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Nongenotoxic carcinogens are chemicals that induce neoplasia without it or its metabolites
reacting directly with DNA. Chemicals classified as nongenotoxic carcinogens have been assumed
to act as tumor promoters and exhibit threshold tumor dose-responses. This is in contrast to
genotoxic carcinogens that are DNA reactive, act as tumor initiators, and are assumed to exhibit
proportional responses at low doses. In this perspective, we examine the basic tenets and utility
of this classification for evaluating human cancer risk. Two classes of so-called nongenotoxic
chemical carcinogens selected for review include cytotoxic agents that induce regenerative
hyperplasia (trihalomethanes and inducers of a2-microglobulin nephropathy) and agents that act via
receptor-mediated mechanisms (peroxisome proliferators and dioxin). Major conclusions of this
review include: a) many chemicals considered to be nongenotoxic carcinogens actually possess

certain genotoxic activities, and limiting evaluations of carcinogenicity to their nongenotoxic effects
can be misleading; b) some nongenotoxic activities may cause oxidative DNA damage and
thereby initiate carcinogenesis; c) although cell replication is involved in tumor development,
cytotoxicity and mitogenesis do not reliably predict carcinogenesis; d) a threshold tumor response
is not an inevitable result of a receptor-mediated mechanism. There are insufficient data on the
chemicals reviewed here to justify treating their carcinogenic effects in animals as irrelevant for
evaluating human risk. Research findings that characterize the multiple mechanisms of chemical
carcinogenesis should be used quantitatively to clarify human dose-response relationships,
leading to improved scientifically based public health decisions. Excessive reliance on over-

simplified classification schemes that do not consider all potential contributing effects of a toxicant
can obscure the actual causal relationships between exposure and cancer outcome. Environ
Health Perspect 1 04(Suppl 1):123-134 (1996)
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Introduction
The mechanism of carcinogenesis is not Definitions of nongenotoxic carcinogens are
fully understood for any chemical, and not always consistent in the scientific litera-
knowledge of the mechanisms for nongeno- ture. A nongenotoxic chemical is a chemi-
toxic carcinogens is substantially less exten- cal that does not form DNA adducts, does
sive than that for genotoxic carcinogens. not induce DNA repair, and is negative in
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in vitro or in vivo tests for mutagenicity.
Some authors consider a chemical to be
nongenotoxic if it is negative in most
short-term assays. Thus, genotoxic agents
produce chemical alterations in DNA
directly, whereas nongenotoxic agents are
thought to indirectly stimulate hyperplastic
or neoplastic responses. However, this
definition does not preclude the possibility
that a chemical is both DNA reactive and
stimulates cell proliferation.

Classification systems based on labeling
chemicals as genotoxic or nongenotoxic
and on presumed mechanisms of action for
each class lead to ambiguous reconstruc-
tions of the carcinogenic process. One
motivation for such classification is that
nongenotoxic carcinogens are thought to
be less hazardous to human health than are
genotoxic carcinogens. This view is based
on the assumption that nongenotoxic
carcinogens act as tumor promoters and
exhibit threshold tumor dose-responses,
whereas genotoxic carcinogens act as
tumor initiators and exhibit proportional
responses at low doses. The rationale for
this assumption is that, by analogy with
ionizing radiation, a single molecule of a
genotoxic agent could, in theory, react
with a cell's DNA and produce heritable
changes in the genome of the affected cell.
If an altered gene is involved in cellular
differentiation or replication, such herita-
ble changes could result in tumors. In the
absence of direct effects of a nongenotoxic
agent on DNA, it is assumed that exposure
to the chemical leads to production of
another substance which stimulates tumor
development. Therefore, a minimal dose of
the nongenotoxic agent would be required
to accumulate a sufficient amount of the
proximate carcinogen in the target tissue to
produce a response.

In this paper, tumor promotion is used
as an operational term referring to the
pleiotropic changes in cellular differentia-
tion and proliferation occurring during the
clonal expansion of previously initiated
cells. Chemicals that effect such changes
have been classified as tumor promoters.
However, this does not necessarily mean
that the chemical affects the carcinogenic
process solely through such activities. For
example, a strong tumor promoter may
elicit weak or indirect genotoxicity and
weak tumor-initiating activity.

Animal studies demonstrate that tumor
promoters can cause cancer in the absence
of an initiating agent, and the existence or
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absence of threshold dose-responses
cannot be determined from current knowl-
edge of carcinogenic mechanisms (1).
More important, the fact that several non-
mutagenic carcinogens have been found to
be carcinogenic in experimental animals as
well as in humans (e.g., benzene, 2,3,7,8-
tetrachlorodibenzo-p-dioxin [TCDD],
diethylstilbestrol, asbestos, arsenic) empha-
sizes the need to consider the nongenotoxic
activities of these chemicals in evaluating
human risk. Excessive reliance on over-
simplified classification schemes to charac-
terize the complex processes involved in
chemical carcinogenesis can obscure the
actual causal relationships between exposure
and cancer outcome.

This review examines the potential role
of several nongenotoxic activities suggested
to be the critical factors for the carcinogenic
effect of certain nongenotoxic carcinogens.
Examples of classes of presumed nongeno-
toxic chemicals selected for review include
cytotoxic agents that induce regenerative
hyperplasia [trihalomethanes and inducers
of a2-microglobulin (a2p) nephropathy]
and agents that act via receptor-mediated
mechanisms (peroxisome proliferators and
TCDD). Investigations are proposed to
help determine whether associations
between these nongenotoxic activities and
carcinogenicity represent causality and to
clarify the nature of their dose-response
relationships. Research findings that address
assumptions in mechanistic hypotheses of
chemical carcinogenesis can aid in reducing
uncertainties in predictions of human risk
and lead to improved scientifically based
public health decisions.

Do "Nongenotoxic
Carcinogens" Lack
Genotoxic Activity?
As new data are generated on carcinogenic
agents, classifications of chemicals into
nongenotoxic or genotoxic categories may
change. Two examples of liver carcinogens
that had been thought to act by nongeno-
toxic mechanisms are cyproterone acetate
and tamoxifen. Recent studies show that it
would be misleading to limit evaluations
of the carcinogenic potential of these
chemicals by simply focusing on their
nongenotoxic effects.

The induction of liver tumors in rats
by the synthetic steroid cyproterone
acetate has been attributed to a tumor-
promoting activity because this steroid was
not mutagenic in Salmonella typhimurium
but did induce cell proliferation associated

with increased DNA synthesis and liver
growth in rats (2). Recently, Schwarz and
co-workers have shown that cyproterone
acetate induces DNA repair synthesis in
rat hepatocyte cultures, generates DNA
adducts in rat hepatocytes after in vitro or
in vivo exposures, and induces a dose-
dependent increase in enzyme-altered
(ATPase-deficient and y-glutamyltranspep-
tidase-positive) hepatic foci in rats (3-5).
The latter studies indicate that cyproterone
acetate is genotoxic and has tumor-initi-
ating activity. These studies demonstrate
the need to understand and evaluate
all activities of a chemical that may con-
tribute to the carcinogenic process rather
than simply identifying one of the biologi-
cal effects of the chemical as the sole cause
of tumor induction.

