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Heterocyclic amines (HCAs) are mutagens/carcinogens to which humans are exposed on almost
a daily basis. 2-Amino-i-methyl-6phenylimidazo[4,5-blpyridine (PhIP) is the most abundant of the
various carcinogenic HCAs (present at a level of 0.56 to 69.2 ng/g of cooked meat or fish), with
2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MelQx) following it at 0.64 to 6.44 ng/g. HCAs
have been found in the urine of healthy people who consume ordinary diets, while patients
receiving parenteral alimentation lack, for example, PhIP and MelQx in their urine. Based on the
concentrations of PhIP and MelQx in urine samples from 10 healthy volunteers, daily intake of
MelQx in Japanese was calculated to be 0.3 to 3.9 pg/person, while that of PhIP was 0.005 to 0.3
pg. The Japanese consume more MelQx than Americans, whereas Japanese intake of PhIP was
about one-third that of Americans. MelQx-DNA adducts have also been detected in Japanese
kidney, colon, and rectum samples using the 32P-postlabeling method followed by identification
using high-performance liquid chromatography (HPLC) analysis; the levels were 0.18, 1.8, and 1.4
per 109 nucleotides, respectively. In addition, we elucidated the mutational fingerprints of PhIP by
analyzing Apc mutations in rat colon cancers induced by this carcinogen. Four of eight tumors had
a total of five mutations in the Apc gene, four of which featured a guanine deletion from
5'-GTGGGAT-3' sequences. This specific mutation spectrum may be used as a fingerprint of PhIP
in evaluating its risk potential for human colon carcinogenesis. Mutations were not found in
similar 2-amino-3-methylimidazo[4,5-flquinoline-induced colon lesions. Microsatellite instability
was detected in both colon and mammary tumors induced by PhIP. The mechanisms involved
in this development of microsatellite instability in PhIP-induced cancers remain to be elucidated.
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Introduction
Heterocyclic amines (HCAs) are major with target organs including the lung, liver,
mutagens present in cooked fish and meat mammary gland, colon, skin, bladder,
to which humans are very regularly exposed. endothelium, clitoral gland, forestomach,
All 10 HCAs so far examined have proved and hematopoietic system (1,2). The target
to be carcinogenic in experimental animals, organs may differ in different animal
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species and sometimes even in different
strains within the same species (3).

Epidemiological studies have demon-
strated that people who eat much heavily
browned meat are at a 2.0- to 6.0-fold
higher risk of colorectal cancer develop-
ment. A large intake of heavily browned
gravy increased the risk further to 6.41
(4,5). These foodstuffs are major sources
of HCAs, and information on human
exposure levels to HCAs appears to be of
basic importance for prevention of cancer.
We have therefore measured urinary excre-
tion levels of 2-amino-3,8-dimethylimi-
dazo[4,5-f]quinoxaline (MeIQx) and
2-amino- I -methyl-6-phenylimidazo [4,5-
b]pyridine (PhIP), which are the most
abundant HCAs in cooked meat and fish.
We also measured DNA adduct levels of
these two compounds in human samples
and compared them with adduct levels of
other environmental carcinogens.

Some chemicals leave specific muta-
tional fingerprints. For instance, aflatoxin
B1 induces a unique type of mutation in
the p53 gene, a G to T transversion at the
third position of codon 249. UV radiation
also induces characteristic types of muta-
tions in the p53 gene. Thus, we also ana-
lyzed whether HCAs leave fingerprints in
their induced tumors.

Results and Discussion
Levls ofHuman xposure to HCAs

HCAs are produced by heating amino
acids (3-amino-1,4-dimethyl-5H-pyrido-
[4,5-b]indole [Trp-P- 1], 3-amino-i-
methyl-5H-pyrido[4,3-b]indole [Trp-P-2],
2-amino-6-methyldipyrido[1,2-a:3';2'-d]-
imidazole [Glu-P-1], 2-aminodipyrido[1,2-
a:3';2'-d]imidazole [Glu-P-2]), protein
(2-amino-9H-pyrido[2,3,-b]indole [AaC],
2-amino-3-methyl-9H-pyrido[2,3-b]indole
[MeAaC]), or proteinaceous foods such as
fish and meat (HCAs indcuding an imidazole
ring, such as 2-amino-3-methylimidazo-
[4,5-f] quinoline [IQJ, 2-amino-3,4-
dimethylimidazo[4,5-f]quinoline [MeIQJ,
MeIQx, and PhIP) (6).

