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The machine learning program Progol was applied to the problem of forming the
structure-activity relationship (SAR) for a set of compounds tested for carcinogenicity in rodent
bioassays by the U.S. National Toxicology Program (NTP). Progol is the first inductive logic
programming (ILP) algorithm to use a fully relational method for describing chemical structure in
SARs, based on using atoms and their bond connectivities. Progol is well suited to forming SARs
for carcinogenicity as it is designed to produce easily understandable rules (structural alerts) for
sets of noncongeneric compounds. The Progol SAR method was tested by prediction of a set of
compounds that have been widely predicted by other SAR methods (the compounds used in the
NTP's first round of carcinogenesis predictions). For these compounds no method (human or

machine) was significantly more accurate than Progol. Progol was the most accurate method that
did not use data from biological tests on rodents (however, the difference in accuracy is not
significant). The Progol predictions were based solely on chemical structure and the results of
tests for Salmonella mutagenicity. Using the full NTP database, the prediction accuracy of Progol
was estimated to be 63% (±3%) using 5-fold cross validation. A set of structural alerts for
carcinogenesis was automatically generated and the chemical rationale for them investigated-
these structural alerts are statistically independent of the Salmonella mutagenicity. Carcinogenicity
is predicted for the compounds used in the NTP's second round of carcinogenesis predictions.
The results for prediction of carcinogenesis, taken together with the previous successful
applications of predicting mutagenicity in nitroaromatic compounds, and inhibition of
angiogenesis by suramin analogues, show that Progol has a role to play in understanding the
SARs of cancer-related compounds. Environ Health Perspect 104(Suppl 5):1031-1040 (1996)
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Introduction
An understanding of the molecular
mechanisms of chemical carcinogenesis is
central to the prevention of many environ-
mentally induced cancers. One approach is
to form structure-activity relationships
(SARs) that empirically relate molecular
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structure with ability to cause cancer. This
work has been greatly advanced by the long-
term carcinogenicity tests of compounds in
rodents by the National Toxicology
Program (NTP) of the National Institute
of Environmental Health Sciences (1).
These tests have resulted in a database of
more than 300 compounds that have been
shown to be carcinogens or noncarcino-
gens. The database of compounds can be
used to form general SARs relating
molecular structure to formation of cancer.

The compounds in the NTP database
present a problem for many conventional
SAR techniques because the compounds in
the NTP databases are structurally very
diverse, and many different molecular
mechanisms are involved. Most conven-
tional SAR methods are designed to deal
with compounds having a common molec-
ular template and presumed similar molec-
ular mechanisms of action-congeneric

compounds. Numerous approaches have
been taken to forming SARs for carcino-
genesis. Ashby and co-workers (2-4)
developed a successful semiobjective
method of predicting carcinogenesis based
on the identification of chemical substruc-
tures (alerts) that are associated with car-
cinogenesis. A similar but more objective
approach was taken by Sanderson and
Earnshaw (5), who developed an expert
system based on rules obtained from expert
chemists. An inductive approach, not
directly based on expert chemical knowl-
edge, is the computer-automated structure
evaluation (CASE) system (6,7). This sys-
tem empirically identifies structural alerts
that are statistically related to a particular
activity. A number of other approaches
have been applied based on a variety of
sources of information and SAR learning
methods (8-13). The effectiveness of these
different SAR methods was evaluated on a
test set of compounds for which predic-
tions were made before the trials were com-
pleted (round 1 of the NTP's tests for
carcinogenesis prediction) (8,14,15) There
is currently a second round of tests.

The machine-learning methodology
Inductive Logic Programming (ILP) has
been applied to a number of SAR prob-
lems. Initial work was done using the pro-
gram Golem to form SARs for the
inhibition of dihydrofolate reductase by
pyrimidines (16-18). This work was
extended by the development of the pro-
gram Progol (19) and its adaptation for
application to noncongeneric SAR prob-
lems (20). Progol has been successfully
applied to predicting the mutagenicity of a
series of structurally diverse nitroaromatic
compounds (21), and the inhibition of
angiogenesis by suramin analogues (20).
The ProgolSAR method is designed to pro-
duce easily understandable rules (structural
alerts). For the nitroaromatic and suramin
compounds the rules generated provided
insight into the chemical basis of action.

