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Introduction

Historically, morphological and classical
toxicological methods have been used to
provide evidence of neurotoxicity; however,
there has been increasing interest, both at
the scientific and regulatory level, in the use
of animal behavioral methods for evaluating
neurotoxicity (/). The increasing interest in
the use of behavioral methods in neurotoxi-
cology is based on a number of different fac-
tors including ) a greater awareness that
environmental exposures can produce behav-
joral and neurological effects; &) progress in
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basic neuroscience, which has begun to
provide greater understanding of the cellular
and molecular basis for the behavioral
effects of chemicals; and ¢) regulatory activi-
ties calling for testing of new and existing
chemicals for neurotoxic potential (2).

The use of behavioral end points in
toxicology is not entirely without prece-
dent. Cageside observations of neurologi-
cal and behavioral changes, for example,
have been part of toxicological screening
studies for many years. However, it has
been only recently that the incorporation
of more systematic observational methods
into a clinical screening battery has been
described for the purpose of identifying
neurotoxicants (3-5).

In addition to observational methods for
the documentation of overt signs of neuro-
toxicity, a wide variety of behavioral meth-
ods and paradigms is also currently available
for use in laboratory animals for studying
specific neurotoxicant effects. Different
behavioral paradigms for measuring sensory
functions using conditioned and uncondi-

tioned behaviors, for example, have been
successfully used to study visual (6), audi-
tory (7) and somatosensory (8) changes
produced by long-term neurotoxic expo-
sures. Behavioral methods have also been
developed for quantifying neurotoxicant
effects on different aspects of specific motor
functions including, for example, neuro-
muscular strength (9), whole-body and limb
tremor (10,11), and alterations in gait (12).
Further, cognitive behaviors such as the per-
formance of learned tasks and processes
related to attention, learning, and memory
are also amenable to study using behavioral
methodologies (13). Finally, techniques for
studying the effects of chemicals on social
and emotional behaviors have also been
described (14,15). Behavioral methods for
evaluating specific functions and processes
require a sound knowledge of the principles
of behavioral analysis and often involve the
use of automated techniques. Typically such
techniques are not found in general toxicol-
ogy laboratories; however, such methods
may be the only practical means of fully
characterizing the range of effects of a
given compound and may prove invaluable
in predicting effects that might be expected
to occur in human populations exposed to
specific neurotoxicants.

Whether a neurotoxicological study is
meant to screen for neurological and
behavioral impairments using observational
techniques or to evaluate the development
of a specific functional deficit using more
sophisticated behavioral paradigms, the
fundamental aim of testing compounds for
neurotoxicity in laboratory animals is to
prevent neurological disease in human
populations. However, humans are by no
means the only species exposed to neuro-
toxic agents; wildlife populations are also
exposed to environmental contaminants.
Although studies of the behavioral effects
of animals in the wild are scarce, laboratory
studies have suggested that adaptive behav-
iors in different wildlife species may be
affected by toxic exposures (16).

Because of the relatively recent appear-
ance of behavioral methods in regulatory
activities calling for neurotoxicity testing
and the lack of familiarity that most
toxicologists have with behavioral princi-
ples and methods, a number of concerns
have been raised as to the necessity and
feasibility of including behavioral end
points in neurotoxicity studies. The pur-
pose of the present paper is to discuss the
rationale and background for including
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behavioral end points in neurotoxicity
assessments, to present the current strate-
gies that have been proposed for identify-
ing neurotoxic agents, to summarize the
types of methods and approaches available
for characterizing the effects of chemicals
on behavior, and to discuss some of the
advantages and disadvantages of behav-
ioral methods for studying chemically
induced nervous system effects.

Background and Rationale
for Behavioral End Points
in Neurotoxicity Studies

The Nervous System as a Target
for the Effects of Toxic Exposures

Increased industrial activities over the last
100 years have introduced a vast array of
new chemicals into the workplace, home,
and environment, which has led to a greater
risk of chemical exposures both for human
as well as for animal populations. With this
increase in the number of chemicals in use,
accumulating evidence indicates that the
nervous system is sensitive to the effects of
a number of different chemicals (17).
Much of our knowledge regarding the
neurotoxicity of specific chemicals has not
originated in the laboratory, but rather
has come from outbreaks of human neuro-
toxicological disease due to environmental
and industrial overexposures as a conse-
quence of accident or ignorance. In the
occupational setting, a number of outbreaks
of neurotoxic disease have occurred as the
result of exposure to known and (at that
time) unknown neurotoxic agents includ-
ing pesticides, metals, and organic solvents
(18). In addition, outbreaks of chemically
induced neurological disease have also
occurred in the general population, which
emphasizes the fact that the risk of neuro-
toxicological damage is not confined to the
occupational setting. In the United States,
for example, several thousand persons were
paralyzed during the 1920s as a result of
ingesting Jamaica Ginger, a drink contain-
ing cresyl phosphates (18). Subsequent inci-
dents involving the contamination of
cooking oil with cresyl phosphates in
Morocco (19), with polychlorinated
biphenyls (PCBs) and furans in the Far East
(20), and with unidentified neurotoxic sub-
stances in Spain (21) have led to tens of
thousands of cases of neurotoxic illness. In
addition, contamination of fish with indus-
trial mercury-containing wastes resulted in
two large-scale epidemics in Japan, and
more than 7000 persons were hospitalized
in Iraq as the result of ingestion of grain
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contaminated with organomercurial fungi-
cides (22,23). In the incidents with methyl
mercury and PCBs, neurotoxicological ill-
ness was not restricted to the adult popula-
tion; children born to exposed mothers also
suffered lasting neurological and behavioral
effects as well (22,24).