Tamoxifen, a nonsteroidal antiestrogen
used in the treatment of breast cancer, is a
strong liver carcinogen in rats (6,7).
Because neoplastic changes were thought
to result from hormonal perturbations and
because this compound was not mutagenic
in several in vitro assays [Ames Salmonella
test, unscheduled DNA synthesis in HeLa
cells, Chinese hamster ovary (CHO) cell
hprt locus assay], tamoxifen was considered
to be a rat-specific, nongenotoxic hepato-
carcinogen (8). An extensive literature base
shows that tamoxifen forms DNA adducts
in the livers of rats, mice, and hamsters
(9,10); it is activated to form DNA adducts
by rat or human liver microsomes (11); it is
dastogenic in human lymphoblastoid cells
(12); and liver tumors in rats treated with
tamoxifen have a high frequency of p53
mutations (13). These genotoxic activities
demonstrate that tamoxifen does not act
simply as tumor promoter.

Cytotoxic Agents that Induce
Regenerative Hyperplasia
The suggestion that cytotoxic agents may
cause tumors due to chronic cell prolifera-
tion is based largely on the finding that
some chemicals that do not appear to react
with DNA cause cytotoxicity and regenera-
tive hyperplasia in the same organ in which
tumors develop after long-term chemical
exposure (14-16). It has been hypothe-
sized that DNA is more sensitive to dam-
age during cell division and that increased
rates of cell replication increase the proba-
bility of converting endogenous DNA
damage into mutations by reducing the
time available for DNA repair.

In this review cell replication is
synonymous with cell division. Chemically
induced cell proliferation denotes an

increase in the number of a specific type of
cell in a treated animal due to an increased
rate of cell division relative to the rate of
cell loss. Replicative DNA synthesis com-
monly has been evaluated by measurement
of the fraction of cells incorporating bro-
modeoxyuridine or tritiated thymidine into
DNA during S-phase of the cell cycle (S-
phase labeling index). It should be noted
that the S-phase labeling index would not
be identical to the cell division rate when
replication of DNA does not progress to
formation of two viable daughter cells.

The debates over how and to what
extent cell proliferation influences the car-
cinogenicity of nongenotoxic chemicals are
complicated by the fact that cell replication
is an integral component of the carcino-
genic process. Indeed, cell division can fix
promutagenic DNA damage into heritable
mutations, and cell replication occurs dur-
ing the clonal expansion of premalignant
cells. However, it has not been established
that the carcinogenic outcome in most tis-
sues is determined by the cell division rate
(17-19). The general view at an interna-
tional symposium on cell proliferation and
chemical carcinogenesis was that although
cell replication is involved inextricably in
the development of cancers, chemically
enhanced cell division does not reliably
predict carcinogenicity (20).

Several factors influence the predictabil-
ity of cell proliferation for carcinogenesis.
These include a) consistency and specifi-
city within a large database of chemical
carcinogens and noncarcinogens; b) quan-
titative correspondence between the dose-
response curves for cell proliferation and
tumor incidence under similar experimen-
tal conditions; and c) persistence of the
proliferative response (21). If sustained cell
proliferation is the sole determinant of the
carcinogenicity of nongenotoxic chemicals,
then equivalent site-specific increases in
cell division rate by different chemicals
must produce the same tumor response.
However, the available data are too sparse
to either support or refute this hypothesis.

The importance of a sustained increase
in S-phase DNA labeling is illustrated in
studies of phenobarbital. Dietary adminis-
tration of this drug produced a 4- to 5-fold
increase in hepatic DNA synthesis in rats
after 3 days of treatment, and this rate
returned to control levels by day 5 (22).
However, this transient response was not
sufficient to account for the promoting
effect of phenobarbital because prolonged
exposure (> 100 days) was required to pro-
mote 2-acetylaminofluorene-initiated liver
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lesions (23).The long-term inhalation
studies of tetranitromethane are also
instructive with respect to the role of regen-
erative hyperplasia in chemical carcino-
genicity. Tetranitromethane, which is
mutagenic in Salmonella and induces chro-
mosomal aberrations and sister chromatid
exchanges in CHO cells, produced high
incidences of benign and malignant lung
neoplasms in both sexes of rats and mice at
exposure concentrations ranging from 0.5
to 5 ppm (24). These exposures also pro-
duced high incidences of hyperplasia of
the respiratory epithelium in rats and mice
without inducing tumors of the nasal
cavity in either species. Thus, even for a
potent mutagen and carcinogen, chronic
irritation and regenerative hyperplasia are
not predictive of a carcinogenic response.

Trihalomethanes
The induction of liver tumors in female
mice treated with chloroform by gavage in
corn oil was suggested to be due to cytotoxi-
city and regenerative hyperplasia resulting
from the metabolism of this trihalometh-
ane to a reactive toxic intermediate (25).
Both doses of chloroform used in the bio-
assay of this chemical caused centrilobular
hepatocyte necrosis, increases in serum
activities of the liver enzymes alanine
aminotransferase and sorbitol dehydroge-
nase, and increases in replicative DNA
synthesis in the liver.
A 2-year study in female mice exposed

to chloroform at doses up to 1800 ppm in
drinking water (a similar daily dose as the
gavage study) did not induce liver tumors
(26). Because these doses did not cause
hepatotoxicity or produce an increase in
the S-phase labeling index, Larson et al.
(25) suggested that the rate of oxidative
metabolism of chloroform in the livers of
these animals was insufficient to cause
regenerative hyperplasia consequent to
cytotoxicity. They concluded that lower
oxidative rates in the drinking water study,
leading to less cell replication, could
explain the difference in the cancer
responses by the two routes of exposure.
Consistent with this hypothesis, the physi-
ologically based pharmacokinetic (PBPK)
model of Corley et al. (27) predicted the
peak rates of metabolism of chloroform in
the liver to be considerably higher in
female mice given a single carcinogenic
dose of chloroform by gavage than in mice
exposed to a comparable daily dose in the
drinking water.

Inhalation exposure of female mice
to 30 ppm chloroform did not cause

hepatocellular necrosis either, but unlike
the drinking water exposure, it did produce
a 7-fold increase in the hepatocyte labeling
index relative to controls (28). However,
the rate of hepatic metabolism of chloro-
form predicted by the PBPK model in
mice exposed to 30 ppm by inhalation was
less than the predicted rate of metabolism
in mice exposed to 1800 ppm chloroform
in the drinking water U Robert Buchanan,
personal communication). The inconsis-
tency between the experimental data and
model predictions for the drinking water
and inhalation studies demonstrates that
either liver metabolism of chloroform does
not predict the cell replication rate or the
PBPK model is incorrect.

