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Introduction

Bignami (1) focused on first-tier end
points that do not require large resources
with respect to logistics and instrumenta-
tion. This applies to simple (but quite
effective) reproductive success end points,
to postnatal indicators of neural and
behavioral development (particularly Fox-
type scales), to economical tests that can
reveal whether the typical developmental
pattern of activity/exploration/habituation
is affected (including the assessment of
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responses to selected drug challenges), and
to the less burdensome of fostering proce-
dures. This paper is devoted to end points
that are informative about specific behavior
processes and underlying regulatory mech-
anisms but require greater technical sophis-
tication and larger investments than the
previous ones.

Comparisons between humans and
other animals are complicated by limita-
tions in the direct evaluation of subjective
states (i.e., unlike humans, animals do not
have proactive direct communication of
their self-perception). Nonhuman animals
have no verbal language to express the sub-
tleties of psychological states (emotional,
motivational, cognitive, etc.). As a conse-
quence, animal studies must be sensitive to
the ways in which species can communi-
cate their affective states. Studies of animal
behavior must identify well-defined
descriptive categories, avoiding redundan-
cies and overlap, and monitor frequencies,
intensities, sequences, patterns, and trends
[see Martin and Bateson (2) for a general
philosophy of how to score behavior pro-
ductively]. Abnormalities may emerge by
disruptions in sequences or by unpre-
dictable fluctuations in intensity. It is
equally critical to measure motivational
levels and relate them to behavior; most of
the time the intensity of motivation is

defined as the latency to perform a given
response. For example, maternal separation
leading to the search for pups is a strong
motivator and is measured by latency to
retrieve a pup or by the proportion of pups
retrieved within a given time. Within the
obvious simplicity of this model, when
transposing to the human experience of
maternal separation, it is nevertheless useful
in operationalizing complex psychological
states in nonverbal animals.

Another evaluation issue stems from the
fact that most laboratory animals are com-
monly social species. As a result, intrinsic to
their behavioral repertoire is some direction
toward a conspecific. From the diadic
mother—pup relationship to the adult terri-
torial interactions between males, rodents in
particular are characteristically influenced by
other conspecifics’ signals. Accordingly, ade-
quate measurement of any individual ani-
mal’s responses must account for the
animal’s social context, an issue that is often
ignored by standard laboratory procedures.

In the case of social and reproductive
behaviors, the increasing availability of low-
cost, high-performance videotape systems
allowing single-frame evaluation makes
ethotoxicological analyses the procedure of
choice for careful quantitative and qualita-
tive assessment of the behavioral alterations
induced by a given treatment. In fact, these
videotape systems allow both characteriza-
tion of subtle behavioral change (e.g., by
slow-motion scoring) and, by repeated
analysis of the same tape, make it possible to
measure behavioral items that were not
planned at the beginning of the experiment.
Moreover, these systems, supplemented by
commercially available software [Observer,
Noldus Information Technology b.v.,
Wageninpen, The Netherlands (3); Keybe-
haviour, Department of Zoology, University
of Edinburgh, Edinburgh, Scotland, etc.],
eliminate most of the biases due to inter-
or intraobserver reliability while facilitating
multicentric studies following standardized
methodologies, which are compelling issues
for regulatory purposes.

Emotional Reactivity

To evaluate the emotional behavior in labo-
ratory animals, it should be possible to
measure emotions directly, to classify types
of emotions, and indeed, to identify emo-
tions in animals that may have relevance to
human emotional states. Recognizing the
difficulty in specifying emotions, due to the
fact that the complexities of overt behavior
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must be ascribed to some underlying emo-
tional state, the experimenter nevertheless
attempts to classify emotions despite this
limitation. Because of the subjective nature
of emotional states, animal analogues of
such states as anxiety have been difficult to
design. Even though several models center-
ing on particular aspects of the emotional
behavior in rodents have been developed in
recent years, none has been evaluated thor-
oughly for its efficacy in developmental
behavioral toxicity testing. Most of these
testing methods have been validated behav-
jorally and physiologically and appear to be
useful for distinguishing anxiogenic and
anxiolytic effects within several classes of
drugs. A brief description of the most com-
monly used techniques for the assessment of
emotional reactivity in infant, adolescent,
and adult rodents is reported in this section.