In addition to these dramatic instances
of chemically induced neurotoxic disease
produced by high levels of exposure, there
is also evidence from human epidemiologi-
cal studies which demonstrates that neuro-
toxic effects may be occurring in humans
at levels considerably lower than those
necessary to produce frank manifestations
of neurological illness. Epidemiological
studies in lead-exposed and PCB-exposed
children (25,26) have indicated that devel-
opmental exposure to these compounds
may produce subtle changes in infant devel-
opment and cogpnitive functioning. In addi-
tion, cross-sectional studies of workers also
indicate an association between exposure to
a variety of chemical agents and subclinical
changes in neurobehavioral functioning
(27-31). Taken together, human outbreaks
of neurotoxicological disease and injury and
the growing number of epidemiological
studies demonstrating the subclinical effects
of neurotoxicological exposure in workers
and in the general population provide
compelling evidence for the potential of
different classes of chemicals to affect neu-
rological function and adaptive behaviors in
exposed human populations.

In addition to human populations, ani-
mal populations both domestic and wild,
may also be affected by neurotoxicological
exposures. Domestic animals, for example,
can potentially serve as sentinels for envi-
ronmentally mediated neurotoxicological
disease or as an additional source of infor-
mation about diseases occurring in their
owner’s ambient environment. Domestic
pets living in close proximity to their own-
ers share not only living quarters but also,
in many cases, their owner’s food, water,
and exercise habits. One result of this close
contact is that pets may share their owner’s
exposure to neurotoxic substances and the
same resulting diseases. For example, one
feature of the outbreak of the methyl mer-
cury poisoning associated with Minimata
Bay was that domestic cats in households
where fish was frequently consumed devel-
oped prominent signs of central nervous
system (CNS) intoxication (32). Pets may
also share their owner’s access to modern
medicines and develop some of the same
untoward effects. Myelin damage associ-
ated with hexachlorophene has been

observed both in infants and in puppies
bathed with hexachlorophene-containing
soaps (33). Further, domesticated farm
animals may also be exposed to the same
toxicants as their owners and often at
higher exposure levels. In this regard, one
of the first occurrences of peripheral neuro-
pathy associated with organophosphate
pesticide exposure was reported in
Leptophos-exposed Egyptian water buffalo
(18). In a few instances, zoo animals have
also been the source of information about
the neurotoxic properties of environmental
neurotoxicants. Lead poisoning, for
example, has occurred in young primates
ingesting paint chips; this has a direct cor-
respondence with lead poisoning in chil-
dren due to pica (34).

In addition to domestic animal popula-
tions, there are also indications that wild
animal populations may be affected by
neurotoxicological exposures (35,36).
Insecticides designed to kill insects by
attacking specific sites within the insect
nervous system, may produce behavioral
changes at sublethal levels both in target
and nontarget species. For example, dis-
ruption of bee dancing in which the dis-
tance and direction of food resources are
communicated has been reported following
methyl parathion exposure (37), as well as
the disruption of foraging behavior for new
food supplies following permethrin expo-
sure (38). In field studies conducted in
wild populations, experiments carried out
in herring gulls employing egg-exchange
procedures have provided some indication
of behavioral effects (39).

While it is possible that behavioral
changes could seriously affect wildlife popu-
lations, direct proof of altered behavior in
animals in the wild due to the presence of
neurotoxicants is difficult to obtain. There
are two major difficulties in the testing of
wildlife. First, measurements that are most
easily quantifiable, such as measures of
operant behavior, are not ecologically realis-
tic while behavior such as prey capture is
much more difficult to quantify. Second,
even if a change can be demonstrated, it is
difficult to link it to a specific chemical. For
example, despite studies involving thou-
sands of hours of observation (40,41) it was
not possible to determine if the suggestion
(42) that behavioral changes were involved
in the decline of the peregrine falcon (Falco
peregrinus) was correct. Further, behavioral
changes of animals exposed to organophos-
phorous pesticides have been demonstrated
(43,44), but only at 50% or greater inhibi-
tion of acetylcholinesterase; this suggests
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that it is more practical to rely on the deter-
mination of this enzyme in hazard assess-
ment rather than behavioral changes.
Although it has been demonstrated that a
wide range of behaviors in a wide range of
species are affected by environmental
pollutants in laboratory experiments, very
few behavioral changes have been demon-
strated in wild populations. The possibility
that behavioral modifications caused by pol-
lutants could result in significant popula-
tion effects has certainly not been excluded
by the studies to date. It is, however,
difficult to quantify behavioral changes in
the wild, and it is even more difficult to
relate these changes unequivocally to popu-
lation effects and to establish the linkage to
a specific chemical or chemicals.

Despite the difficulties inherent in
documenting toxicant-induced behavioral
changes, there is little doubt that there are
significant regional differences in body
burdens of neurotoxic pollutants. Thus, it
may be possible to monitor body burdens
of environmental neurotoxicants in wild
populations to identify regional differences
in contamination (45) or to monitor
wildlife population parameters (46) to help
predict possible risks to humans and other
species.

Behavioral End Points

in Neurotoxicity Research

The nervous system is a highly complex
organ system that comprises the brain, the
spinal cord, and a vast network of peripheral
nerves and sensory organs. The nervous sys-
tem is responsible for receiving, transmit-
ting, and integrating information that allows
an animal to react and adapt to its environ-
ment. Psychological processes related to
behavior such as perception, learning, mem-
ory, affect, and voluntary and involuntary
movement are all dependent on the ade-
quate functioning of the nervous system.
Further, the autonomic nervous system pro-
vides extensive innervation of other organ
systems involved in homeostatic control of
physiological functions such as blood pres-
sure, heart rate, and respiration. Thus, the
nervous system exerts executive control over
most, if not all, bodily functions.

As a result, nervous system injury can be
expressed in a myriad of ways. Some neuro-
toxicological exposures, for example, can
produce frank irreversible neurological and
psychiatric disease resulting in coma, con-
vulsions, paralysis, and dementia. However,
even slight nervous system damage may
impair reasoning ability, cause loss of mem-
ory, produce sensory disturbances, interfere
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with motor function, and impair health
indirectly by reducing functions such as
attention and alertness that ensure safety in
the performance of daily activities. Table 1
lists some of the different types of effects
that have been associated with exposure to
toxic chemicals (47).