Mutagenicity was not considered to be
an important contributing factor in the
carcinogenicity of chloroform because the
results of the majority of genotoxicity
studies on this chemical were negative.
Rosenthal (29) contends that there is some
evidence of genotoxicity due to chloroform
and that many of the short-term tests on
this chemical were inconclusive. Chloro-
form induced sister chromatid exchanges
in human lymphocytes in vitro and in
mouse bone marrow cells in vivo (30),
gene conversion and mitotic crossover in
Saccharomyces cerevisiae (31), and elicited
low-level binding to calf thymus DNA in
the presence of rat liver microsomes (32).

Trihalomethanes as a class are metabo-
lized by a microsomal cytochrome P450-
dependent monooxygenase to reactive
dihalocarbonyl intermediates (33). The
hepatotoxicity of chloroform appears to be
related to its metabolism, presumably due
to the covalent binding of its metabolite
phosgene to cellular macromolecules, lead-
ing to cell death (34,35). Pretreatment of
rats with phenobarbital enhanced the
metabolism and the hepatotoxicity of
chloroform, while cysteine treatment was
protective against chloroform-induced
hepatocellular necrosis.

Because of the large energy difference
between C-Br (54 kcal/mol) and C-Cl (78
kcal/mol) bonds (36), bromodichloro-
methane (BDCM) should be almost
exclusively metabolized to the same dihalo-
carbonyl as that formed from chloroform.
Thus, it might be expected that the toxico-
logical effects of BDCM would mimic
those of chloroform. When the doses of
chloroform, BDCM, or chlorodibromo-
methane (CDBM) used in the carcino-
genicity studies of these trihalomethanes
were expressed as mol/kg/day, a composite
dose-response plot for liver neoplasms

produced in female B6C3F1 mice by these
three chemicals revealed a relationship
suggestive of a possible common mecha-
nism of tumor induction (37). Neither
BDCM nor CDBM caused hepatocellular
necrosis in the 2-year studies or in the
13-week studies at considerably higher
doses. Thornton-Manning et al. (38)
confirmed the lack of histopathological
changes in the livers of female mice
exposed to doses of BDCM that produced
high incidences of liver tumors in the
2-year study of this chemical.Thus, overt
toxicity followed by regenerative hyperpla-
sia is not the sole determinant of the liver
tumor response for this group of chemicals.
The elucidation of the mechanisms of
tumor development by cytotoxic chemicals
requires much greater knowledge than that
which can be obtained from measurements
of S-phase labeling alone.

Inducers of X2-Microglobulin
Nephropathy and Kidy Cancer
in Male Rats
The current hypothesis on the role of aX21
in chemically induced kidney cancer is
based on the observed accumulation of
protein droplets containing aX2P in epi-
thelial cells of the proximal convoluted
tubules of male rats exposed to hydrocar-
bons that have been reported to cause
kidney cancer in male rats after long-term
exposure. tX2P is a low molecular weight
protein (18.7 kDa) synthesized in the liver
of male rats under androgenic control
(39). It is not synthesized by hepatocytes
of female rats, mice of either sex, or several
other species including humans. Hydro-
carbons or their metabolites that bind
reversibly to x21 do not increase the level
of hepatic synthesis of this protein (40).

a2-Microglobulin is secreted into the
blood, filtered through the glomerulus, and
partially reabsorbed (50%) by endocytosis
into proximal tubule epithelial cells of the
P2 segment (41). The unabsorbed fraction
is excreted in the urine while the reab-
sorbed portion is presumably hydrolyzed to
amino acids after fusion of endocytotic
vesicles with epithelial cell lysosomes. The
accumulation of protein droplets contain-
ing aX2P was suggested to be due to revers-
ible binding of xenobiotic ligands to this
protein, rendering it more resistant to
proteolytic degradation (42,43).

The accumulation of a2P is hypo-
thesized to cause lysosomal dysfunction
resulting in cell killing (42). The actual
cause of cell death is not known. Sloughing
of necrotic epithelial cells into the tubule
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lumen has been observed, and granular
casts of necrotic cellular debris accumulate
at the junction of the P3 segment of
the proximal tubule and the thin loop of
Henle. Regenerative proliferation of epi-
thelial cells in the P2 segment occurs in
response to the cell loss (44-46).

Although the mechanistic link between
cell proliferation and kidney cancer is
unknown, it has been suggested that regen-
erative hyperplasia causes the tumorigenic
response in the male rat kidney by increas-
ing the likelihood of fixing presumed spon-
taneous cancer-initiating DNA damage
into heritable mutations or by promoting
the clonal expansion of spontaneously
initiated cells (46,47). 2,2,4-Trimethyl-
pentane (TMP), one of the most active
nephrotoxic components in unleaded
gasoline (48), has been used as a model
compound to study the mechanism of
(X2j nephropathy.

Data that Support the aZu Hypothesis.
Nongenotoxic chemicals that induce a2p1
accumulation and renal carcinogenesis in
male rats have not been shown to induce
kidney tumors in animals that lack the
ability to synthesize a2P in the liver (e.g.,
female rats or mice of either sex).

Chemicals that induce a2p accumula-
tion in male F344 or Sprague-Dawley rats
do not induce protein droplet nephropathy
in male NIH Black Reiter (NBR) rats (49),
a strain deficient in hepatic a2P synthesis.

Chemicals (or one of their metabolites)
that bind reversibly to a21 induce a2P
accumulation in the male rat kidney (50).

In vitro lysosomal degradation of
a2p decreased in the presence of chemicals
(or their metabolites) that induce a2P
accumulation (43).

S-phase labeling index in the P2
segment of renal proximal tubules was
increased in male rats exposed to several
chemicals or chemical mixtures that induce
Q2p accumulation. For unleaded gasoline,
the dose dependency for the renal epithe-
lial cell labeling index is similar to that of
the kidney tumor response (44,45).

Unleaded gasoline and d-limonene
elicited tumor-promoting activity in the
kidney of male F344 rats initiated with N-
ethyl-N-hydroxyethylnitrosamine (EHEN)
(46,47), whereas d-limonene did not pro-
mote renal carcinogenesis in EHEN-initi-
ated male NBR rats (46). Because 2-year
carcinogenicity studies have not been per-
formed with NBR rats, it is not clear that
the two strains would respond similarly.

Data that Are Inconsistent with the
a2u Hypothesis. Gabapentin and lindane

induced "2p accumulation and nephrop-
athy in male rats at doses that did not
increase kidney tumor incidences (51-53).

Binding of xenobiotic ligands to X2P
alone does not account for the accumula-
tion of this protein or the tumor response
in the kidney of male rats because a) most
of the a2P in the kidney of male rats is not
ligand bound (54-57); b) the trimethyl-
pentanoic acid metabolites ofTMP do not
bind to X2p, but cause accumulation of
this protein in the kidney of male F344
rats (58); c) binding affinities vary by
1000-fold for chemicals that induce a2P
accumulation (50). Isophorone has a
50-fold higher binding affinity than 1,4-
dichlorobenzene or its metabolite 2,5-
dichlorophenol; yet isophorone produces
a similar dose-dependent carcinogenic
response as 1,4-dichlorobenzene in the
male rat kidney; d) inhibition of lysosomal
degradation ofa2P was similar for chemicals
that have binding affinities for a2P that
vary by 2 to 3 orders of magnitude (43).