Most existing SAR methods describe
chemical structure using attributes-gen-
eral properties of objects. Such descriptions
can be displayed in tabular form, with the
compounds along one dimension and the
attributes along the other dimension. This
type of description is very inefficient at rep-
resenting structural information. A more
general method of describing chemical
structure is to use logical statements, or rela-
tions. This method is also clearer, as chem-
ists are used to relating chemical properties
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and functions for groups of atoms. The
Progol method is the first to use a general
relational method for describing chemical
structure in SARs. The method is based on
using atoms and their bond connectivities
and is simple, powerful, and generally
applicable to any SAR. The method also
appears robust and suited to SAR problems
difficult to model conventionally (21).

The most similar approaches to Progol
are those of CASE (6), MULTICASE
(7), and the symbolic machine learning
approaches of Bahler and Bristol (8) and
Lee (22). However the Progol methodology
is more general, as the other approaches are
based on attributes and therefore have
built-in limitations in representing struc-
tural relationships.

This article describes application of the
Progol SAR method to predicting chemical
carcinogenesis. Progol was first bench-
marked on the test data of round 1 and
then applied to produce predictions for
round 2. The predictions for round 2 are
completely blind trials. Such tests are very
important because they ensure that the pre-
dictions are free from any conscious or
unconscious bias.

Materials and Methods

consisted of 291 compounds, 161 (55%)
carcinogens and 130 noncarcinogens. In
addition to this train/test split, a 5-fold
cross-validation split of the 330 compounds
was tested for a more accurate estimate of
the efficacy of Progol. The compounds were
randomly split into five sets, and Progol was
successively trained on four of the splits and
tested on the remaining split.

Progol
In inductive logic programming (ILP) all
the inputs and outputs are logical rules
(23) in the computer language PROLOG.
Such rules are easily understandable
because they closely resemble natural lan-
guage. For any application the input to
Progol consists of a set of positive examples
(i.e., for SAR, the active compounds), nega-
tive examples (i.e., nonactive compounds),
and background knowledge about the
problem (e.g., the atom/bond structure of
the compounds) (Figure 1). Progol outputs
consist of a hypothesis expressed as a set of
rules that explain the positive and negative
examples using the background knowledge.
The rule found for each example is optimal
in terms of simplicity (information com-
pression) and the language used to describe

Data

The compilation of 330 chemicals used in
this study was taken from the literature
(2,3,8) as well as directly from the collec-
tive database of the National Cancer
Institute (NCI) and the NTP (1). The
compounds used were all the organic com-
pounds for which there were completed
NTP reports at the time of this work. A
listing of the compounds and their activi-
ties is given in Table 1. Inorganic com-
pounds were not included because it was
considered that there are too few of them
to allow meaningful generalizations. Of the
330 compounds, 182 (55%) are classified
as carcinogenic, and the remaining 148 as
noncarcinogenic. Carcinogenicity is deter-
mined by analysis of long-term rodent
bioassays. Compounds classified by the
NTP as equivocal are considered noncar-
cinogenic, this allows direct comparison
with other predictive methods. No analysis
was made of differences in incidence
between rat and mouse cancer, or the role
of sex, or particular organ sites.