Toxicant-induced changes in the ner-
vous system can be studied on a number of
different levels including electrophysiologi-
cal, neurochemical, morphological, and
behavioral levels. The choice of the most
appropriate approach and the methods to
be used at a given level of investigation
depends on the scientific question under
study. It is doubtful that any one of these

Table 1. Human and animal neurobehavioral effects of
chemical exposures.

No. of chemicals

producing the
Effect effect?
Motor
Activity changes 32
Ataxia 89
Convulsions 183
Incoordination, unsteadiness, 62
clumsiness
Paralysis 75
Pupil changes K|
Reflex abnormalities 54
Tremor, twitching 177
Weakness 179
Sensory
Auditory disorders 37
Equilibrium changes 135
Olfaction disorders 37
Pain 47
Pain disorders 64
Tactile disorders 77
Vision disorders 121
Cognitive
Confusion 34
Memory problems 33
Speech impairment 28
Affective or personality
Apathy, languor, lassitude, 30
lethargy, listlessness
Delirium 26
Depression 40
Excitability 58
Hallucinations 25
Irritability 39
Restlessness 3
Sleep disturbances 119
General
Anorexia 158
Autonomic dysfunction 26
Cholinesterase inhibition 64
CNS depression 131
Fatigue 87
Narcosis, stupor 125
Peripheral neuropathy 67

*This also includes chemical groups that produce the
effect. From the National Research Council (47).

approaches alone can provide a complete
picture of a given compound’s effects on
the nervous system. However, there are a
number of advantages in the use of behav-
ioral approaches that make them particu-
larly suitable for studying the effects of
toxic exposures on the nervous system.

First, behavior represents the net sen-
sory, motor, and integrative outputs of the
central, peripheral, and autonomic nervous
systems and, as such, can be used to provide
an index of chemically induced changes in
nervous system function. In addition,
behavioral methods are noninvasive and can
be used to measure acute effects and to
track the progressive development of neuro-
toxicity during long-term exposure in
chronic studies. Further, the first signs of
neurotoxicological effects in humans are
neurological and behavioral in nature, and
animal models that can predict these early
effects are of obvious importance.

In addition, there are a number of other
qualitative features of neurotoxicity that
have profound consequences for evaluating
and predicting neurotoxic risks outside the
laboratory (48). Neurotoxicological effects
may be cumulative and progressive, and
multiple functions are often affected as the
degree of exposure is increased. Neurotoxi-
cants can produce silent and covert damage
that may not be readily apparent unless the
adaptive capabilities of the organism are
challenged in some way. The expression of
neurotoxicity may be age related such that
the effects of the normal aging process are
compounded with deficits from previous
neurotoxic exposures. A consideration of
these aspects of neurotoxic effects is partic-
ularly important for the characterization of
neurotoxicological risks. Because such
effects are typically expressed on a func-
tional level, behavioral approaches are the
most logical and economical means avail-
able for addressing such problems.

Behavioral Approaches

Historically, different schools of psychol-
ogy have contributed to the development
of the scientific study of behavior and, in
turn, to present day approaches in behav-
ioral methodologies. Ethology, for example,
places a heavy emphasis on observational
methods for studying naturalistic behaviors
and was developed to a great extent
through the work of European scientists
(49). In North America, the study of
behavior has been more focused on eluci-
dating the principles underlying condi-
tioned or learned behavior.
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Ethology provides a variety of observa-
tional tools to study behavior using less
rigidly controlled environments than those
typically employed in traditional
experimental psychology. Methodologically,
this approach makes use of ethograms,
which consist of a detailed series of carefully
defined behavioral responses representing
different categories of the behavioral
processes of interest (50,51). Ethological
approaches are particularly indicated in
studies aimed at characterizing alterations
in social behavior (52). By focusing on
behaviors occurring under seminatural
conditions, ethologically oriented laboratory
investigations permit the assessment of a
wide range of behaviors, which can allow for
a sophisticated analysis of behavioral abnor-
malities as a result of chemical exposure or
other experimental manipulations (45).

In contrast, experimental psychologists
have historically emphasized investigations
aimed at establishing general principles
that underlie learning and memory
processes. By concentrating on the rigorous
control of variables that govern behavior in
experimental laboratory studies, experimen-
tal psychologists developed a broad range of
behavioral paradigms to investigate the
proximate causes of behavior (54), i.e., the
combination of exogenous and endogenous
variables which produce a particular behav-
joral outcome at a particular point in time.
The sophistication of these techniques per-
mits the conduct of tightly controlled
behavioral studies that can be used to char-
acterize the effects of drugs, chemicals, and
other experimental manipulations on mem-
ory, learning, sensory, and motor processes.

Despite the methodological and
theoretical differences among different
approaches in psychology, behavioral scien-
tists conceptualize behavior as identifiable
units termed responses or as patterns of
responses that occur in a spatial and tem-
poral framework. Further, operational
definitions are used to define different psy-
chological processes in terms of these
responses. The operational definition of psy-
chological processes in terms of the occur-
rence of specified identifiable responses is
extremely important since it allows for the
analysis of the occurrence, frequency, and
patterning of different behaviors.

Strategies for the Use of
Behavioral Methods in Toxicology

Given the evidence that chemical exposures
may have serious health effects in human
and animal populations, it is somewhat
surprising that animal testing to examine
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Universe of chemicals
5 million

Commercial chemicals

4
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Figure 1. Out of the 65,000 chemicals presently on the
market, the number of chemicals that are neurotoxic is
unknown.

the neurotoxic effects of chemical expo-
sures has not been initiated on a wider
scale. However, as depicted in Figure 1, for
most of the 65,000 chemicals currently in
commerce as well as the 2,000 new chemi-
cals that are introduced on to the market
each year, relatively few have been tested
for neurotoxicity (55). Even for com-
pounds such as pesticides, which in many
cases are designed to act through toxic
effects on the nervous system of lower ani-
mals, less than 10% have been sufficiently
examined to determine their possible con-
sequences to the nervous system. Although
it is impossible to state with certainty the
number of neurotoxic compounds already
in existence, reviews of the literature and
current databases (55,56) estimate that 3
to 28% of all chemicals in the environment
possess some Neurotoxic activity.