Analysis of HCAs in daily foods
revealed PhIP to be the most abundant of
the various carcinogenic species; it was
present at a level of 0.56 to 69.2 ng/g of
cooked meat or fish, with MeIQx following
at 0.64 to 6.44 ng/g (6).
We measured urinary excretion levels of

PhIP and MeIQx in 10 healthy volunteers
(7). The ranges (ng/24 hr urine) were 0.12
to 1.97 and 11 to 47 for PhIP and MeIQx,
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respectively. Urinary excretion of orally
ingested MeIQx in unchanged form has
been reported to be 1.2 to 4.3% and that
of PhIP to be 0.6 to 2.3% (8). Based on
these excretion rates, daily intake by the
Japanese volunteers was calculated to be
0.3 to 3.9 pg/person for MeIQx and 0.005
to 0.3 pg/person for PhIP. No significant
difference was found between smokers and
nonsmokers. This is as expected since PhIP
is not detectable in cigarette smoke (9).

Recently, Skog et al. (10) reported that
dietary exposure from 100 g of meat and
cooking-pan residues is 0 to 3.0 pg MeIQx
and 0.2 to 9.5 pg PhIP based on food
analysis. Layton et al. (11) estimated aver-
age daily intake of people in the United
States to be 16.6 ng/kg/day PhIP and
2.6 ng/kg/day MeIQx based on 3-day
dietary records of 3,563 individuals; they
estimated the intake ofAaC to be 5.17
ng/kg/day (11). Although MeIQx values in
our data and Swedish data were compara-
ble, PhIP intake by American and Swedish
people seems to be higher than Japanese.
The significance of the relatively high intake
ofAaC remains unclear because it induced
liver cancer and hemangioendothelial
sarcomas but not colon cancer in CDF1
mice that are considered to be a resistant
strain in colon carcinogenesis; it also
caused a very high level of lacI mutations
in the colon epithelium of lacI transgenic
mice (C57BI/6 x SWR) (12). Thus a possi-
ble contribution to colon carcinogenicity
cannot be precluded.

DNA Adduct Levls
MeIQx- and PhIP-DNA adduct levels in
human organs were analyzed by the 32P-
postlabeling method, with modifications
(13). DNA was digested with spleen phos-
phodiesterase and micrococcal nuclease, and

modified nucleotides were phosphorylated
with T4 polynucleotide kinase under
adduct-intensification conditions. The
reaction products were digested briefly
with nuclease P1 to remove 3'-phosphate
and then dinucleotides or oligonucleotides
were converted to mononucleotides with
phosphodiesterase I. There was no appre-
ciable reduction in yields of both DNA
adducts either by treatment with nuclease
P1 (4 pg/13 pl, 370C, 10 min) or phos-
phodiesterase I (60 mU at pH 9.0, 37°C,
30 min). After thin-layer chromatography
(TLC) development, materials in the spots
corresponding to guanine-C8-MeIQx and
guanine-C8-PhIP were extracted with 0.5
ml of 4M pyridinium formate (pH 4.5),
and their identities were confirmed using
high-performance liquid chromatography
(HPLC) with a TSK-ODS-8OTs column
with an acetonitrile-phosphate buffer
developing system (Figures 1 and 2).

DNAs were isolated from liver, kidney,
colon, pancreas, lung, and heart samples
from five human autopsy cases. DNAs
were also isolated from surgical specimens
of normal parts of the colorectum (four),
liver (two), and kidney (two) of patients
having cancers in the same organs. MeIQx
adducts were detected in the kidney of an
autopsy sample and in the rectum and
colon of surgical samples; their levels were
0.2, 1.4, and 1.8 per 109 nucleotides,
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respectively. No PhIP-DNA adducts were
detected in any of these surgical samples
examined (14).

Recently, Friesen et al. (15) found
PhIP-DNA adducts in two of six colon
mucosa samples of Americans, with a level
of about 3 adducts/108 nucleotides. These
results are in good agreement with the gen-
erally high intake of PhIP by American
people, and their HCA adduct findings are
comparable to those for 4-hydroxy-1-(3-
pyridyl)-1-butanone released from the
adduct of 4-(methylnitrosamino)- 1-(3-
pyridyl)-1-butanone(NNK) and DNA in
peripheral lung tissue and the tracheo-
bronchus (16) (Table 1). A similar benzo-
[a]pyrene (B[a]P)-DNA adduct level has
also been reported (18) and approximately
10 times more 4-aminobiphenyl-DNA
adducts have been described (17). It is
thus very plausible that HCAs play some
role(s) in human carcinogenesis.