The Progol SAR method was first tested
using the test data considered in the first
round of the NTP trial (3). This allowed
direct comparison with the results of many
other SAR techniques (8). The training set

330 Organic compounds

Higher level
chemical
knowledge

Figure 1. Overview of the methodology of applying
Progolto predicting carcinogenesis.

the examples. This guarantee of optimality
does not extend to sets of rules constructed
by Progol, as it does not follow that a set of
rules consisting of individually optimal
rules is itself optimal for information com-
pression. Information compression is
defined as the difference in the amount of
information needed to explain the exam-
ples with and without using the rule. It is
statistically highly improbable that a rule
with high compression does not represent a
real pattern in the data (24). The use of
compression balances accuracy (number of
correct predictions/number of total predic-
tions) and coverage (number of examples
predicted by the rule/number of examples),
i.e., it is a compromise between sensitivity
and specificity. The validity of the com-
pression measure was empirically shown by
the results of the 5-fold cross-validation
trial. Progol generates rules in a stepwise
manner until all the examples are covered
or no more compressive (statistically
significant) rules can be found. A simple
example of use of the Progol algorithm is
given in the Appendix.

Compound Representation for Progol
The generic atom/bond representation that
we previously applied to mutagenesis was
used (21). Two basic relations were uti-
lized to represent structure: atom and
bond. For example, for compound 1 (CAS
no. 117-79-3),

atom(127, 127_1, carbon,
aromatic_carbon_&6ring, -0.133)

states that in compound 127, atom no. 1 is
of element carbon, and of type aromatic
carbon in a 6-membered ring, and has a
partial charge of -0.133. The type of the
atom and its partial charge were taken
from the molecular modeling package
QUANTATM; any similar modeling package
would also have been suitable. Equivalently,

bond(127, 127_1, 127_2, aromatic)

states that in compound 127, atom no. 1
and atom no. 2 are connected by an aro-
matic bond. In QUANTATM partial
charges assignment is based on a specific
molecular neighborhood; this has the
effect that a specific molecular substruc-
ture can be identified by an atom type and
partial charge. This relational representa-
tion is completely general for chemical
compounds and no special attributes need
to be invented. The structural information
of these compounds was represented by
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Table 1. Compounds used in this trial and their carcinogenic status.

CAS no. Name Act. CAS no. Name Act. CAS no. Name Act.

117-79-3 2-Aminoanthraquinone
6109-97-3 3-Amino-9-ethylcarbazole HCI
82-28-0 1 -Amino-2-methylanthraquinone
134-29-2 o-Anisidine HCI
5131-60-2 4-Chloro-m-phenylenediamine
95-83-0 4-Chloro-o-phenylenediamine
569-61-9 Cl Basic Red 9 HCI
2832-40-8 Cl Disperse Yellow 3
120-71-8 p-Cresidine
135-20-6 Cupferron
39156-41-7 2,4-Diaminoanisole sulfate
95-80-7 2,4-Diaminotoluene
2784-94-3 HC Blue 1
22-66-71 Hydrazobenzine
13552-44-8 4,4'-Methylenedianiline 2HCI
129-15-7 2-Methyl-1-nitroanthraquinone
2243-62-1 1,5-Naphthalenediamine
139-94-6 Nithiazide
602-87-9 5-Nitroacenaphthene
99-59-2 5-Nitro-o-anisidine
1836-75-5 Nitrofen
156-10-5 p-Nitrosodiphenenylamine
101-80-4 4-4'-Oxydianiline
136-40-3 Phenazopyridine HCI
139-61-1 4,4'-Thiodianiline
636-21-5 o-Toluidine HCI
137-17-7 2,4,5-Trimethylaniline
67-20-9 Nitrofurantoin
59-87-0 Nitrofurazone
26471-62-5 2,4-/2,6-Toluene diisocyanate
20265-96-7 p-Chloroaniline HCI
20325-40-0 3,3'-Dimethoxybenzidine 2HCI
612-82-8 3,3'-Dimethylbenzidine 2HCI
142-04-1 Aniline HCI
103-33-3 Azobenzene
95-79-4 5-Chloro-o-toluidine
5160-02-1 D and C Red 9
91-93-0 3,3'-Dimethoxybenzidine-