Assessment of Emotional Reactivity

in Infant Animals (Preweanlings)
Ultrasonic Vocalization Test. Rodent
pup ultrasonic vocalizations provide a use-
ful model for investigating the ontogeny of
emotionality (4). This test, which can eas-
ily be included in routine developmental
behavioral toxicity testing, seems to be more
appropriate than traditional methods used
for the assessment of emotional reactivity
during early postnatal life, such as changes
in arousal-locomotory levels or latency time
to emergence from a nest box. One advan-
tage of this technique is the possibility of
recording the ultrasounds of newborn ani-
mals in a standardized experimental setup
with minimal handling; moreover, calls
represent one of the few response patterns
emitted by very young rodents that are
amenable to a rigorous quantitative analy-
sis. Ultrasonic calls can be elicited by
quantifiable stimuli and are produced with
successive modifications of their pattern
from birth throughout the lifespan, thus
allowing a highly age-specific longitudinal
analysis. Finally, ultrasonic vocalization
may have more validity in cross-species
comparisons than other end points because
this response is part of the behavioral
repertoire of most species (5-7).

The ultrasonic calls of infant rats are
whistlelike sounds in the frequency range
between 35 and 45 kHz. As these calls are
associated with social isolation, they have
been variously described as distress vocal-
izations or isolation calls. The rat pup
ultrasonic calls, which are potent stimuli
for maternal retrieval and prolactin release,
are emitted during the first 2 postnatal
weeks, with the rate of calling decreasing

308

CUOMO ET AL.

when the eyes open around day 14.
Changes in temperature levels, odor cues,
and tactile stimuli differentially affect
neonatal ultrasounds (8).

Several findings have shown that ultra-
sonic calling is a valuable and sensitive
indicator of the emotional state of new-
born rats. Ultrasonic emission decreases
during the acquisition of an operant task
(crawling for nipple-suckling reinforce-
ments) and increases during extinction,
suggesting that the calls are indicative of
stress and arousal (9). Moreover, ultrasonic
vocalization in rat pups is a reliable test for
detecting both anxiogenic and anxiolytic
effects of several classes of compounds.
Anxiolytic drugs, such as benzodiazepines,
selectively reduce calling whereas anxio-
genic agents, such as pentylentetrazol and
ethylcarboline-3-carboxilate, increase the
rate of vocalization (10).

The first behavioral teratogenicity
experiments using ultrasonic calling have
shown only small alterations in the rate and
length of vocalizations of rat pups exposed
prenatally to two positive control sub-
stances, such as vitamin A and methyl-
mercuric chloride (5,11). Conversely, more
recent findings analyzing time-sequence
variables, modulations of intensity and fre-
quency, and the responsiveness to pharma-
cological challenges have shown marked
alterations in animals exposed to behavioral
teratogens, such as methylmercury and car-
bon monoxide (7,12). It should be stressed,
however, that nonvocal variables must be
accurately monitored to determine whether
the effects of a treatment are specific for
ultrasonic behavior. Changes in both ambi-
ent and body temperature, motor activity,
coordination (geotaxis), and respiratory rate
are important covariants in studies of ultra-
sonic vocalization.

Ultrasonic calls can be recorded and ana-
lyzed by different systems and procedures.
Signals can be recorded on tape, and the sig-
nal frequency is reduced by slow replay or
by a bat detector for further analysis by
equipment working in the audible range of
humans. Other systems perform an on-line
spectral analysis and store the output in dig-
ital form in a computer. To perform a
microanalysis of ultrasonic vocalization, an
on-line computerized system for the real-
time recording of frequencies and ampli-
tudes has been recently developed (7).

Assessment of Emotional Reactivity
in Adolescent and Adult Animals

Open Field Test. One of the most
traditional and widely used methods for the

assessment of the emotional state in rodents
is the open field test (13), of which many
varieties exist. Computerized open field
equipment have been recently developed
(Image Motion Analyzer, Videotrack
System, Biomedica Manponi, Pisa, Italy).
Because this is a relatively simple technique
and gives quantitative information on a
broad range of responses, it has been used
frequently in teratologic studies (12,14-16).
A flat area bounded by walls is divided into
squares, and several activities are scored
(number of center and peripheral squares
entered per unit time, latency to leave the
center area, rearing, grooming, etc.).

In the open field situation, other
responses such as defecation and urination
can also be measured. Open field activity
scores seem to reflect both emotional reac-
tivity and exploratory behavior, whereas
defecation primarily reflects emotional
reactivity. Even though the results have not
always been consistent, an inverse relation-
ship between exploratory activity and the
emotional state of the animal has been sug-
gested, and activity has frequently been
inversely correlated with defecation levels
(17). However, according to Norton (18),
the notion that the open field test can be
used to measure general autonomic reactiv-
ity, or emotionality, is not substantiated by
the evidence. In this regard, for example,
different measurements of autonomic reac-
tivity (i.e., cardiac rate and defecation) do
not show parallel changes with habituation,
and activity in the open field is not corre-
lated with corticosterone levels (19,20).