In response to this lack of information,
there has been an increase in regulatory
activity aimed at developing strategies for
testing for neurotoxicity at the animal
level, which includes behavioral end points
(57-60). The approach most frequently
put forth for the regulatory testing of neu-
rotoxicity is a tiered testing approach
(1,47,61), although there is still debate as
to which behavioral tests should be
included in which tier. The purpose of test-
ing chemicals at the Tier 1 level would be
to identify chemicals with neurotoxic poten-
tial. Because it is envisioned that behavioral
tests would be included in the routine test-
ing of chemicals for regulatory purposes,
methods that are simple and economical to
perform and require no pretraining of the
animals are typically the techniques which
have received the most attention. The most
common behavioral tests being proposed
consist of standardized observations using
operationally defined end points, several
manipulative tests to assess several aspects
of sensory/motor functions, and the auto-
mated assessment of motor activity. In the
logical scheme of such a tiered testing strat-
egy, a compound identified at the Tier 1

level would subsequently undergo further
testing (Tier 2) using more advanced
behavioral techniques to better characterize
the neurotoxic effects of the compound and
to determine dose-response relationships
for risk assessment purposes. Behavioral
tests conducted at the Tier 2 level would be
aimed at objectively quantifying sensory
and motor deficits as well as evaluating
cognitive behaviors related to learning,
memory and performance.

An overview of the behavioral tech-
niques currently being proposed for inclu-
sion for neurotoxicity screening are
discussed below. In addition, a number of
techniques suitable for characterizing dif-
ferent types of behavioral impairments are
also presented.

Behavioral Neurotoxicity
Screening Techniques

Observational Methods for
Documenting Clinical Signs
Observation is a part of every scientific
discipline, and the scientific study of behav-
ior is no exception. Behavioral observations
can provide information regarding the
appearance of both overt neurological abnor-
malities such as convulsions, paresis, and
ataxia, as well as behavioral abnormalities
characterized by changes in an animal’s
responsiveness to its environment. Direct
observation of an animal’s behavior follow-
ing exposure to a chemical agent is one of
the most straightforward means of docu-
menting clinical signs of toxicant-induced
neurological and behavioral impairment
and is a logical starting point for investigat-
ing the potential neurotoxic effects of a
compound for which neurotoxicity data
are lacking.

For observational methods to be effec-
tive, a structured protocol covering differ-
ent functional domains should be used and
applied in a systematic fashion. Since
observational methods are used in the early
stages of hazard identification, it is impor-
tant that different aspects of nervous
system function be included in the exami-
nation. The methods must cast a broad net
to catch neurotoxicants that potentially can
have many different effects on neural func-
tioning. Typically, most observational
screening batteries currently in use include
items designed to provide information on
the presence and severity of convulsions,
tremor, gait disturbances and other motor
abnormalities, the functioning of different
stimulus modalities, autonomic function,
and general reactivity (4,62). To increase
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Table 2. End points included in a functional observational battery in the WHO/IPCS collaborative study on neuro-

toxicity assessment.

Home cage and open field Manipulative Physiologic
Posture Ease of removal Body temperature
Convulsions and tremors Ease of handling Body weight

Palpebral closure

Palpebral closure

Lacrimation Approach response
Piloerection Click response
Salivation Tail-pinch response
Vocalizations Righting reflex
Rearing Landing foot splay
Urination Forelimb grip strength
Defection Hindlimb grip strength
Gait Pupil response
Arousal

Mobility

Stereotypy

Bizarre behavior

Data from Moser (4).

Figure 2. Neuromuscular weakness can be assessed
using commercially available strain gauges to measure
forelimb and hindlimb gripstrength. (Photo credit: BM
Kulig).

the sensitivity of observational screening
methods, the highest dose groups in neuro-
toxicity studies typically are set at mini-
mally toxic or limiting-dose levels. Several
protocols for use in neurotoxicity assess-
ment have been described (3—-5). An exam-
ple of items usually included in a protocol
for a functional observational screening bat-
tery is presented in Table 2. Such a battery
typically comprises direct measurement in
the home cage and in an open field, as well
as several manipulative tests to evaluate sen-
sory reactivity and motor function. One
semiquantitative test that has proved partic-
ularly robust and is employed in a number
of laboratories’ commercially available strain
gauges to obtain estimates of forelimb and
hindlimb grip strength (Figure 2).
Although observational methods are
perhaps conceptually the most straightfor-
ward, they are also the easiest to confound
and can sometimes be difficult to interpret
unless there is some internal or external
corroboration of results. For example, a cor-
respondence between ease of removal from
the home cage and reactivity to being

handled provides more convincing evidence
of a functional deficit than an effect on one
measure alone. For this reason, some inves-
tigators have explored the use of composite
scores designed to reflect functional
integrity within a given domain (63).
Likewise, external corroboration in the
form of data obtained with another test
system is also helpful, e.g., a reduced
response to a auditory stimulus may indi-
cate a sensory hearing loss. However, it
could also be a function of motor changes
or some aspecific effect related to arousal.
Data from experiments using electrophysi-
ological methods for measuring auditory
evoked potentials, behavioral experiments
designed to measure auditory thresholds,
or histological evidence of damage to the
cochlea would be necessary to determine
the specificity of effects on the auditory
system per se.

Because scientists in general have quite
a bit of experience in making observations,
it is often assumed that this general observa-
tional experience provides a basis for exper-
tise in making behavioral observations.
Without a knowledge of neurological func-
tions and the normal behavior of the species
under study, untrained observers of behav-
ior are likely to make observations in a
highly selective manner, to miss effects of
importance, or to fail to carry out these
methods in a reliable fashion.