4-4'-diisocyanate
121-14-2 2,4-Dinotrotoluene
99-55-8 5-Nitro-o-toluidine
80-08-0 4,4'-Sulfonyldianiline
1582-09-8 Trifuralin
3165-93-3 4-Chloro-o-toluidine HCI
2475-45-8 Cl Disperse Blue 1
102-50-1 m-Cresidne
609-20-1 2,6-Dichloro-p-phenylenediamine
94-52-0 5(6)-Nitrobenzimadazole
842-07-9 C.l. Solvent Yellow 14
17026-81-2 3-Amino-4-ethoxyacetanilide
119-34-6 4-Amino-2-nitrophenol
121-66-4 2-Amino-5-nitrothiazole
105-11-3 p-Benzoquinone dioxime
2185-92-4 2-Biphenylamine HCI
133-90-4 Chloramben
1777-84-0 3-Nitro-p-acetophenetide
5307-14-2 2-Nitro-p-phenylenediamine
99-57-0 2-Amino-4-nitrophenol
121-88-0 2-Amino-5-nitrophenol
6373-74-6 C.l. Acid Orange 3
20265-97-8 p-Anisidine HCI
106-47-8 p-Chloroaniline
56-38-2 Parathion
952-23-8 Proflavin HCI
2871-01-4 HC Red 3
135-88-6 N-Phenyl-2-naphthylamine
121-19-7 Roxarsone
989-38-8 Rhodamine 6G HCI

+ 140-49-8 4-(Chloroacetyl)acetanilide
+ 61702-44-1 2-Chloro-p-phenylene-
+ diamine sulfate
+ 95-74-9 3-Chloro-p-toluidine
+ 54150-69-5 2-4-Dimethoxyaniline HCI
+ 298-00-0 Methyl parathion
+ 619-17-0 4-Nitroanthanilic Acid
+ 99-56-9 4-Nitro-o-phenylenediamine
+ 101-54-2 N-Phenyl-p-pheneylenediamine
+ 15481-70-6 2,6-Toluenediamine 2HCI
+ 1936-15-8 C.l. Acid Orange 10
+ 6358-85-6 Diarylanilide Yellow
+ 33229-34-4 HC Blue 2
+ 1465-25-4 N-(1-Napthyl)ethylenediamine 2HCL
+ 86-57-7 1-Nitronaphthalene
+ 624-18-0 p-Phenylenediamine 2HCI
+ 127-69-5 Sulfisoxazole
+ 6369-59-1 2,5-Toluenediamine sulfate
+ 63449-39-8 Chlorinated paraffins (C12: 60% Cl) +
+ 57653-85-7 Hexachlorodibenzodioxin 1 +
+ 57635-85-7 Hexachlorodibenzodioxin 2 +
+ 67774-32-7 Polybrominated biphenyl +
+ 1746-01-6 2,3,7,8-Tetrachlorodibenzo-p-dioxin +
+ 86-06-2 2,4,6-Trichlorophenol +
+ 115-28-6 Chlorendic acid +
+ 106-46-7 1,4-Dichlorobenzene +
+ 127-18-4 Tetrachloroethylene +
+ 67-72-1 Hexachloroethane +
+ 87-86-5 Pentachlorophenol +
+ 79-00-5 1,1,2-Trichloroethane +
+ 150-68-5 Monuron +
+ 12789-03-6 Chlordane +
+ 510-15-6 Chlorobenzilate +
+ 1897-45-6 Chlorothalonil +
+ 1163-19-5 Decabromodiphenyl oxide +
+ 72-55-9 Dichlorodiphenyldichloroethylene +
+ 76-44-8 Heptachlor +
+ 76-01-7 Pentachloroethane +