Test Methods Using Conflict between
Exploration and Aversion. Some testing
methods used for the assessment of the emo-
tional state in rodents are based on the con-
flict between exploration and aversion, that
is, on the capacity of situational aversiveness
to reduce or block exploratory responses.
These methods include the elevated plus-
maze test, the black—white transition test,
and the emergence-from-cage test.

The elevated plus-maze apparatus con-
sists of an elevated maze with intersecting
arms of which two are open and two are
closed. The animal is placed in the center
of the maze and has free access to all arms.
Entries into open and closed arms and time
spent in open and closed arms are scored
by incidence. Under nondrug conditions,
rodents spend more time in the closed
arms than in the open ones. This test has
been validated behaviorally and pharmaco-
logically (21,22). Anxiogenic compounds,
such as pentylentetrazole and FG 7142,
further decrease the percentage of entries
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into and time spent in the open arms,
whereas anxiolytic drugs, such as benzodi-
azepines, elicit opposite effects. The ele-
vated plus-maze test has been frequently
used for the assessment of emotional
changes produced in rodents by develop-
mental exposure to psychoactive com-
pounds. Recent results obtained in rats
exposed prenatally to a benzodiazepine
derivative may be cited as an example (23).
Adult male rats exposed in wutero to
diazepam spent significantly more time in
the open arms than did rats exposed in
utero to vehicle. The total amount of time
spent in either the open or the closed arms,
however, was not affected by prenatal drug
treatment. Such data could be interpreted
as indicating a decrease in the emotional
reactivity of animals exposed to diazepam
during gestation.

Another technique that is commonly
used for the assessment of the emotional
state in rodents is the black—white transition
test. In this procedure, the number of transi-
tions made by animals between brightly lit
and dimly illuminated areas is measured
(24). Rodents are confronted in this test
with a conflict between their tendencies to
explore a novel situation and their aversion
to bright light. Rats and mice normally
spend more time in the area with a low illu-
mination level; the number of transitions
into the brightly illuminated area is
increased by anxiolytic drugs (i.e., benzodi-
azepines) at doses that do not modify loco-
motor activity. Amphetamine induces
effects similar to those of benzodiazepines;
however, unlike benzodiazepines, ampheta-
mine also increases locomotor activity at
dose levels that increase transitions (25).

In the emergence-from-cage test, the
time required by animals to emerge from
their home cage is recorded. The latency
to emerge seems to be directly related to
emotionality or timidity. Investigations
dealing with the effects of prenatal handling
on the emotionality of rat offspring have
shown that cross-fostered male offspring of
handled mothers emerged significantly
sooner than controls, indicating that prena-
tal handling decreases emotional reactivity
in male offspring (26).

Social Interaction Test. This test
exploits the uncertainty and heightened
emotionality elicited by placing rats in an
unfamiliar or brightly lit environment. The
dependent variable is the time that pairs of
male rats spend in active social interaction,
and both the familiarity and the lighting
intensity of the test arena are varied. Specific
interaction behaviors are scored: sniffing,
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following, pushing, jumping, wrestling, and
grooming (of each other). This test has
been validated behaviorally, physiologically,
and pharmacologically (27-29). Under
nondrug conditions, rats exhibit the highest
social interaction when the test arena is
familiar and dimly lit; conversely, unfamil-
iar or brightly lit environments decrease
the level of social interaction. Measures
indicative of increased emotional reactivity,
such as defecation and self-grooming, are
associated with the decrease in social inter-
action. The decline in social interaction
induced by a novel environment or by high
levels of illumination is prevented by anxi-
olytic drugs. Due to both the predominance
of aggressive attacks in mice and their fail-
ure to respond to manipulations of the
familiarity of the environment, this test does
not seem to be applicable to this species
(30,31). This procedure has frequently been
used in developmental pharmacology and
toxicology studies (23,32,33).

Assessment of Learning
Abilities in Developing
and Adult Animals

Numerous test methods are available for
the assessment of learning abilities in ado-
lescent and adult animals. However, age-
specific tests are also necessary to reveal
learning and/or retention deficits when the
immaturity of sensory and motor systems
does not allow easy screening. Particularly
during the late prenatal and the early post-
natal phase, the odor-aversion schedule is
the most adequate test to evaluate learning
capabilities and, more importantly, reten-
tion spans (34-36), because this test uses
conditioned (CSs) and unconditioned
stimuli (UCSs) fitting with the ecological
requirements of a precocial pup. For exam-
ple, an ecologically relevant context for
suckling fosters associations based upon
thermotactile and olfactory cues used for
controlling milk consumption. Operant
conditioning schedules, active- and passive-
avoidance tasks, and mazes have proven to
be among the most reliable and sensitive
techniques for the assessment of learning
changes in developmental toxicity studies.