Foci of chronic progressive nephropathy,
renal tubular lesions appearing in control
F344 rats by 20 weeks of age, have cellular
replication rates that are higher than those
of P2 proximal tubule cells in male rats
exposed to chemicals that induce a2O accu-
mulation (45). However, the incidence of
spontaneous kidney tumors in untreated
male rats is low (less than 0.6%) even when
held to 146 weeks of age (59). In addition,
European high test gasoline increased the
renal cell labeling index (60) but did not
induce renal carcinogenesis in male rats
(Cesare Maltoni, personal communica-
tion). Thus, high rates of cell replication
alone are not predictive of kidney cancer.

Except for d-limonene, the chemicals
that induced a2p accumulation and kidney
carcinogenesis in male rats also induced
cancer at other sites; mouse liver cancer
was the most common (57). This finding
suggests that other factors are involved in
the carcinogenicity of these chemicals.

Although cell replication is a basic com-
ponent of multistage carcinogenesis, there
are no data demonstrating that the carcino-
genic outcome in the kidney is determined
by the cell division rate (61). There is no
adequate database relating level of cell pro-
liferation to renal tumor response in male
rats (57).

TMP, the model compound upon
which the hypothesis linking a2i accumu-
lation with kidney cancer in the male rat is
based, did not produce kidney tumors in
male rats after lifetime exposure (Cesare
Maltoni, personal communication).

An Alternative Hypothesis. The physi-
ological function of a21P is unknown.
Because hydrophobic chemicals bind to
this protein, it may serve as a carrier for the
urinary excretion of pheromones or other
lipophilic ligands. In the liver of male rats
where this protein is synthesized, interme-
diary metabolites of certain nephrotoxic
agents may bind to a2p and thereby be
shielded from activating and detoxicating
reactions (57). The ct2p-ligand complex is
then transported to the kidney. In female
rats there is a greater tendency to form
conjugated products of TMP metabolites
(54), probably because of the lack of
hepatic synthesis of a21P. Information on
the site of interaction between ligand and
2a2p and on the transport of this complex
to the kidney is needed for mechanistic
models that address the role of tX2p in
chemically induced nephropathy.

Following reabsorption in renal proxi-
mal tubule cells in male rats, the ligand
(e.g., 2,2,4-trimethylpentanol in rats
exposed to TMP) may be released from the
a2P xenobiotic complex. That metabolite
or a subsequent metabolite, e.g., 2,2,4-
trimethylpentanal or 2,4,4-trimethylpen-
tanoic acid, may be cytotoxic to renal
tubular epithelial cells. As noted above, the
trimethylpentanoic acid metabolites of
TMP do not bind to cX2p but do cause
accumulation of this protein in the kidney
of male F344 rats (58). Protein accumula-
tion may be due to inhibition of proteoly-
sis of X2pl by one of the metabolites similar
to the effect of leupeptin, an inhibitor of
lysosomal proteolysis. By this alternative
mechanism, a2p is not the primary cause
of nephrotoxicity resulting from exposure
to chemicals such as TMP; rather, the
accumulation of this protein is a result of a
chemically induced toxic response in the
kidney. Tumor response may be a conse-
quence of the cX2p-mediated delivery and
concentration of the ligand in the male rat
kidney. The ligand or one of its metabo-
lites would then be the actual carcinogenic
agent. If a21i influences the delivery of a
toxicant to the kidney, then extrapolations
across species should adjust for differences
in delivered dose (i.e., concentration of
unbound ligand) to the target organ
instead of dismissing the effects in male
rats as irrelevant to humans. Cytotoxic
chemicals may also reach the kidney with-
out binding to a2p and cause accumula-
tion of this protein secondary to their
cytotoxic effects (e.g., 2,2,4-trimethylpen-
tanoic acid or leupeptin). In these cases,
other physiological or metabolic differences
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between species may affect the target organ
(kidney) dosimetry.

a2-Microglobulin is a member of a
superfamily of small homologous proteins
that appear to serve as carriers for small
lipophilic ligands (62). Although Lehman-
McKeeman and Caudill (63) did not
detect binding of d-limonene-1,2-oxide or
2,4,4-trimethyl-2-pentanol to two human-
derived proteins in this family, protein-1
and the glycosylated form of ctl-acid
glycoprotein, that study should not be con-
sidered an exhaustive search for a ligand-
binding human protein that might affect
delivery of toxicants to the kidney.

Conclusions on a21u Nephropathy and
Kidney Cancer. Mechanisms of hydro-
carbon-induced nephropathy and renal
carcinogenesis are not well understood.
Accumulation of tX2P in the kidney of male
rats may occur by two different mecha-
nisms: ligand binding to this protein ren-
dering it more resistant to proteolytic
degradation (42,43) or direct inhibition of
the proteolytic enzymes that degrade
this protein (57). Currently available
data do not allow discrimination between
these possibilities. According to the alter-
native hypothesis, cL2P facilitates the
transport of the protease inhibitor or its
precursor (e.g., 2,4,4-trimethylpentanoic
acid or 2,2,4-trimethylpentanal from
2,2,4-trimethyl-2-pentanol) to the kidney,
or protease inhibitors reach the kidney
without binding to cX2P (e.g., direct admin-
istration of 2,2,4-trimethylpentanoic acid
or leupeptin).

The hypothesis that kidney tumors in
male rats are a direct consequence of accu-
mulation of a2p implies that the male rat
kidney response is a poor model for poten-
tial human responses to inducers of a21P
nephropathy. The alternative hypothesis
that a2P merely serves to concentrate the
carcinogenic agent or its precursor in the
male rat kidney implies that a2P shifts the
kidney cancer response of an a2P ligand to
lower exposures than those which would
produce equivalent tissue doses of the
proximate carcinogen in female rats or
other species. If, as specified in the alterna-
tive hypothesis, ligand binding to hepatic
cX2f precludes further metabolism, then the
unbound chemical in animals that do not
synthesize a2P may produce tumors at sites
other than the kidney. The finding of
mouse liver cancers induced by ligands of
a21 supports this concept. Until the mech-
anism(s) of renal carcinogenesis is more
fully understood, it would be inappropriate
to accept or reject either hypothesis.

Research addressing the deficiencies and
inconsistencies in the hypotheses relating
induction of a2p nephropathy with kidney
cancer should lead to a better understanding
of the processes involved.

Agents that Act via Receptor-
mediated Mechanisms
Peroxisome Prolierators
Peroxisomes are subcellular organelles that
contain several oxidase enzymes that
produce H202 and catalase, the enzyme
that converts this toxic product to water
and oxygen. During the past 20 years an
increasing number of structurally unrelated
compounds, including hypolipidemic
drugs and industrial plasticizers, have been
shown to produce an increase in liver
size, a marked increase in size and prolifer-
ation of hepatic peroxisomes, peroxisome
enzyme induction, a decrease in serum
lipid levels, and increased incidences of
hepatocellular neoplasms in rats and mice.
The non-neoplastic changes revert back to
control levels shortly after exposure to
these chemicals ceases.