Because of the subjective nature of the
observational screening battery, the use of a
structured neurological/behavioral exami-
nation under standardized conditions and
using observations with clear, operationally
defined end points are recommended. Not
only does a structured protocol reduce
personal bias, it also can help in training
observers. Further, to ensure as far as

possible that observer bias is minimized or
controlled, observational methods should
also be carried out in a blind fashion, with
the observer unaware of the treatment of
the animal.

Observational methods for screening
purposes can be used both in adult and
developing animals. Although similar
observational end points are used for study-
ing behavior in animals of different ages,
there are some important differences in
the interpretation of these similar, but
different, assessments. In fact, in immature
rats and mice, the time of first appearance
and subsequent maturation of several
reflexes and responses shows remarkable
regularity. This means that not only
abnormal responses but also changes in the
time of appearance and maturation of oth-
erwise normal responses can be exploited
in the assessment of effects in developing
organisms (52,64).

Although a number of papers have
been published on the use of observational
methods for neurotoxicity screening, not
all authors have reported equal success in
detecting the effects of neurotoxicants
with this approach (65). Thus, interlabora-
tory data are necessary regarding the sensi-
tivity of observational methods in detecting
neurotoxicants as well as information
regarding interlaboratory and intralabora-
tory reliability. In this regard, the Interna-
tional Programme on Chemical Safety of
the World Health Organization is cur-
rently sponsoring an international collabo-
rative study on neurobehavioral methods
for neurotoxicity screening in which eight
laboratories are participating (66).

Motor Activity Assessment

Similar to observational methods, motor
activity assessment requires no prior learn-
ing on the part of the animal and thus may
be a useful method for neurotoxicity screen-
ing. Because the technique has been used
extensively in behavioral pharmacology for
many years, quite a bit is known about the
sensitivity of activity measurements to the
effects of different drugs and brain damage,
as well as the advantages and limitations of
different measurement devices (67-69).
Different approaches to detecting the
movemnrent of animals inctude field detec-
tors, activity wheels, photocell-based sys-
tems, and video-based devices. Although
all of these systems detect movement, there
are very large differences in the type of
motor activity that they measure. One
example of a field detection device, for
example, is based on the generation of a
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capacitive field around the test chamber. In
this system, an adjustable oscillator supplies
high-frequency current to an input coil,
which creates a field around the test cham-
ber. Movement within the test chamber
produces momentary changes in the voltage
in the output coil, which is digitized and
reported as an activity count. One of the
disadvantages of field systems is that any
movement large enough to activate the coil
may be detected. This means that move-
ments other than spontaneous locomotion,
such as body-part movements, grooming,
and even tremors and convulsive move-
ments will be included in the measurement,
making the interpretation of effects on
locomotor activity per se difficult.

In contrast to field detection devices,
activity wheels tend to measure a very
specific type of ambulation under very
specific circumstances. Activity wheels are
electromechanical-based devices that consist
of an enclosed wheel attached to the ani-
mal’s home cage. When the animal enters
the wheel, it tends to run; the measure of
activity is the number of revolutions that the
animal makes in the wheel. All other activi-
ties, including eating, drinking, grooming,
exploring, etc., occur in the home cage por-
tion of the apparatus. The major drawback
of activity wheels is that the movement itself
provides feedback to the rat which can mod-
ify running rate in a rather unspecified man-
ner. This is perhaps one of the reasons
underlying the large differences between rats
in this type of activity measurement.

To obtain a more refined measure of
horizontal locomotor activity in a station-
ary environment, detection methods
employing either photocells or computer-
ized video-imaging techniques are typically
employed. In photocell-based systems, the
photocells are positioned in such a way
that they are primarily sensitive to hori-
zontally directed movement which is
measured in either simple test environ-
ments, such as a rectangular box or circu-
lar enclosure, or in complex maze-type
environments, such as the figure-8 maze or
the residential maze.

In video-based systems, a camera posi-
tioned above the test apparatus receives a
video image of the white rat on a black
background, which is digitized by com-
puter into a series of X-Y coordinates; this
provides information on the amount of
ambulatory movement in terms of total
meters run, the distribution of movement
at different speeds, and the amount of
locomotor activity in different locations
within the test chamber.
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Not only do motor activity assessment
methods differ with respect to the type of
detection device used; there are also many
different types of testing conditions that
can affect motor activity assessment: famil-
farity of the animal with the test situation,
illumination conditions, complexity of the
test environment, the length and frequency
of the test period, and the age of the ani-
mal. These factors must also be taken into
account when designing either screening
protocols or experiments to more fully
assess activity changes (67-69).

In neurotoxicity testing for regulatory
purposes, motor activity is typically mea-
sured outside the home cage using either a
simple or complex environment. Typically,
a test period of 30 to 60 min is used based
on the rate of habituation engendered in a
specific device (70).

Issues raised over motor activity assess-
ment for the purposes of regulator neuro-
toxicity screening fall into two categories:
technical and conceptual (70). Objections
raised on a technical level include discus-
sions of the variability of motor activity
data, the reliability both within and across
laboratories, and the sensitivity with
which effects can be detected. On the
conceptual level, concerns usually involve
the specificity of changes in activity, par-
ticularly for indicating the mechanisms
underlying the degree and direction of
activity changes (71,72).

With respect to technical concerns
such as reliability, etc., data available thus
far from the many hundreds of studies of
psychopharmacological agents, as well as
different types of chemicals, provide quite
compelling evidence that motor activity
assessment is a sensitive and valid means
of measuring chemically induced changes
in activity. Further, in a retrospective
study comparing data from six different
laboratories, similar results were found on
this measure despite variations in the
conditions under which the studies were
conducted (73).

With respect to conceptual issues
regarding specificity, it has been argued
that motor activity assessment constitutes
an apical test, i.e., one which requires the
integration of a variety of systems and thus
might be particularly useful for screening
purposes (68). Of course, it is important
to distinguish chemicals’ effects on neural
function from effects on other systems.
However, from the data thus far available,
it does not appear that decreases in motor
activity simply reflect malaise or general

illness (74).