Operant Conditioning Schedules

Operant conditioning methods typically
use animals trained to give a specified
response to obtain a reward of food or
water. The schedule of reinforcement (i.e.,
the specific set or sets of response-rein-

forcement contingencies) determines the
overall rate at which the animal responds as

well as the response pattern. The rodent’s
response rate and pattern can be carefully
controlled by type, size, and timing of rein-
forcement and can be brought under exte-
roceptive stimulus control, which can be
quite useful in functional investigations of
various sensory systems.

Two basic types of manipulations of
schedules of reinforcement (one based on
time and the other on frequency of respond-
ing) have been described, and the following
four main schedules are commonly
employed in operant conditioning studies
of drug and toxicant effects: #) fixed ratio
(FR) in which a fixed number of responses
must be made before the reinforcement
occurs; b) fixed interval (FI) in which rein-
forcement becomes available upon the first
response after a specified time interval;
¢) variable-ratio schedule (VR) character-
ized by the delivery of reinforcements after
a randomly varied number of responses
with a specified average; and &) variable-
interval schedule (VI) in which reinforce-
ments become available upon the first
response after randomly varied intervals of
time with a specified average. These sched-
ules result in characteristic response rates
and patterns that can be affected by early
treatments of teratologic interest (37,38).

In an excellent review of methods in
behavioral teratology, Adams (39) pointed
out that when operant-conditioning sched-
ules are used to assess the influence of
specific treatments (i.e., drugs or toxi-
cants), a stable baseline response rate and
pattern for each animal are established first
and then the chemical is administered. The
effects of the treatment are evaluated on
the basis of the animal’s behavioral change,
which represents a sensitive indicator of
responsiveness (before-after design). This
design cannot be used in developmental
toxicity studies because animals are treated
during prenatal and/or early postnatal life.
However, the before-after design can be
used in experiments exploring the
influence of developmental treatments on
the behavioral responsiveness to drug chal-
lenges that can reveal changes in underly-
ing regulatory mechanisms.

Other operant conditioning schedules
that appear to be valuable and sensitive
tools for the detection of subtle behavioral
changes in rodents exposed to noxious
agents during development are represented
by differential reinforcement of low (DRL)
or high (DRH) rates of responding tasks
(40,41). In the DRL schedule the rein-
forcement is programmed to occur only if
a response is delayed until a specified
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period of time has elapsed since the previ-
ous response; that is, if the animal
responds during this period of time, rein-
forcement is delayed. This schedule is
characterized by low response rate and
involves response inhibition. Conversely,
high rates of responding are engendered by
the DRH schedule in which more than a
specified number of responses are required
during the inter-reinforcement period.
Both DRL and DRH schedules are not
particularly more sensitive than other
schedules of reinforcement. However, FI
schedules appear to be sensitive to a wide
variety of toxicants including (among oth-
ers) metals, pesticides, and solvents.

More relevant information for human
situations could be obtained by computer-
assisted procedures allowing the simulta-
neous recording and microanalysis of
several behavioral parameters in operant
conditioning schedules (42).

Avoidance Tasks

In general, the results of tests requiring
either activation or suppression of specified
motor acts to avoid punishment can be
strongly biased by any alteration in neuro-
motor and other functions, which can result
in a confounding of associative effects (i.e.,
specific changes in learning and memory
processes) and nonassociative effects. This is
why active/passive (“go — no go”) avoidance
tests can provide an adequate control on
such a bias: for a catalogue of caveats,
including motor, sensory, and motivational
confounders, see Bignami (43) and Bignami
et al. (44). As concerns active locomotor
avoidance, the most frequently used sched-
ules require that an animal reenter the com-
partment in which it received punishment
shortly before, an act that involves consid-
erable stress; therefore, the assessment of
genuine learning capability can be hin-
dered by the development of coping
responses, such as unconditioned and con-
ditioned freezing, and by the predominance
of strong passive avoidance tendencies that
act as a brake on active avoidance respond-
ing. These phenomena can be attenuated,
for example, by appropriate adjusting of
intertrial intervals or by reducing shock
intensity, which also meets the increasingly
rigorous ethical requirements (44).
Active-Avoidance Tasks. Active loco-
motor-avoidance tasks require the animals
to run from one compartment of a chamber
to another to avoid an aversive stimulus
(footshock) generally preceded by a discrete
visual or acoustic stimulus. In the one-way
avoidance tasks, the running response is
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unidirectional: animals typically are required
to run from one side of the chamber to the
other side and then are placed in the start
compartment again for the next trial.