630-20-6 1,1,1,2-Tetrachloroethane +
+ 79-34-5 1,1,2,2-Tetrachloroethane +
+ 79-01-6 Trichloroethylene +
+ 309-00-2 Aldrin +
+ 63449-39-8 Chlorinated paraffins (C23:43% Cl) +
+ 115-32-2 Dicofol +
+ 54-31-9 Furosemide +
+ 108-90-7 Chlorobenzene
+ 33857-26-0 2,7-Dichlorodibenzo-p-dioxin =
+ 60-57-1 Dieldrin
+ 72-56-0 Di(p-ethylphenyl)dichloroethane =
+ 1918-02-1 Picloram
+ 72-54-8 Tetrachlorodiphenylethane =
+ 58-93-5 Hydrochlorothiazide =
+ 101-05-3 Anilazine
+ 999-81-5 2-Chloroethyltrimethylammonium
+ chloride
+ 95-50-1 1,2-Dichlorobenzene
+ 72-20-8 Endrin
+ 72-43-5 Methyoxychlor
+ 77-65-6 Carbromal
+ 94-20-2 Chlorpropamide
= 50-29-3 Dichlorodiphenyltrichloroethane
= 58-89-9 Lindane
= 82-68-8 Pentachloronitrobenzene
= 13366-73-9 Photodieldrin
= 75-35-4 Vinylidene chloride
= 2698-41-1 o-Chlorobenzalmelanotrile
= 2438-88-2 2,3,5,6-Tetrachloro-4-nitroanisole
= 113-92-8 Chloropheniramine maleate

120-83-2 2,4-Dichlorophenol
71-43-2 Benzene
117-81-7 Di(2-ethylhexyl)phthalate
139-13-9 Nitrilotriacetic acid
50-55-5 Reserpine
123-31-9 Hydroquinone
2432-99-7 1 1-Aminoundeconic acid
17924-92-4 Zearalenone
140-11-4 Benzyl acetate
149-30-4 2-Mercaptobenzothiazole
389-08-2 Nalidixic acid
103-23-1 Di(2-ethylhexyl)adipate
85-68-7 Butyl benzyl phthalate
120-62-7 Piperonyl sulfoxide
78-42-2 Tris(2-ethylhexyl)phosphate
98-85-1 a-Methylbenzyl alchohol
80-05-7 Bisphenol A
120-61-6 Dimethyl terephthalate
121-79-9 Propyl gallate
7177-48-2 Ampicillin trihydrate
136-77-6 4-Hexylresorcinol
41372-08-1 Methyldopa sesquihydrate
2058-46-0 Oxytetracycline hydrochloride
83-79-4 Rotenone
147-24-0 Diphenhydramine HCI
968-81-0 Acetohexamide
50-81-7 L-Ascorbic acid
128-37-0 Butylated hydroxytoluene
262-12-4 Dibenzo-p-dioxin
150-38-9 EDTA (tri-Na salt)
9002-18-0 Agar
119-53-9 Benzoin
105-60-2 Caprolactam
134-72-5 Ephedrine sulfate
15356-70-4 d-Menthol
108-95-2 Phenol
85-44-9 Phthalic anhydride
1156-19-0 Tolazamide
76-87-9 Triphenyltin hydroxide
434-13-9 Lithocholic acid
69-65-8 D-Mannitol
114-86-3 Phenformin
88-96-0 Phthalamide
51-03-6 Piperonyl butoxide
64-77-7 Tolbutamide
73-22-3 L-Tryptophan
100-51-6 Benzyl alchohol
132-98-9 Penicilin VK
64-75-5 Tetracycline hydrochloride
108-30-5 Succinic anhydride
643-22-1 Erithromycin stearate
61-76-7 Phenylephrine hydrochloride
1330-20-7 Xylenes commercial mixture
55-31-2 L-Epinephrine hydrochloride
108-88-3 Toluene
2835-39-4 Allyl isovalerate
87-29-6 Cinnamyl anthranilate
123-91-1 1,4-Dioxane
271-89-6 Benzofuran
98-01-1 Furfural
50-33-9 Phenylbutazone
105-55-5 N,N'-Diethylthiourea
86-30-6 N-Nitrosodiphenylamine
100-52-7 Benzaldehyde
128-66-5 C.l. Vat Yellow 4
78-59-1 Isophorone
108-78-1 Melamine
2489-77-2 Trimethylthiourea
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Table 1. (Continued).

