. However, a
study in rabbits suggests that even a 67- to
100-fold excess in the molar quantity of
donor methyl compounds, as was estimated
for the Taiwanese population, is within the
range capable of affecting arsenic methyla-
tion.

Vahter and Marafante (37) measured the
urinary excretion of speciated arsenic forms in
rabbits fed a standard diet and in rabbits fed a
methionine-restricted diet (containing 25%
fewer methyl donor compounds). In control

rabbits, 0.3% of the daily donor methyl avail-
ability would be required to completely
methylate available arsenic; in rabbits fed the
methionine-restricted diet, 1.2% of the daily
donor methyl availability would be required.
Rabbits fed the standard diet excreted 65% of
an arsenic dose as DMA, compared to 39%
in the rabbits fed the methionine-restricted
diet. In other words, a methionine-restricted
diet resulted in decreased methylation capaci-
ty, despite a 77-fold excess in the total molar
quantity ofdonor methyl compounds. A pos-
sible explanation for this observation could be
that arsenic and methionine stores are found
in different subceilular compartments in the
body. Thus, a simple consideration of the
molar ratio of arsenic to methyl donor groups
(methionine and cysteine) is not a good indi-
cator of arsenic methylation capacity.
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Response: Accuracy, Arsenic,
and Cancer
Slayton et al. (1) have attempted to rebut
portions of our EHP commentary on arsenic
(As) cancer risk assessment (2) and some of
the debate that has emerged over such assess-
ments. In responding to Slayton et al., we
offer some additional information that inter-
ested readers may find helpful in comparing
our commentary and these responses with
Slayton et al. Our commentary drew particu-
lar attention to some obvious problems in
reported criticisms of the Taiwanese As expo-
sure and carcinogenesis data.

Dieary versus drinking waterAs in the
Taiwanese study population. The cancer
slope factors for ingested As based on well
water As levels in Taiwanese studies were
challenged by Beck et al. (3) and Yost et al.
(4). They argued that their finding of inor-
ganic As in some rice and yam samples from
Taiwan required that diet As be factored into
derivation of cancer dose-response curves.
We noted some quantitative questions about
their results. Our concerns are not trivial and
the Yost et al. findings (4) require toxicologi-
cal context and some mention of the wider
implications. Nowhere in our paper did we
argue that no inorganic As could be present
in their few samples, merely that the As frac-
tions in Yost et al. (4) appeared to differ in
some cases from other reported values.

We suggested, as one possibility, use of
different analytical methods. We also indicat-
ed that any analytical methodology involving
use of strong acids merits scrutiny when spe-
ciating multiple forms of an element like As,
especially when significant fractions of a car-
cinogenic form are being reported. How well
do such measured levels of As forms reflect
the original sample forms, and how well does
in vitro chemical behavior reflect in vivo dis-
position of these forms when ingested?
Inorganic As might be liberated in analysis
but not in vivo when ingested. Water As does
not offer this problem, being typically in the
inorganic form. Such differences for rice,
yams, and similar foods can be studied with
controlled-diet feeding studies in the same
way that seafood and other marine biota were
studied.

There are several wider potential implica-
tions of the Yost et al. data (4), as reported.
They may indicate the need for speciation
analyses to detect variable inorganic As con-
tent when doing risk assessments at other As-
impacted areas and communities. There may
be a need to pay much more attention to
food crops as exposure pathways for As in
these communities. Use of analytical methods
that do not methodologically alter original
biochemical forms might be necessary.

Slayton et al. (1) note the well-known
fact that strong acids do not materially break
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