In two-way avoidance paradigms, the
apparatus consists of a box with two com-
partments (i.e., a shuttle box) often sepa-
rated by a hurdle. Unlike the one-way
avoidance task in which one compartment
always serves as the safe area and the other
as the danger area, in the two-way task
(43,44) the safe and dangerous sides alter-
nate from trial to trial if intertrial responses
are punished but not necessarily if intertrial
responses are not punished. In the more
frequent versions of the task, intertrial
intervals are predetermined and the begin-
ning of each trial is signaled by a warning
stimulus (tone or noise or light), but oper-
ant versions in which each response post-
pones shock by a specified amount of time
(with or without a superimposed warning
signal) have also been used with consider-
able success. All other things being equal,
performance in the two-way task progresses
markedly slower than it does in the one-
way task, and the average asymptotic level
is often low with considerable variation
between subjects.

Anisman (45) suggested that the assess-
ment of rodent performance in both one-
way and two-way paradigms can further
elucidate the effects of various treatments.
In fact, since both one-way and two-way
performances are sensitive to associative
manipulations, treatments that facilitate
learning should improve performance in
both tasks, while the opposite should be
true for compounds that disrupt learning.
Conversely, since two-way performance is
influenced by nonassociative effects much
more profoundly than one-way perfor-
mance, differential changes should be
observed in the two behaviors after effec-
tive treatments whose effects on learning
or memory processes are either negligible
or overshadowed by other effects, such as
the attenuation of shock-induced response
suppression (as in the well-known case of
the apparently surprising facilitation of
two-way avoidance by limbic lesions and
muscarinic antagonists).

Adultlike learning of one-way active
avoidance in rats is reached by 4 to 5 weeks
postnatally (46). Two-way active avoidance
fully develops at about the same age (47).

Passive-Avoidance Tasks. Generally,
passive-avoidance tasks—probably the meost
widely used to evaluate long-term memory
in rodents (48)—exploit the rodent’s pref-
erence for darkness (step-through) or their

tendency to step down from an elevated
platform. In the step-through apparatus,
the animal is placed on the lighted side of
a two-compartment box and the latency
to enter the dark compartment is recorded
(approach latency). This is followed by a
brief footshock immediately after entering
the dark compartment. When the animal
is placed again in the lighted compart-
ment, the latency to reenter (avoidance
latency) the dark side is measured (one-
trial avoidance learning).

Passive-avoidance tasks in which the
animal is required to withhold responding
in all directions (such as step-down avoid-
ance learning) should be preferred when
testing animals as young as 10 days of age
(49,50) because these tests reduce age dif-
ferences in locomotor competence and do
not necessarily involve the use of visual
cues and spatial learning abilities. More-
over, the assessment of passive-avoidance
learning in preweaning rodents should
always take into account the known age
differences in the unconditioned responses
elicited by footshock and by exposure to a
novel environment (51) as well as nonasso-
ciative interferences due to changes in loco-
motor and exploratory activity. On the
other hand, the test lends itself to specific
inferences on the nature of the effects since
the appearance of the passive-avoidance
learning capability precedes by several days
the appearance of 24 hr retention capabil-
ity. Furthermore, passive-avoidance learn-
ing normally vanishes in mice between
postnatal days 15 and 18 when exploratory
behaviors show a characteristic pattern of
peak hyperactivity. Appropriate control
groups for these age differences (yoked .and
nonreinforced groups, respectively) have
been developed for this test (52). Effects of
administration of several chemicals on pas-
sive-avoidance responding have been
described, including postnatal and prenatal
benzodiazepines (53-55) and cholinergic
agonists and antagonists (43,56,57).

The extent of information is increased
when the passive-avoidance task is used
together with an active-avoidance para-
digm. As already mentioned, comparable
effects should be seen in both tasks after
treatments affecting associative processes;
conversely, differential task effects should
be observed when treatment alters nonas-
sociative processes (45). Finally, short-
term and long-term retention of passive
avoidance is not as good in 1-month-old
rats as it is in 6- or 12-month-old rats,
with a peak later than with active avoid-
ance (58,59) that can also be exploited in
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fine-grain analyses of the proactive effects of
early treatments.