Correlation with Hepatocarcino-
genesis. Based on an apparently strong cor-
relation between peroxisome proliferation
and hepatocarcinogenesis, Reddy et al.
(64) proposed that hypolipidemic peroxi-
some proliferators may represent a novel
class of chemical carcinogens. Ashby et al.
(65) have recently prepared a compilation
of the scientific literature on peroxisome
proliferators. They found among the chem-
icals they examined an 80% correlation
between peroxisome proliferation and
hepatocarcinogenesis in rats and in mice.
Such correlations are not proof of a causal
relationship between the two responses,
and some exceptions have been observed
that have not been reconciled in a unified
hypothesis. For example, similar levels of
peroxisomal induction were observed (66)
in rats exposed to di(2-ethylhexyl)phthalate
(DEHP) and di(2-ethylhexyl)adipate
(DEHA) at doses comparable to those used
in the bioassays of these chemicals (67,68).
However, DEHP but not DEHA gave a
positive liver tumor response in the 2-year
studies in rats (67,68).

If peroxisome proliferation alone causes
hepatocarcinogenesis, similar levels of per-
oxisome proliferation should lead to similar
liver tumor incidence. However, this is not
always the case. At doses ofDEHP and Wy-
14,643 that produce similar levels of perox-
isome proliferation in rats, Wy-14,643
produced an earlier and much greater liver

tumor response than did DEHP (69). In
an evaluation of the carcinogenicity of
tetrachloroethylene, an expert panel of the
International Agency for Research on
Cancer concluded that the weak induction
of peroxisome proliferation by this chemi-
cal in mice was not sufficient to explain the
high incidence of liver tumors observed in
an inhalation bioassay (70).

Genotoxicity. Peroxisome proliferators,
for the most part, lack genotoxic activity.
However, when a consistent genotoxic
effect is detected for a specific peroxisome
proliferator, then that activity cannot be
dismissed as unimportant in the carcino-
genic process. For example, Wy-14,643, a
potent peroxisome proliferator, induced
sister chromatid exchanges and micro-
nuclei formation in primary cultures of
both rat and human hepatocytes (71), and
several peroxisome proliferators induce
morphological transformation of Syrian
hamster embryo cells (72). Nafenopin and
ciprofibrate, but not DEHA, induced sister
chromatid exchanges, chromosomal aberra-
tions, and micronuclei in rat hepatocytes
(73). Thus, the combination of clastogeni-
city and/or cell-transforming activity and
peroxisomal enzyme induction may con-
tribute to the carcinogenicity of several of
the peroxisome proliferators. Hegi et al.
(74) reported that the frequency and spec-
trum of ras gene mutations observed in
ciprofibrate-induced liver tumors were
different from that in spontaneous liver
tumors, indicating that this peroxisome pro-
liferator does not act simply by promoting
spontaneous preneoplastic lesions in mice.

Oxidative Stress. The peroxisomal oxi-
dation system has received much attention
regarding the mechanism of hepatotoxicity
of peroxisome proliferators because the
initial step catalyzed by fatty acyl-CoA oxi-
dase produces H202 by electron transfer to
oxygen. In the livers of rats or mice treated
with peroxisome proliferators, fatty acyl-
CoA oxidase activity is increased 5- to 20-
fold, whereas catalase activity is increased by
less than 2-fold. Thus, Reddy and Lalwani
(75) proposed that the imbalance between
production and degradation of H202 due
to enhanced peroxisomal oxidation could
lead to an increase in H202-mediated
oxidative damage and carcinogenesis.
Increased levels of hydroxyl radical gener-
ated from H202 may produce tumors due
to reactivity of this oxidant with DNA.

In support of this hypothesis, Rao et
al. (76) reported that the hepatocarcino-
genicity of ciprofibrate was inhibited by
simultaneous chronic administration of
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either of the anti-oxidants ethoxyquin or
2(3)-t-butyl-4-hyroxyanisole. Furthermore,
steady-state concentrations of H202 were
increased in liver homogenates prepared
from animals treated with peroxisome pro-
liferators, and increased accumulation of
lipofuscin in liver parenchymal cells and
increased levels of conjugated dienes in
hepatic lipid fractions were detected in rats
after long-term administration of per-
oxisome proliferators (77-79). Increases in
8-hydroxydeoxyguanosine, a marker
of oxidative DNA damage, have been
reported in liver DNA of rats after long-
term exposure to several peroxisome prolif-
erators (80,81). However, these increases
may be limited to extranuclear (mitochon-
drial) DNA (81), and such lesions may not
be directly involved in the carcinogenic
process (81).

Cell Proliferation. Increased replicative
DNA synthesis and cell division have
also been suggested as the mechanisms of
peroxisome proliferator-mediated carcino-
genesis (69,82). Cell proliferation has been
suggested to be causally associated with
tumor development by increasing the like-
lihood of fixing spontaneous cancer-initiat-
ing DNA damage into heritable mutations
and/or by promoting the clonal expansion
of spontaneously initiated cells (14,15,82).
Although cell replication is an integral
component of chemical carcinogenesis,
current scientific data do not substantiate
the hypothesis that the induction of can-
cer by nongenotoxic carcinogens occurs
solely by enhancement of cell division
(83). Peroxisome proliferators have other
effects such as inhibition of apoptosis,
increased oxidative stress, and expression
of oncogenes (83). It is likely that these
effects make important contributions to
the carcinogenic process.

S-phase-labeling indices are markedly
increased in the livers of rats and mice
during the first 1 to 2 weeks of treatment
with all peroxisome proliferators. Sub-
sequently, the rate of replicative DNA syn-
thesis returned to control levels in rats
chronically treated with DEHP, but the
rate remained elevated for 1 year in rats
treated with Wy-14,643 (69). The sus-
tained increase in hepatocyte replication
corresponded empirically to the more
potent carcinogenicity of Wy-14,643 in
this species. Persistent increased replicative
DNA synthesis was not detected with
nafenopin, clofibrate, DEHP, or ciprofi-
brate (84-86). With these agents, replica-
tion rates returned to control levels within
10 to 30 days of continuous treatment.

Thus, the sustained cell replication rate
due to treatment with Wy-14,643 does not
apply for all peroxisome proliferators,
including compounds that are potent liver
carcinogens and potent peroxisome prolif-
erators.This issue is important because
transient stimulation of hepatocyte prolif-
eration by nongenotoxic carcinogens is not

sufficient to induce cancer or promote liver
tumor development (23). The finding that
enzyme-altered hepatic foci were not
induced in rats fed Wy-14,643 for 3 weeks
followed by partial hepatectomy (87) indi-
cates that early high levels of replicative
DNA synthesis and peroxisome prolif-
eration are not sufficient activities for
initiation of hepatocarcinogenesis.