Mutational Fingerprints of HCAs
Some carcinogens leave unique mutational
fingerprints in their induced tumors
(19); this may be very useful for evaluat-
ing the significance of HCAs in human
carcinogenesis.

To elucidate whether characteristic
HCA-associated mutations exist, we inves-
tigated genetic alterations in rat colon
tumors caused by HCAs, Glu-P-1, IQ, and
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Figure 1. TLC pattern of MelQx-DNA adduct (1.4/109
nucleotides) formation in the human colon. The arrow-
head indicates a spot corresponding to deoxyguanosin-
8-yl-MelQx 5'-monophosphate. TLC was performed as
described by Tada et al. (13).

Retention time, min

Figure 2. HPLC pattern of MelOx-DNA adduct formation in the human colon. A pooled extract of the adduct spot
from 10 plates was applied to a TSK gel ODS-80Ts column (5 pm particle size, 4.6x250 mm, Tosoh Corp., Tokyo,
Japan) with the following solvent system: 0 to 10 min, 10% acetonitrile in 25 mM phosphate buffer (pH 2.0); 10 to
70 min, a linear gradient at 10 to 50% acetonitrile in 25 mM phosphate buffer (pH 2.0) with a flow rate of 1 ml/min
at the ambient temperature.
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PhIP. Seven colon adenocarcinomas
induced by Glu-P-1, 11 adenocarcinomas
induced by IQ, and 9 adenocarcinomas
induced by PhIP were examined for ras
family gene mutations. Only one Glu-P-1-
induced colon tumor had a K-ras mutation
(codon 12, GGT to GTT) (20), and no
mutations were detected in the N-ras or
Ha-ras genes of any of these tumors.
Further, no p53 gene mutations were
detected in any of these tumors although
60 to 70% of human colon cancers have
mutations in the p53 gene (21).

The APC gene is mutated in 60% or
more of sporadic human colon tumors
(22), and usually mutations occur at a very
early stage of colon carcinogenesis. To
allow analysis of mutations of the rat Apc
gene in HCA-induced colon tumors, we
first determined its cDNA sequence and
genomic structure. The rat Apc cDNA
coding region shows a high homology with
its human counterpart, being 86.2% iden-
tical at the nucleotide level and 90.2% at
the amino acid level (23). Its mRNA was
found to be derived from 15 exons as in
the case human APC mRNA, and the
exon-intron boundary structure was also
conserved (24). We determined the intron
sequences flanking the exons and poly-
merase chain reaction-single strand con-
formation polymorphism (PCR-SSCP)
analysis was performed using colon tumor
DNAs (Table 2). Four of eight colon
tumors had mutations in the Apc gene.
Since two mutations were detected in one
of these tumors, the total number of muta-
tions was five. All of these tumors featured
a guanine deletion from 5'-GGGA-3'
sequences; two were at codon 635, one at
codon 869, and the remaining two were at
codon 1413. Further, four of the five
shared a common seven-nucleotide target
sequence, 5'-GTGGGAT-3'. In the rat
Apc gene, this 5'-GTGGGAT-3' sequence
is present at only two sites where codons
635 and 1413 are included, and two muta-
tions were detected at each of these two
sites (24). Because PhIP forms DNA
adducts by covalent binding mainly at gua-
nine-C8 (25,26), these mutations might be
directdy induced by the PhIP-DNA adduct.

In contrast to PhIP, Apc mutations
were detectable in only 2 of 13 colon
tumors induced by IQ (24). Since these
two mutations were T to C and C to T
mutations at codons 523 and 921, respec-
tively, and given the fact that IQ also forms
DNA adducts mainly with guanine bases
(27), there is a possibility that these muta-
tions were not directly induced by the

Table 1. DNA adduct levels in human tissues.

Carcinogen Organ Adducts/nucleotide x 109 Detection method References

MelOx Rectum 1.8 32P-postlabeling (14)
Sigmoid colon 1.4
Kidney 0.2

PhIP Colon 29.0 GC-MS-32P-postlabeling (15)
NNK Lung (smoker, n= 9) ND-16.3 (3.7)a GC-NICI-MS (16)

Tracheobronchus ND-10 (5.3)
(smoker, n= 4)

Lung (smoker, n= 8) ND-2.1 (0.3)
Tracehobronchus ND-0.9 (0.3)
(nonsmoker, n= 4)

4-ABP Lung (smoker) ND-495 GC-NICI-MS (17)
Lung (nonsmoker) 14.1
Bladder ND-39.4

BNaJP Lung (n = 21) ND-80 (9.5) 32P-postlabeling (18)

Abbreviations: ND, not detected; GC-NICI-MS, gas chromatography-negative ion chemical ionization-mass spec-
trometry; B[a]P, benzola]pyrene; GC-MS, gas chromatography-mass spectrometry; 4-ABP, 4-aminobiphenyl.
'Figures in parentheses indicate average values.