Mazes

Mazes with different shapes and sizes are
often used to evaluate learning abilities in
both adolescent and adult rodents exposed
to noxious treatments during development
(17,39). Moreover, the comparison of tox-
icant-induced learning deficits may greatly
benefit from the use of different types of
mazes (Hebb—Williams, radial, water, etc.).

T- and Y-shaped mazes are the more
simple mazes used in appetitively and aver-
sively motivated tasks. These mazes are also
used for the differential assessment of dis-
crimination learning abilities requiring the
use of various types of cues; for example,
the correct arm can be signaled by a dis-
criminative stimulus, such as a light or a
pattern of lines, or the discrimination can
be on a positional basis.

Acquisition and reversal learning can
be evaluated in the Biel water maze, which
is characterized by a multiple T pattern
with six choice points present in the cor-
rect pathway.

The Morris water maze is currently one
of the most used tests for evaluating spatial
learning deficits. Two groups have reported
rather conflicting results about the onset of
spatial memory in rats in the Morris maze,
so more basic work is needed before exploit-
ing this test to evaluate post-weaning alter-
ations upon exposure to chemicals (60).

More complex mazes using food as the
reinforcer include the Lashley III maze,
the Hebb—Williams maze, and the radial
arm maze.

The Lashley III maze is a rectangular
chamber consisting of four parallel alleys, a
start box, and a goal box (start and goal
boxes are located on opposite external walls).
The correct path from the start box to the
goal box is characterized by a typical pat-
tern through doorways in each of the walls
of the four interior alleys. The ends of the
four alleyways form eight cul-de-sacs.

The Hebb—Williams maze consists of a
rectangular field with the start box and the
goal box located on diagonally opposite
ends of the apparatus. Different maze
configurations (12 maze problems differing
in complexity) can be obtained by placing
barriers at different points of the field.

The radial arm maze consists of eight
arms radiating from a central area. Access
into an area is monitored, and animals
obtain a food reward on the first entry into
each arm. Subsequent entries into the same
arm are errors and are not reinforced.

Accuracy of selecting arms and activity
(number of times each arm is entered) are
obtained. This task requires that the rat use
spatial cues and it also can be a test of recent
versus reference (previous) memory. Spatial
learning and memory in this test have been
related to hippocampal function.

However, maze-type tests have their pit-
falls. For example, working memory cannot
be appropriately assessed in arm-baited
mazes when they lack a central box in
which the animal is confined at the begin-
ning of each trial, since in this case what
they exhibit is a range of individual strate-
gies (clockwise or counterclockwise arm
inspection, etc.) and the resulting score
remains difficult to interpret. Dissociation
in the use of olfactory and spatial cues, as
well as strain-dependent locomotor biases,
need also to be taken into account.

Sociosexual Interactions

Maternal Behavior and
Effects of Fostering

The developmental effects of toxicants are
sometimes misinterpreted by attributing
them to direct and specific damage to the
developing nervous system, when in fact
they may depend, at least in part, on
alteration in mother—pup dyadic relation-
ships. An adequate analysis of maternal
care (considering basic characteristics such
as licking, crouching, nest building,
retrieving, time budgeting of in/out nest
periods) is therefore imperative (61-63).
Pup responding [e.g., ultrasound emis-
sions eliciting maternal licking (64)]
should also be considered since impaired
reactivity to maternal cues can be responsi-
ble for maturational deficits, which
amplify direct toxicant effects. The cross-
fostering procedure is commonly used,
allowing a gross separation of direct effects
on the pups from those mediated by
changes in the mother (65,66). However,
fostering per se may also play a detrimen-
tal role in maturation, as shown by studies
comparing between-treatment (cross-fos-
tering) to within-treatment (in-fostering)
effects on mice receiving prenatal benzodi-
azepine treatment (67). Particularly in the
case of delays in behavioral maturation
occurring in altricial neonates [see Bignami
(1) for the assessment of sensory—motor
ontogeny in the early postnatal phase], it is
necessary to exclude confounding due to
procedural biases by identifying deficit
components that can be ascribed to alter-
ation in specific items of mother—pup
growth regulation.

Developmental Changes

in Sociosexual Patterns

The differences in aggressive behavior
between the mouse and the rat species are
particularly marked during ontogeny, with
rats exhibiting a higher level and a wider
spectrum of playful interactions than young
mice (68). In rats, rough-and-tumble
(including pinning) or crossover solicitation
are good indicators of aggressive-like inter-
actions. Rat play fighting is described by
Meaney and Stewart (69), mouse play by
Poole and Fish (68) and by Takahashi and
Lore (70). Hood (71) provided an accurate
description of the development of female
aggressive behavior in rats.