The Peroxisome Proliferator-
Activated Receptor. The discovery of
the peroxisome proliferator-activated
receptor (PPAR) (88), a ligand-activated
intracellular transcription factor, provides a
mechanistic basis for understanding how
peroxisome proliferators modulate gene
expression leading to induction of peroxi-
somal enzymes. Ligand binding activates
this receptor, which subsequently forms a
heterodimer with the retinoid X receptor.
It is this ternary complex which binds to
specific DNA response elements, causing
transcriptional activation of genes coding
for peroxisomal enzymes (89,90).Humans
possess PPAR subtypes, including one that
shows high homology with rodent PPAR-a
and that can be activated by peroxisome
proliferators (91). It is not known whether
a peroxisome proliferator (or one of its
metabolites) binds directly to the receptor or
whether receptor activation is mediated by
changes in cellular levels of an endogenous
ligand (e.g., fatty acid or fatty acyl-CoA).
Further research is needed on binding of
exogenous and endogenous ligands to
PPAR subtypes in rodent and human
hepatocytes, dose-response comparisons of
the transcriptional activation of peroxiso-
mal genes in rodent and human hepato-
cytes, regulation of PPAR activity, and
interindividual variability of PPAR in
human populations.

Effects in Humans. The fact that
hypolipidemia, one of the pleiotropic
effects of peroxisome proliferators in
rodents, is also induced by these drugs in
humans demonstrates that humans are
responsive to these chemicals. Moderate
increases in peroxisome number or volume
density have been observed in patients
taking clofibrate or ciprofibrate (65).
Induction of peroxisome proliferation in
human hepatocyte cultures could not be

demonstrated. This difference between in
vivo and in vitro behavior may be related to
culturing conditions, as insulin inhibits
and dexamethasone stimulates fatty acid-
induced transcription of PPAR and peroxi-
somal enzymes in rat hepatocytes both
in vivo and in vitro (92). Effects of these
factors in human hepatocytes need to
be investigated.

No adequate epidemiological studies
have been reported on the potential car-
cinogenicity of hypolipidemic peroxisome
proliferators in humans. Because of the
greater sensitivity of biochemical assays
compared to epidemiological studies, the
variability in human response, and the
rapid regressive changes that occur once
treatment is stopped, a detailed study is
needed on changes in human hepatic per-
oxisomal enzyme activities before and
during treatment with hypolipidemic per-
oxisome proliferators. Comparison of such
information with the effectiveness of these
agents in lowering serum lipid levels could
provide a better measure of the sensitivity
ofhumans to these chemicals.

Conclusions on Peroxisome Prolifera-
tion and Liver Cancer. The mechanism
by which peroxisome proliferators induce
liver cancer is not understood; however,
several hypotheses have been advanced.
Because peroxisome proliferation is one of
several changes produced by these chemi-
cals, it is not possible to condude that per-
oxisome proliferation alone is the cause of
liver cancer. In fact, there may not even be
a unifying mechanism for this group of
chemicals, i.e., the dose-dependent car-
cinogenic outcomes may involve contri-
butions from several activities of which
peroxisome proliferation represents one
possible factor. The differential induction
of peroxisomal enzyme activities may sim-
ply shift or alter the shape of the cancer
dose-response curves for these chemicals.
Further research is needed to identify
the contribution made by peroxisome
proliferation to hepatocarcinogenesis.

Dioxin and theAh Receptor
2,3,7,8-Tetrachlorodibenzo-p-dioxin has
been implicated in the etiology of soft-
tissue cancers at several sites in a number of
species, including humans (93). There is
no convincing evidence that TCDD has
genotoxic activity (93); rather, it has long
been thought that TCDD acts solely as a
tumor promoter (94). Biological effects of
TCDD, its congeners, and other polychlo-
rinated aromatic hydrocarbons are medi-
ated by binding to and activating the Ah
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(aryl hydrocarbon) receptor. The activated
Ah receptor forms a heterodimer with
another transcription factor (Ah receptor
nuclear translocator, arnt), and this ternary
complex binds to regulatory sequences on
DNA and alters the expression of several
proteins (95). Some of these proteins may
be involved in the carcinogenic response. It
has been suggested (96) that the dose-
response curve for tumor incidence conse-
quent to exposure to TCDD may show
appreciable sigmoidicity, owing to insuffi-
cient occupancy of the Ah receptor at low
doses. In that case, TCDD-induced can-
cers might exhibit a threshold below which
no effects of dioxin would occur (97). The
large amount of data available on responses
of laboratory animals to treatment with
dioxin provides an opportunity to test
the hypotheses that TCDD is purely a
tumor promoter and that the Ah receptor-
mediated tumor dose-response exhibits
threshold behavior.

In order to identify conditions under
which threshold responses to TCDD are
possible, several PBPK models of its dispo-
sition in the rat have been constructed
(e.g., 98,99). These models include
absorption ofTCDD from the gut, its dis-
tribution to tissues, its metabolic clearance
from the liver, and alterations in the con-
centrations of several hepatic proteins
which are candidates for biomarkers of
TCDD's effects. The rates of induction of
the proteins were assumed to follow satura-
tion kinetics with respect to the concentra-
tion of the Ah-TCDD complex. A dose-
response curve whose slope approaches zero
as the dose approaches zero was assumed to
be evidence of a threshold. Such behavior
might provide a rationale for deviating
from linear extrapolations of cancer risk
from low-dose TCDD exposures. The
following discussion is based on the PBPK
model of Kohn et al. (98), as it is the only
one of the existing TCDD models to
extend beyond dosimetry and propose
carcinogenic mechanisms.

Enzyme Induction. The model of
Kohn et al. reproduced the measured con-
centrations of dioxin in the liver and blood
after 31 weeks of biweekly oral dosing with
TCDD (100) and matched the liver and
fat concentrations for a number of other
dosing scenarios. The model also repro-
duced the observed hepatic concentrations
of cytochromes P4501A1 and P4501A2
(CYPlAl and CYP1A2) and the Ah,
estrogen, and epidermal growth factor
(EGF) receptors after 31 weeks of expo-
sure. The computed response of each of

these proteins was proportional to admin-
istered TCDD at dose rates up to 10
ng/kg/day. Because CYPlAI is constitu-
tively expressed in liver only at very low
levels and TCDD induces this protein by
about 200-fold, this response is a good bio-
marker of dioxin exposure. The propor-
tional response of CYPlAI at low doses
argues against the existence of a threshold
for effects mediated by the Ah receptor.
Allowing for sigmoidicity in the rate of
expression of this protein, which would
produce a threshold response, did not
improve the fit to the data. This indicates
that sigmoidal kinetics is not required to
reproduce the observed dose-response.

When data on CYPlAl mRNA levels
in TCDD-treated rats became available
(101), the model was extended to include
two steps in expression: transcription of the
gene and translation of the message into
protein (102). Several mechanistic models
were compared with the experimental data
(101). The model which best fit the data
included high-affinity and low-affinity
binding sites for the Ah-TCDD-arnt com-
plex; occupancy of both sites was required
for transcriptional activation of the
CYPIAI gene. The model predicted a
response of message production that was
sublinear at low doses and a response of
protein synthesis that was supralinear at
low message level, indicating that the pro-
portional expression of CYPIAI is the net
response of these two processes. These
results show that a threshold response is
not an inevitable result of a receptor-medi-
ated mechanism. Even if the initial
response does show a threshold, subse-
quent events leading to the final outcome
can compensate for this sublinearity.