Tests for Specific
Behavioral Functions
Although observational methods and motor
activity assessment constitute a rational
approach to first tier screening, there are a
number of important psychological func-
tions such as memory, learning, attention,
and social behavior that are beyond the
scope of these methods. Further, a detailed
characterization of specific sensory deficits
is likewise unfeasible with this approach.
To evaluate these and other effects, there
must be methods that go beyond the docu-
mentation of the occurrence of clinical and
behavioral abnormalities at high-dose levels.
An improved characterization of a
behavioral deficit is typically achieved
through the use of more complex tests
specifically designed to assess and differenti-
ate sensory, motor, or learning/memory
and performance functions. In this context
it should also be noted that each of these
various categories of function is also com-
posed of component behaviors which may
be separately evaluated. Some of the more
advanced tests permit the determination of
whether changes in one behavioral function
may be the indirect result of changes in a
different behavioral function. For example,
changes in learning may be an indirect con-
sequence of an impaired ability to detect or
respond to the environmental stimuli that
are critical to the task. It may be necessary
to evaluate behavior on several different
complex tasks to fully determine the profile
of behavioral toxicity.

Tests of Motor Function

Exposure to many different classes of sub-
stances (including metals, solvents, pesti-
cides, gases, and drugs) has been associated
with toxicant-induced motor disturbances.
In some cases, functional effects are the
result of damage to peripheral nerve while,
in others, structures within the central ner-
vous system are involved. Not surprisingly,
the types of motor effects that have been
reported in the literature for different com-
pounds are equally heterogeneous, ranging
from specific deficits such as ataxia, paresis,
tremor, and other types of dyskinesias to
subtle changes in the force and duration of
specific motor acts.

A number of techniques have been
developed for measuring the effects of dif-
ferent aspects of motor function in small
laboratory animals and have been reviewed
in recent papers (69,75,76). These tests
differ widely with respect to the types of
motor deficits that they are designed to
measure and the degree to which they are
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Table 3. Tests used to evaluate effects on motor function.

Effect Behavioral test/end point References
Neuromuscular weakness Grip strength (9,77-80)
Endurance Swimming test (81,82)
Ataxic and paretic gait Gait analysis (83-85)
Incoordination Negative geotaxis (86)
Rotorod (87-90)
Treadmill (91
Coordinated movement test (12)
Impaired motor execution Force and duration (82-94)
Tremor Tremor quantification (10,94)
Catalepsy Bar test (95)
Stereotypies Observation (96-98)

automated [Table 3; (77-98)]. There are
considerable differences in the psychomet-
ric properties of different tests of motor
function and their suitability for applica-
tion in long-term experiments.

Some of these paradigms are relatively
simple approaches that do not require
extensive training or pretesting of the
animal; however, some of these tests are also
susceptible to confounding. Rotarod testing,
for example, has been widely used in acute
pharmacological experiments to provide
dose-response data on the effects of drugs
on motor coordination. With repeated test-
ing, control animals tend to jump off the
rotating rod, which makes interpretation of
results impossible (69,75). Other simple
tests such as gait analysis are quite labor
intensive and may be influenced by the
speed of ambulation as well as the size of
the animal (84,88).

Some of the more advanced techniques
offer more selective assessment of motor
function, e.g., computerized tests of motor
coordination that use a computerized
video-based recording system to analyze
the temporal and qualitative characteristics
of hindlimb movement under standardized
controlled conditions (12). Further, oper-
ant techniques also permit the quantifi-
cation of variables such as force and
duration of selected limb movements and
the detection and analysis of tremor
(11,76,92,93). Such techniques demon-
strate the high degree of selectivity that can
be achieved using behavioral methods for
measuring motor impairment.

Sensory Function

Integrated human function relies on intact
sensory capabilities, any or all of which
may be affected by neurotoxicant expo-
sure. Visual system deficits have been
reported in response to exposure to metals
such as methylmercury (6). Auditory
deficits are associated with exposure to

aminoglycoside antibiotics, trimethyl tin,
and some organic solvents (100).

As with motor function, the techniques
available for evaluating sensory function
range from relatively simple techniques,
such as the tests of sensory reactivity
included in most observational batteries, to
more advanced techniques. Specific para-
digms for studying toxic effects on the
visual, auditory, and somatosensory sys-
tems have been discussed in several recent
reviews (7,101,102). Some sensory func-
tions, e.g., olfaction and taste, have
received little experimental attention as yet
in neurobehavioral toxicology, although
the same techniques could generally be
applicable to assessments of these modali-
ties as well.

Basically two different types of behav-
ioral paradigms have been described for
evaluating the effects of chemicals, those
based on operant conditioning and those
using reflex modification techniques.
Instrumental or operant conditioning tech-
niques have included the use of both active
avoidance paradigms, as well as psycho-
physical operant discrimination method-
ologies, in both rodents and primates.

One behavioral technique using avoid-
ance learning to evaluate sensory function
is the multisensory conditioned-avoidance
paradigm. In this test, animals are first
trained on an avoidance conditioning task
with different sensory cues such as light,
tones of different frequencies, and mild
shock as the conditioned stimuli. Sensory
impairments, for example—auditory
threshold changes—are apparent when ani-
mals fail to make avoidance responses to
tones while continuing to make responses
to stimuli in other modalities. Using a
multisensory conditioned-avoidance para-
digm such as this, investigators have
recently uncovered a neurotoxicological
effect of organic solvents not previously
measured in laboratory animals with other
methods, namely the ability of some

organic solvents to produce irreversible
hearing loss (100).