Mouse locomotor-rotational and social
play was initially described for wild subjects
in physically complex environments
(72,73). A more exhaustive description of
play in laboratory strains appeared later in
the literature (74). Very recently, Terranova
et al. (75) characterized a complete mouse
ethogram aimed at evaluating both nor-
mal maturation profiles and long-lasting
effects upon developmental drug exposure
(76). The effects of social isolation are
highly age dependent in both species
(77-79). The onset of sexual behavior
depends on various factors, including
social cues (80-82).

Adult Aggressive and Sexual Patterns

Intraspecific aggression can be evaluated
using either fighting pairs or differently
sized social groups, the latter reproducing a
more natural social setting (83,84). Groups
can be unisexed, but more often they
include both genders (they are referred to as
population cages) and can be maintained
either in laboratory cages, arenas, or
enclosures up to 4 m2.

Placing a conspecific intruder into an
established social setting is an easy way to
produce territorial social behavior. The
intruder is often selected according to its
physiological/social condition to reduce the
variability of responses (85). Subjects with-
out previous sexual experience or belonging
to socially stable groups are preferred.
However, Dixon and Mackintosh (86)
reported that young mice (4-6 weeks of
age) barely induce aggressive behavior in
adult conspecifics. Moreover, mice older
than 10 weeks of age are often involved in
social competition, and their status varies
accordingly (87). It is essential to examine
carefully the social role played by the
intruder or the mate in its original social set-
ting during the period immediately before
its introduction into a new social group.
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When evaluating social responses, a
sound strategy is the use of intruders,
mates, or standard opponents whose social
history is known since birth, particularly
during the preweaning period (88).
Castrated subjects (89) or anosmic, and
consequently less aggressive, opponents were
fashionable in the past 2 decades [anosmia is
produced by intranasal zinc sulfate irrigation
or through bilateral removal of olfactory
bulbs (89,90)]. Frischknecht and colleagues
(91) preferred the use of an opponent from
a genetically nonfighting strain [see Alleva
(92) for interstrain differences).

The most widely used index of aggres-
sive tendency is the Attack category,
described by Grant and Mackintosh (93).
Such a description is interchangeably valid
for both mice and rats (83,94-98). Attacks
are measured in terms of frequency, dura-
tion, latency time to first appearance, or a
total time spent in attacking. Brain et al.
(85) proposed intensity scales, ranging
from rapid biting with short physical con-
tact to deep biting with hemorrhage.

Other methodological studies have con-
sidered which parts of the opponent’s body
were targeted. In rats, wounds are mainly
located on the head, back, and flanks (99),
while life-threatening bites are directed at
the ventral parts. Lactating mice tend to
bite the head and the ventral region of the
intruder. A detailed analysis of “wound
maps” provides useful indications about
the offensive as well as defensive attitudes
of the confronting animal. In close associa-
tion with the attacks are the offensive pos-
tures, either upright or lateral (93), which
usually last for a few seconds with the two
animals pushing each other with their
forepaws (94). Dixon et al. (100) suggest
that these postures are good indices of an
ambivalent offensive tendency. Postures and
social acts of four laboratory species (rat,
mouse, guinea pig, and golden hamster) are
compared by Grant and Mackintosh (93).

Sexual behavior can be assessed accord-
ing to well-characterized scores, such as
male mounts, penis intromissions, pelvic
thrustings, ejaculations, and postejacula-
tory refractory periods following presenta-
tion of a receptive female in a mating arena.
Lordosis is the usual score for females.
Since sexual patterns are interchangeable,
an adequate battery should include both
male-type and female-type scores (e.g.,
male feminization after exposure to chemi-
cals may be measured by the amount of
lordosis). The development of external
genitalia appears late in development, and
usually at birth behavioral patterns are
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determined. However, which pattern
becomes dominant greatly depends on hor-
monal secretion during critical prenatal
and perinatal stages, which is also a func-
tion of intrauterine position and amount of
maternal stress. Administration of chemi-
cals may retard the normal appearance of
sexual patterns: for example, in male
rats prenatal alcohol exposure delays testos-
terone synthesis and release, markedly
affecting sexual behavior (101,102).

Sociosexual roles can be easily assessed.
Dominance is characterized by emission of
aversion-inducing olfactory cues in the
urine, which are different from those pro-
duced by subordinates (103) and release a
female-attracting odor (104). The preputial
gland of the male mouse is a known source
of olfactory signals indicating social domi-
nance (105). The acquisition of a social
role (rank) is also reflected by changes in
neuroendocrine status, particularly evident
in the enlargement of the adrenal gland in
subordinates (106).