It could be argued that the computed
behavior for CYPlAl induction is an arti-
fact of the choice of model specification; a
different mathematical representation may
lead to a different predicted dose-response.
The model of Kohn et al. (98) included
the increase in ligand binding capacity of
the hepatic Ah receptor observed with
increasing dose of dioxin (103). Because
dioxin increases the Ah receptor binding
capacity in liver, the concentration of the
Ah-TCDD complex is predicted to rise
more rapidly with dose than would be pre-
dicted by models that neglect this effect.
The PBPK model of Andersen et al. (99)
ignored this effect and found that sigmoidal
kinetics best described the relationship
between the concentration of the Ah-
TCDD complex and the observed produc-
tion of CYPlAI. Sigmoidal kinetics predicts

a steeper rise in protein production with
increasing dose than does a model with
hyperbolic response, and such steep kinet-
ics imitates the effect of increases in Ah
receptor binding capacity. Models that do
not represent all of the pertinent biological
events may give unreliable results.

Induction of a Growth Factor.
Because there is no evidence that CYPlAI
is involved in the carcinogenic action of
TCDD, the hypothesis that production of
liver tumors in female rats by TCDD is
due to promotion mediated by an induced
hepatic growth factor was examined with
the model. TCDD down-regulates the
hepatic plasma membrane EGF receptor
without altering the transcription of its
gene into mRNA in vivo (104). Binding of
peptide ligand to the EGF receptor causes
its internalization. The internalized recep-
tor's tyrosine kinase activity initiates a
cascade of events leading to increased cell
replication (105).

The liver does not produce EGF, but it
does produce transforming growth factor-a
(TGF-a), another ligand of the EGF
receptor (106). This peptide was treated as
the induced growth factor in the model of
Kohn et al. (98). TCDD induces TGF-a
in tissues such as keratinocytes (107), but
it does not increase mRNA for TGF-a in
rat liver (100). This result suggests that
either the proposed increase in TGF-a is
mediated by post-transcriptional events, a
different EGF-like peptide is the induced
ligand of the EGF receptor in liver, or a
growth factor ligand of the hepatic EGF
receptor is not involved in production of
liver tumors by TCDD.

The model predicts concentrations of
TGF-at in the extracellular fluid compara-
ble to those observed in cell cultures (107).
It predicts internalization ofEGF receptors
consequent to ligand binding which
accounts for loss in plasma membrane
receptor activity (108). The computed loss
of EGF binding capacity is proportional
to dose in the low-dose region, arguing
against a threshold for a response that may
be mechanistically linked to cell prolifera-
tion caused by dioxin.

Oxidative DNA Damage. The model
also reproduces the observed induction of
CYP1A2 by TCDD, and the computed
response is also proportional to dose at low
doses. This enzyme converts estradiol to an
A-ring hydroquinone (109). Oxygen can
convert the hydroquinone to a semi-
quinone free radical, forming superoxide
radicals (110), and also to a benzoquinone.
These materials can cause DNA damage
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(111,112). The PBPK model includes
estrogen metabolism and predicts consider-
able hydroxylation of estradiol by CYP1A2,
suggesting that TCDD may also induce
DNA damage. A stochastic clonal growth
model of the dose-response of the size dis-
tribution of enzyme-altered focal lesions in
livers of TCDD-treated rats (113) is con-
sistent with secondary mutagenic activity
following TCDD exposure. Thus, sub-
stances that are considered to be purely
tumor promoters may also act as initiators
by indirect mechanisms. Separation of car-
cinogens into classes of genotoxic initiators
and nongenotoxic promoters may be an
inappropriate and misleading simplifi-
cation of the complex processes involved in
chemical carcinogenesis.

Promotion of Thyroid Tumors.
Another hypothesis explored is that induc-
tion of thyroid tumors in mice and rats by
TCDD is due to promotion by chronic
overstimulation of the thyroid by thyrotro-
pin (thyroid-stimulating hormone, TSH).
Dioxin, like other Ah receptor agonists,
induces an isoform of UDP-glucuronosyl-
transferase (UGT-1) by an Ah receptor-
dependent mechanism (1 14). This enzyme
conjugates thyroxine (3,5,3',5'-tetraiodo-
thyronine, T4), leading to its clearance.
Metabolism of T4 and its consequent
depletion from the blood relieves inhibi-
tion of TSH release from the pituitary by
circulating T4 and causes the serum TSH
concentration to rise. As this mechanism
commences subsequent to binding of
TCDD to the Ah receptor, alterations in
serum hormone levels by dioxin should
exhibit threshold behavior if a minimal
number of receptors must be occupied to
evoke the responses of the hormones.

Increases in UGT-1 mRNA and alter-
ations in T4 and TSH as described above
have been observed in rats given biweekly
oral doses of TCDD for 31 weeks (115).
Such treatment results in increased serum
TSH levels and in concomitant hypertro-
phy of thyroid follicular cells and thyroid
hyperplasia (115). Other Ah agonists have
similar effects as dioxin (116,117). Goitro-
genic compounds that depress serum T4
by other mechanisms (118) also cause thy-
roid tumors.The PBPK model described
above was extended to include release of
thyroid hormones into the blood, their
uptake by peripheral tissues, binding of
T4 to cytosolic receptors and of 3,5,3'-
triiodothyronine (T3) to nuclear receptors,
metabolism of thyroid hormones, and
induction of UGT-1 by the Ah-TCDD
complex (119,120). The model also

includes complex regulation of TSH
release from the pituitary by effects of
serum T4 on the hypothalamic peptides
thyrotropin-releasing hormone (TRH),
which stimulates TSH release, and somato-
statin, which antagonizes the effect of
TRH. The model reproduces the effects of
chronic exposure to TCDD on serum T3,
T4, and TSH concentrations (115). The
computed dose-response curve for TSH
exhibits proportional response at low doses.

The model also reproduces data for
induction of UGT-1 (both mRNA and
enzymatic activity) by dioxin for several
dosing scenarios. Because the concentra-
tions of T3, T4, and TSH in blood are
highly variable among individuals and vary
with diet and time of day, they are not
likely to be useful as biomarkers of effects
of dioxin exposure. Because fewer factors
influence UGT-1 activity, induction of this
enzyme in an individual known to have
been exposed to TCDD is more likely to
reflect effects of that xenobiotic agent. The
computed dose-response curve for UGT-1
induction is approximately linear at low
doses. The low-dose linear responses of
TSH and UGT-1 suggest the absence of
a threshold for dioxin's effects on the
thyroid. This model is consistent with
induction of thyroid tumors by chronic
over-stimulation of the gland by elevated
TSH consequent to induction of UGT-1.
However, it is not known if TCDD has
effects on the thyroid in addition to
enhanced cell proliferation.