Psychophysical operant discrimination
techniques provide a very elegant approach
to the evaluation of neurotoxicant-induced
specific sensory deficits. In this technique,
animals are first trained to emit a specified
response in the presence or absence of a
stimulus of a particular modality (101,102),
i.e., the animal is rewarded for reporting
whether it can detect a stimulus by making
a particular response. To study the effects
of acrylamide on vibratory sensation, for
example, Maurissen and his co-workers (8)
trained monkeys to hold down a response
lever with one hand and to let go of the
lever if a vibratory stimulus was detected to
the fingertip of the other hand. Each trial
was signaled by a tone, and the animal was
rewarded if it released the lever when the
vibratory stimulus was delivered. To control
for guessing, trials in which no vibratory
stimulus was delivered were also presented
during the test session, the monkey was also
rewarded if it did not release the lever dur-
ing the trials where no stimulus was pre-
sented. Similar methodologies have also
been adapted to study the effects of acry-
lamide on the visual system (103) as well as
the sensory deficits produced by develop-
mental methylmercury exposure (6).

Although psychophysical techniques
constitute one of the most precise
approaches to the study of sensory deficits,
relatively long periods of time are required
to achieve stable baseline levels of respond-
ing. Thus, the technique is unsuitable for
testing large numbers of animals.

A relatively recent addition to the
behavioral methods for auditory assess-
ment is the reflex modification paradigm
(7). The technique makes use of the fact
that a brief low-intensity stimulus will
attenuate the magnitude of the startle
response elicited by a subsequent high-
intensity stimulus. The technique requires
no prior training of the animal, and rela-
tively extensive audiometric testing can be
accomplished within a matter of days
instead of weeks. Thus, this approach
holds a considerable amount of promise for
evaluating specific sensory deficits.

Cognitive Behaviors

Behavioral impairments indicative of
cognitive changes have been associated
with exposure to a number of chemicals.
Developmental exposure to lead, methyl-
mercury, and PCBs have been causally

related to delayed development and intellec-
tual impairments in children. In adults,
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chronic exposure to organic solvents has
been associated with the development of
toxic encephalopathy characterized by
memory loss and cognitive impairments.
Given the fact that intellectual abilities
related to memory and learning capacity
are of such importance in successfully
adapting to changes in the environment,
it is not surprising that concern has been
raised regarding the need to include
measures of learning and cognition in
evaluating the health effects of drugs and
chemicals.

Learning is not a unitary phenomenon
and, as a result, many models have evolved
to evaluate different aspects of learning and
other higher order functions in animals.
Some studies have concentrated on the
effects of chemical exposures on the perfor-
mance of learned behaviors, using, for
example, free operant or discrete trial tech-
niques; others have attempted to develop
models to study acquisition and memory.
A variety of different types of testing envi-
ronments such as two-compartment shuttle
boxes, mazes, and operant chambers have
been used with different behavioral para-
digms including avoidance learning, rever-
sal learning, repeated acquisition, and delay
tasks (13,75-99). Although the list is far
from exhaustive, Table 4 summarizes some
of the more frequently used techniques to
study the effects of chemicals on different
aspects of cognitive behavior.

As with other behavioral tests, the
advantages of the simple approaches are that
little training of the subject is required and
equipment costs are minimal. However,
they often suffer one major disadvantage: it
is quite difficult to determine whether
observed deficits actually represent changes
in cognitive function or are secondary to
other functional impairments such as sen-
sory, motor, or activity changes.

KULIG ET AL.

One example of such difficulties is
encountered in the use of mazes to study
learning. The water maze is currently used
somewhat extensively to study learning and
memory. In this paradigm, a rat is placed
in tub of water that has been made opaque
through the addition of a substance such as
milk powder. The animal’s task is to find a
hidden platform submerged just below the
surface in order to escape from the water.
Learning is indicated by a decrease in the
latency to find the platform across trials.
There are, of course, several ways in which
latency measures could be lengthened in
such a procedure, suggesting learning
impairments without any real change in
cognitive function. For example, rodents
are known to use visual cues in the sur-
rounding environment in maze situations.
Thus, visual deficits could contribute to
changes in latency independently of learn-
ing. Moreover, changes in motor function
might make the swimming response more
effortful or less coordinated, thereby also
increasing latency independently of changes
in cognitive function. Similar confounding
influences in the form of changes in sponta-
neous activity have also been described for
passive avoidance learning techniques (13).

More advanced procedures for assess-
ing cognitive functions, such as the multi-
ple repeated acquisition and performance
paradigms, can be specifically designed to
address such problems (13,75). In this
paradigm, animals are required to learn a
sequence of responses during the repeated
acquisition component of the session, and
they only have to execute a sequence of
responses that has already been learned
during the performance component. Both
the repeated acquisition and performance
components require animals to have intact
sensory capabilities, adequate motor func-
tions and sufficient motivation to perform

Table 4. Conditioning paradigms used to study the effects of neurotoxicants on cognitive behaviors.