Mice tend to arrange their social settings
in hierarchies (88). Poole and Morgan (87)
showed that, in laboratory cages, the stabil-
ity of the hierarchical order depends on the
number of caged subjects and that the social
situation of groups of 9 to 12 individuals is
highly unstable. Hierarchical roles were not
found in mice belonging to the same litter
(87), i.e., in the case of subjects with high
familiarity during critical stages of behav-
ioral development. Mice maintained in
1.8x 1.8 m enclosures show pronounced
territorial behaviors, with only a few adult
males defending the borders of their own
territories (/07) and showing marked habit-
uation to social stimuli (108,109). For nat-
uralistic and testing conditions concerning
the mouse species, see Alleva (92).

Usually, the intruder is attacked by the
dominant animal while it attempts to
escape or displays species-specific submissive
postures aimed at inhibiting the attacking
counterpart. The home cage effect character-
izes the peculiar pattern of aggressive behav-
ior displayed by the resident (88,110,111).

In rats, dominance hierarchies (threat-
ening postures and biting attacks) do not
appear before day 160 and depend on cage
size. Grant (/12) provided an ethological
description of male rat social and agonistic
behavior, which includes sequence and
pathway analysis, displacement and ambiva-
lence activities, and features of sociosexual
behaviors. An updated version is in Miczek
and Kirsiak (713). Play fighting and actual
aggressive behavior are often difficult to
distinguish in this species (70,114,115).

Unlike mice, the intruder rat often does not
elicit increased fighting among colony
members (116,117). In the case of colonies
composed of individuals younger than 150
days of age, all males participate with the
same role in the attack directed at the
intruder (115).

During the course of agonistic interac-
tions, male rats emit 22 to 48 kHz ultra-
sonic vocalizations (8). However, Takeuchi
and Kawashima (718) found that rat ultra-
sonic signals do not inhibit the initiation of
aggressive behavior and therefore dismissed
their intraspecific communicative value.

Maternal aggression is a widely used
methodology because the lactation period
is associated with heightened levels of
female aggressive behavior, barely observed
in nonbreeding female rodents (71,119).
Flannelly and Flannelly (120) analyzed the
role of opponent’s size in eliciting maternal
aggression, while Svare et al. (121) charac-
terized some situational and experiential
determinants. Litter size influences maternal
aggression (122). Aggressive behavior also
increases in female rodents between week 2
of pregnancy and parturition (prepartum
aggression) (123).

Treatment Effects on Social

and Agonistic Behavior

Dixon and co-workers (100,124,125) pro-
vided exhaustive guidelines for an appropri-
ate analysis of the effects of psychoactive
drugs on rodent social and aggressive behav-
ior. Earlier analyses are also valuable and
indicate the different methods used in the
past by psychopharmacologists (cerebral
lesions, painful stimulation, selected hor-
monal or pharmacologic treatment, murici-
dal rats, or locusticidal mice) (126-128).
Most of these tests, as well as automated
devices recording audible vocalizations or
producing aggressive reactions by repeated
footshocks in five-rat batteries (129), are
presently regarded as poorly complying
with animal psychological welfare and,
above all, of very little value in understand-
ing treatment-dependent alterations in
agonistic interactions (100,130,131). A
catalogue of drug-induced modifications in
rodent social and agonistic behaviors is
reported by Miczek and Kirsiak (/13) and
in Miczek et al. (132).

Natural Population of
Rodents as Sentinels
Rodents are proverbial pests for humanity,
gaining notoriety during the time of the
Black Death and even before. They repre-
sent a commensal-type of parasite, living on
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agricultural products such as harvested
seeds, etc. Commensal species living on
by-products are adapted to expand their
population when food is available and to
contract it when unavailable. Accordingly,
they are highly prolific and attractive for
laboratory breeding and investigation.
Indeed, innumerable reagents have been
devised solely from the products of

laboratory investigations of rodents, and the
neurobiology of the central nervous system
(CNS) reflects to a considerable extent a
dependency on these investigations.

We have historically treated rodents
outside of the laboratory as pests to be con-
trolled [the World Health Organization
promotes guidelines for trapping them
(133)]. Yet, with our laboratory-derived

knowledge of rodents, it seems that we
would all be well-served from studies of
these natural populations by monitoring,
e.g., CNS alterations caused by exposure to
chemicals dispersed in the environment.
Such an ecotoxicological approach using
trapped rodents offers a very profitable
direction for future research.
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