When Can Recptor-mediated
Mechanisms Lead to
Threshold Responses?
The PBPK model of dioxin action is
consistent with a large number of observed
responses under several dosing scenarios.
The model's predictions do not support
the hypothesis that mediation of dioxin's
effects by the Ah receptor imposes thresh-
old dose-response behavior. The model of
Portier et al. (121) showed that the pre-
dicted response of CYPlAI in rat liver to
low doses of TCDD depends on whether
its constitutive expression is due to an
endogenous ligand of the Ah receptor
(their "additive"mechanism) or due to a
mechanism that is independent of the
receptor. The parameter values optimized
for the additive mechanism, which gave the
best fit to the experimental data, predicted
proportional response at low doses. The
parameter values optimized for the inde-
pendent mechanism predicted a dose-
response curve that was concave upwards at

low dose, suggestive of a threshold for
induction of this protein. The difference in
the dose-response curve shape can have
significant consequences for estimating
risks of adverse health effects from expo-
sure to dioxin if CYPlAl is used as a
biomarker for effects ofTCDD.

To identify conditions under which
receptor mediated responses could exhibit
thresholds, Kohn and Portier (122) con-
structed a theoretical model of receptor
mediated gene expression. This model
induded binding of endogenous and xeno-
biotic ligands to the receptor, binding of
the ligand-receptor complex to DNA and
induction of a protein, proteolysis of the
gene product, and metabolism of the xeno-
biotic inducer. This model also included
constitutive expression of the protein by a
mechanism that is independent of the
receptor. Parameter values were varied sys-
tematically to cover a wide range of combi-
nations of additive and independent routes
of induction of the protein. The model's
equations were solved for a series of bolus
doses of the xenobiotic ligand up to the
time point where a pseudo-steady state of
the protein was achieved for all doses.

This model predicted threshold behav-
ior in net protein production only when
binding of ligand to the receptor or binding
of the liganded receptor to DNA exhibited
positive cooperativity (i.e., sigmoidal bind-
ing kinetics) and all other effects followed
hyperbolic kinetics. The independent
mechanism of Portier et al. (121) is consis-
tent with positive cooperativity, whereas
their additive model predicted a low-dose
linear response and produced a better fit to
the data. The PBPK model, which included
an endogenous ligand of the Ah receptor,
did not require cooperative binding in
order to reproduce the observed responses.
Noncooperative ligand binding may partly
explain the proportional response predicted
by the model. The theoretical model shows
that a threshold response is possible for
receptor-mediated carcinogens, but it is not
obligatory. Every carcinogen thought to
exert its effects by such a mechanism should
be studied individually to determine its
low-dose response.

Conclusions
This critical review examined the observed
effects of carcinogens that increase cell
replication rates by regenerative hyperplasia
consequent to cytotoxicity or that modu-
late gene expression by binding to and acti-
vating transcription factors. Depending on
available data, the relevance to humans of
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carcinogenic effects observed in rodents or
the predicted shape of dose-response
curves were discussed. Some chemicals that
have been classified as nongenotoxic car-
cinogens fall into both categories and may
even possess a genotoxic component.
Therefore, attributing a chemical's carcino-
genicity solely to its ability to induce one
effect (e.g., a21i accumulation, peroxisome
proliferation, enzyme induction) may
obscure important contributions to its
carcinogenic mechanism.

The hypothesis that cell proliferation
causes cancer is based on the notion that if
replicative DNA synthesis and cell division
occur before repair of damaged DNA, then
promutagenic lesions could become fixed
into heritable mutations and contribute to
the genetic changes that lead to neoplastic
transformation. Fortunately, progression
through the cell cycle is highly regulated to
permit repair of DNA damage before cells
undergo replicative DNA synthesis or
mitosis. Furthermore, responses to DNA
damage are inducible. There are no data
for the classes of chemicals reviewed here
demonstrating compromise of cell cycle
controls during regenerative hyperplasia.
Increases in labeling indices may indicate
that more cells are actively cycling; how-
ever, this does not signify that rates of
transit through cell cycle checkpoints are
reduced. Thus, the hypothesis that mitoge-
nesis can lead to mutation and that carcino-
genicity is simply a regenerative response to
cytotoxicity remains unproven.
A threshold for a response to a carcino-

gen has been defined in absolute biological
terms as the dose below which no response
occurs. In practice, an apparent threshold

is detected statistically as that dose below
which the activity of a biomarker for the
response in treated subjects is indistin-
guishable from that in controls. However,
attribution of a threshold in such circum-
stances may be an artifact. Because of mea-
surement errors and interindividual
variability, it is always possible to find a
dose which satisfies this criterion even for
genotoxic chemicals, which have been
assumed to exhibit linear cancer dose-
responses. The more sensitive and repeat-
able is the measurement of the biomarker,
the lower such an apparent threshold
would seem. Thus, categorization of a
response as exhibiting a threshold is lim-
ited by the nature of the end point being
measured and by the accuracy of that mea-
surement. Assessment of risks of adverse
health effects consequent to exposure to a
chemical should be based on the shape of
the dose-response curve obtained from
experimental data by the best available
mathematical techniques.

Mechanistic studies in chemical car-
cinogenesis have greatly added to our
understanding of the steps involved in the
carcinogenic process. However, there is still
much uncertainty on the nature of the
complex interacting processes that occur
between exposure to nongenotoxic carcino-
gens and tumor development. Use of mech-
anistic data in risk assessments requires
scientific judgment and should not rely on
overly speculative hypotheses. The applica-
tion of new research findings to public
health decisions should proceed with cau-
tion to ensure adequate validation and
proper interpretation of the data. Several
critical questions must be examined.

Is the mechanism biologically plausible?
Are the data of sufficient quality to

reasonably link the specific mechanistic
process to the cancer outcome?

Are competing explanations valid?
Is the particular mechanism (mode of

action) the determinant of the carcinogenic
effect or are multiple processes possibly
involved?

Over-simplified classification systems
add uncertainty and inaccuracy to evalua-
tions of human risk. Evaluations of car-
cinogenicity by chemicals that act via
"nongenotoxic" mechanisms should not be
limited to promotion nor should the
response be assumed to exhibit a threshold.
Cancer is a complex multistep process and
chemicals may affect the carcinogenic out-
come by producing changes that affect one
or several steps.

Research is needed to identify the
multiple factors that contribute to the car-
cinogenicity of both genotoxic and non-
genotoxic carcinogens and to quantify their
contributions to the cancer dose-response
curve. Integrating this information into
cancer dose-response models would permit
prediction of the shape of the dose-
response curve instead of having to rely on
default assumptions. Such an approach
should provide a more realistic, hence
more credible, means of estimating human
low-dose risk. Until a better understanding
of the mechanistic processes involved in
the carcinogenic response is available, the
prudent policy for protecting public health
is the one that considers the dose-response
of all potential contributing effects of each
specific chemical.
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