Table . Apc gene mutations in rat colon tumors induced by PhIP and I0.

Apc
Sample Codon Mutation Result

PhIP-2-1 635 GGTGGGATA GGTGGATA Frameshift
PhIP-13 635 GGTGGGATA GGTGGATA Frameshift
PhIP-17 1413 AGTGGGATT AGTGGATT Frameshift
PhIP-18-4 869 TCCGGGAAC TCCGGAAC Frameshift

1413 AGTGGGATT AGTGGATT Frameshift
10-3-1 523 GGCTGCATG GGCCGCATG Cys Arg
10-1-2-2 921 GCACGA -+ GCATGA Arg Stop

Table 3. Microsatellite instability in colon and mammary tumors induced by PhIP in comparison with other
carcinogens.

Cancer Carcinogen Ml positive/examined Tumor number Loci altered

Colon PhIP 7/8 PhIP-2-1 PBC2
PhIP-13 PRLR, SMST
PhIP-17 PND, ADRB2, PRLR
PhIP-1 8-4 APOC3
PhIP-2-2 FGG, ADRB2
PhIP-7 PPY
PhIP-18-1 IGHE

IQ 0/9
Mammary gland PhIP 9/15 MT-1 D3Mgh9, D9Mit3, TNF, D2OMghl

MT-24 D6Mgh3, D2OMitl, PND
MT-23 MT1PA, DXMghl, TNF
MT-2 D2N91, D16Mgh3
MT-15 RBP-2, D6Mgh7
MT-20 D2Mit2
MT-1 TAT
MT-3 REN
MT-18 D14Mgh2

DMBA 2/12 MT-6 D15Mgh4
MT-8 D18Mgh3

DMBA, 7,12-dimethylbenz[alanthracene.

carcinogen. The 5'-GTGGGAT-3' sequence
around codon 635 is also conserved in the
human APC gene, and future analysis of
APC mutations in human colon cancers

developing in persons consuming large
quantities of heavily browned meat may
therefore provide us with important infor-
mation as to etiology.
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Microsatellite instability (MI) is
observed in virtually all of human here-
ditary nonpolyposis colorectal cancers
(HNPCC) (28). At least 70% of HNPCC
patients were proven to have mutations in
one of four mismatch repair enzymes,
hMSH2 (MutS-related), hMLHI, hPMS1,
and hPMS2 (MutL-related) and number of
microsatellite alterations per total amount
of analysis exceeded 20% in these RER+
(replication error+) HNPCC (29). MI has
also been observed in 10 to 20% of sporadic
colorectal cancers. Examination of 85 sim-
ple sequence repeats on 19 chromosomes
revealed seven of eight PhIP-induced colon
tumors to have mutations in at least one
locus (30). Three tumors had mutations in

more than one locus. In contrast, no
microsatellite mutations were detected in
IQ-induced colon tumors. Further, MI
was observed in PhIP-induced rat mam-
mary cancers as summarized in Table 3.
The microsatellite mutation rates observed
in PhIP-induced colon and mammary can-
cers were about 2%, and much lower than
that observed in RER+ human colon can-
cers demonstrated to have mutations in
mismatch repair enzymes (30).

At least three mechanisms can be con-
sidered for the PhIP-induced MI. One is
direct induction of mismatch repair enzyme
mutations by the carcinogen. Mutations of
GTBP are known to result in a low rate of
MI (31). A second possibility is functional

impairment of mismatch repair enzymes;
this speculation is supported by the fact
that the colon and mammary cancers
were induced by continuous feeding of
PhIP. Third, MI might have been caused
by covalent binding of PhIP to simple
sequence repeats. However, the simple
repeat sequence composed of (AAAT)n was
also mutated. Thus, the probability of the
third mechanism being important is low.

Although the involved mechanisms
remain to be elucidated, MI can be consid-
ered as characteristic for PhIP. More
detailed studies are needed to use MI as a
mutational fingerprint of PhIP with the
aim of determining the causes of human
cancers.
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