CAS no. Name Act. CAS no. Name Act.

137-30-4 Ziram +
5989-27-5 a-Limonene +
131-17-9 Diallyl phthalate
142-46-1 2,5-Dithiobiurea
20941-65-5 Ethyl tellurac
97-53-0 Eugenol
2164-17-1 Fluometuron
116-06-3 Aldicarb
3567-69-9 C.I. Acid Red 14
118-92-3 o-Anthranilic acid
1212-29-9 N,N'-Dicyclohexylthiourea
536-33-4 Ethionamide
19010-66-3 Lead dimethyidithiocarbamate
89-25-8 1-Phenyl-3-methyl-5-pyrazolone
148-18-5 Sodium diethyldithiocarbamate
97-77-8 Tetraethylthiuram disulfate

Vinyl toluenes (meta/para 70:30)
2783-94-0 FD & C Yellow 6
315-1 8-4 Mexacarbate
105-85-5 1-Phenyl-2-thiourea
77-79-2 3-Sulfolene
105-87-3 Geranyl acetate
6959-48-4 3-Chloromethylpyridine HCI +
96-12-8 1,2-Dibromo-3-chloropropane +
106-93-4 1,2-Dibromoethane +
107-06-2 1,2-Dichloroethane +
542-75-6 1,3-Dichloropropene +
3546-10-9 Phenestrin +
75-56-9 1,2-Propylene oxide +
961-11-5 Tetrachlorovinphos +
512-56-1 Trimethylphosphate +
126-72-7 Tris(2,3-dibromopropyl)phosphate +
563-47-3 3-Chloro-2-methylpropene +
62-73-7 Dichlorovos +
101-90-6 Diglycidyl resorcinol ether +
74-96-4 Bromoethane +
556-52-5 Glycidol +
5634-39-9 lodinated glycerol +
106-87-6 4-Vinyl-l-cyclohexene diepoxide +
108-60-1 Bis(2-chloro-1-methyethyl)ether +
868-85-9 Dimethyl hydrogen phosphite +
106-88-7 1,2-Epoxybutane +
22966-79-6 Estradiol mustard +
597-25-1 Dimethyl morpholinophosphoramidate +
1955-45-9 Pivalolactone +
8001-35-2 Toxaphene +
78-87-5 1,2-Dichloropropane +
115-96-8 Tris(2-chloroethyl)phosphate +
57-06-7 Allyl isothiocyanate +
756-79-6 Dimethyl methylphosphonate +
106-92-3 Allyl glcidyl ether +
75-00-3 Chloroethane +
86-50-0 Azinphosmethyl
55-38-9 Fenthion
13171-21-6 Phosphamidon
532-27-4 2-Chloroacetophenone =
78-11-5 Pentaerythritol tetranitrate =
109-69-3 n-Butyl chloride
107-07-3 2-Chloroethanol
56-72-4 Coumaphos
60-51-5 Dimethoate
1634-78-2 Malaoxon
124-64-1 Terakis (hydroxymethyl)

phosphonium chloride/sulfate
6959-47-3 2-Chloromethylpyridine HCI
333-41-5 Diazinon

78-34-2 Dioxathion
121-75-5 Malathion
75-09-2 Dichloromethane +
75-27-4 Bromodichloromethane +
75-25-2 Tribromomethane (bromoform) +
124-48-1 Chlorodibromomethane +
75-47-8 lodoform
101-61-1 4,4'-Methylenebis +