Testing environment

Behavioral paradigm

Cognitive function

Two-compartment test chamber

Mazes

T-maze Learning

Delayed alternation
Discrimination reversal
Spatial memory testing

8-Arm radial maze

Passive avoidance learning
Shuttle box avoidance learning

Short-term memory
Learning acquisition,
memory, performance

Acquistion
Short-term memory
Learning
Short-term memory

the sequence of responses. However, learn-
ing per se is only required in the repeated
acquisition component of the task. Thus if
a toxicant induces selective or direct effects
on learning processes, changes in accuracy
would be detected in the repeated acquisi-
tion only. In contrast, if the toxicant
produces changes in sensory, motor, or
motivational processes, these effects would
be manifest in both the repeated acquisition
and performance components of the task.
In addition to memory and learning
processes, performance of learned behavior
as a result of chemical exposure has also
been frequently studied. Different para-
digms include both discrete-trial techniques
and schedule-controlled behavior using
intermittent schedules of reinforcement
(99). Put simply, a schedule of reinforce-
ment defines the rules governing the rela-
tionship between an operant response and
its reinforcing consequences. Different
schedules of reinforcement generate marked
differences in the pattern and frequency of
behavior in time, which are quite character-
istic for any particular schedule and show
extensive species generality. Schedule-con-
trolled behavior has been extensively used
in behavioral pharmacology and is being
increasingly applied to the study of toxicant
effects (104). Ease of automation, well-
studied paradigms, a large database of drug
and chemical effects, commercial availabil-
ity of standard equipment, and a high
degree of reproducibility and sensitivity
are some of the features that argue in
favor of this approach to neurotoxicity
evaluation. Thus, schedule-controlled
operant behavior offers a standardized but
flexible approach for investigating neu-
robehavioral toxicity.
Social Behaviors
The investigation of social behavior in ani-
mals presents several concerns that are not
usually present when studying individual
subjects. Social behaviors are never unitary
events. They are multimodel in nature and
consist of exceedingly complex interactions
between each participant, their individual
physiological and cognitive state, and the
environment in which the behavior(s)
occur. The many facets of even the most
simple social interaction make automated
data collection impractical at best and usu-
ally necessitate the use of observational
(i.e., ethological) methodologies. The par-
ticular requirements associated with such
techniques have been reviewed by a num-

ber of authors (36,51).

Morris water maze Spatial learning Short-term memory, learning
Operant chamber Intermittent schedules of reinforcement Learned performance
Discrete-trial operant discrimination Learned performance
Delayed alternation Short-term memory
Discrimination reversal Learning
Repeated acquisition Learning
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Because observational techniques all
require judgments to be made by the
observer, it is most important to provide
narrowly defined operational definitions for
the behaviors of interest. Social interactions
in rodents have been evaluated for a num-
ber of compounds, and provide a ready
example. Adult rodent social behavior
comprises four primary categories: flight or
submissive behaviors, sexual behaviors,
aggressive behaviors, and investigative or
exploratory behaviors (105). It should be
clear that each of these broad behavioral cat-
egories consists of many specific behaviors.
In evaluating a number of neurotoxicants,
Silverman (105) selected several different
specific behaviors within each category, pro-
vided discrete operational definitions for
each, and recorded the rate of occurrence
following introductions or reintroductions
of one rat to another. There are several
characteristics of ethological analyses of
social behavior that make this approach
well suited for behavioral toxicology. First,
the evaluation of social behavior using
unobtrusive observational techniques mini-
mizes more stressful experimental manipu-
lations. Second, it places an emphasis on
obtaining effects at the lowest end of the
dose—response curve. Lastly, as the animals
are engaging in natural behaviors rather
than ones shaped by the investigator,
results may be more readily extrapolated to
exposures and effects that may occur out-
side of the laboratory.

Questions in developmental neurotoxi-
cology can likewise be addressed through
the study of social behavior. Interactions
between mother and young provide a rich
variety of behavior. Typically, analyses of
maternal behavior in rodents include rat-
ings of nest constructions, time required to
retrieve pups displaced to the far side of the
home cage, percentage of observation time
the mother spends grooming and nursing
the pups, and the amount of exploratory
behavior undertaken by the offspring.
Barrett and Livesey (106) used these tech-
niques to assess the effects of chronic lead

exposure and found that lead-induced mat-
urational delays in pup development were
reflected by increased nursing and decreased
exploratory behavior. In addition, play
behavior may also be useful in understand-
ing the developmental effects of specific
compounds. In a study by Holloway and
Thor (107), for example, a number of oper-
ationally defined behaviors associated with
play-fighting and exploration were found to
be increased following developmental lead
exposure while no significant alterations in
other social activities such as maternal
behavior were seen.

Concluding Remarks
and Recommendations

There is a large number of behavioral meth-
ods available for screening and characteriz-
ing neurotoxic effects. From the database
presently available, standardized observa-
tional methods and motor activity assess-
ment would appear to be appropriate for
the initial screening for neurotoxicity.
These techniques are technically simple to
implement and are thus potentially useful in
situations in which resources are limited to
address neurotoxicity concerns. Results from
ongoing studies such as the WHO/IPCS
collaborative study, as well as those from
individual laboratories, will help address
concerns regarding issues of reliability,
replicability, and sensitivity of these meth-
ods. However, the prevention of outbreaks
of neurotoxicological disease that have
occurred in the past through the implemen-
tation of these methods will be the ultimate
criterion for judging their utility as screen-
ing methods.

In light of the recent emphasis on
screening, it is possible to lose sight of the
fact that sophisticated behavioral paradigms
have been developed for measuring specific
behaviors under a variety of laboratory and
natural conditions. The potential impor-
tance of these methods in characterizing
and understanding neurotoxic effects has
not been fully explored. Thus, the labora-
tory scientist interested in studying the

range of effects produced in human and

animal populations should not be deterred

simply because such paradigms are not the
focus of regulatory toxicology.

Based on these considerations and the
discussion above, the following recom-
mendations for future developments in the
area of behavioral neurotoxicology are
outlined below.

* Animal behavioral data, whether exper-
imental or ethological, should be used
proactively and reactively to address
neurotoxicology problems

* Many neurotoxicology studies using
laboratory animals are conducted at
high-dose levels; more attention needs
to be directed at conducting studies at
lower environmentally relevant expo-
sure levels

* Simple, sensitive, cost-effective tests for
learning and memory should be devel-
oped for incorporation into the early
stages of neurotoxicity testing

e Tests for specific sensory impairment
should be considered for further devel-
opment and possible inclusion in neu-
rotoxicity testing

*  The value of reactive studies, which has
been adequately proven in the case of
agents or doses with marked harmful
effects, should be further verified with
agents or doses that have a lower toxic-
ity profile but are still a cause of con-
cern because of the borderline effects
they might produce in a large number
of people

* Many laboratory studies indicate that
wild animals can be affected by neuro-
toxic chemicals; neurotoxicity field
studies on wild animal populations,
which are largely unavailable, should
be conducted

¢ When behavioral data are to be used in
ecotoxicolological risk assessment, tech-
niques to correlate behavioral effects
with biomarkers of exposure e.g., residue
levels in wild populations or other bio-
markers of effect such as cholinesterase

inhibition should be developed.
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