(N,N'-dimethylbenzenamine)
90-94-8 Michler's ketone +
121-69-7 N,N-Dimethylaniline +
140-56-7 Fenaminosulf
509-14-8 Tetranitromethane +
504-88-1 3-Nitropropionic acid =
140-88-5 Ethyl acrylate +
924-42-5 N-Methylolacrylamide +
80-62-6 Methyl methacrylate
24382-04-5 Malonaldehyde sodium salt +
828-00-2 Dimethoxane =
95-06-7 Sulfallate +
513-37-1 Dimethylvinyl chloride +
133-06-2 Captan +
598-55-0 Methyl carbamate +
1596-84-5 Succinic acid 2,2-dimethylhydrazide +
95-14-7 1,2,3-Benzotriazole =
148-24-3 8-Hydroxyquinoline
115-07-1 Propylene
60-13-9 Amphetamine sulfate
91-20-3 Naphthalene +
9005-65-6 Polysorbate 80 (Tween 80) =
58-33-3 Promethazine hydrochloride
108-46-3 Resorcinol
96-48-0 y-Butyrolactone =
79-11-8 Monochloroacetic acid
100-02-7 p-Nitrophenol
1330-78-5 Tricresyl phosphate +
120-32-1 o-Benzyl-p-chlorophenol +
3296-90-0 2,2-Bis(bromomethyl)-1,3-propanediol +
75-65-0 t-Butyl alchol +
119-84-6 3,4-Dihydrococoumarin +
107-21-1 Ethylene glycol
298-59-9 Methylphenidate hydrochloride +
96-69-5 4,4'-Thiobis(6-t-butyl-m-cresol)
396-01-0 Triamterene +
57-41-0 Diphenylhydantoin +
1825-21-4 Pentachloroanisole +
10599-90-3 Chloramine
81-11-8 4,4'-Diamino-

2,2'-stilbenedisulfonic acid
74-83-9 Methyl bromide
62-23-7 p-Nitrobenzoic acid +
28407-37-6 C.l. Direct Blue 218 +
2425-85-6 C.l. Pigment Red 3 +
6471-49-4 C.l. Pigment Red 23 =
137-09-7 2,4-Diaminophenol dihydrochloride +
103-90-2 4-Hydroxyacetanilide =
1271-19-8 Salicylazosulfapyridine =
6459-94-5 C.l. Acid Red 114 +
2429-74-5 C.l. Direct Blue 15 +
91-64-5 Coumarin +
96-13-9 2,3-Dibromo-1-propanol +
119-93-7 3,3'-Dimethylbenzidine +
52551-67-4 HC Yellow 4
100-01-6 p-Nitroaniline =
91-23-6 o-Nitroanisole +
96-18-4 1,2,3-Trichloropropane +

approximately 18,300 facts of background
knowledge.

Information was also given about
the results of Salmonella mutagenicity tests
for each compound. The mutagenic
compounds were represented by the rela-
tion Ames, e.g., ames(127) states that
compound 127 is mutagenic.

The Progol algorithm allows for the
inclusion of complex background knowl-
edge in the form of either facts or com-
puter programs. This allows the addition,
in a unified way, of any information that is
considered relevant to learning the SAR. In
general, the more that is known about a
problem, the easier it is to solve. The abil-
ity to use a varietly of background knowl-
dge is perhaps the most powerful feature of
Progol. In this study we included the back-
ground knowledge of chemical groups
from our work on predicting mutagenesis
(21), and the structural alerts identified by
Ashby et al. (4) were also encoded and
tested. It is important to appreciate that
encoding PROLOG programs to define
these concepts is not the same as including
them as simple indicator variables. This is
because Progol can learn SARs that use
structural combinations of these groups,
e.g., Progol could in theory learn that a
structural indicator of activity is diphenyl-
methane (as a benzene single-bonded to a
carbon atom single-bonded to another ben-
zene). In contrast, a normal SAR method
would only be able to use the absence or
presence of the different groups, not a
bonded combination of them. To repre-
sent compounds to the equivalent level of
detail using a CASE-type representation
(6) would require several orders of magni-
tude more descriptors than needed for only
the simple atom/bond representation (21).
In the future the background knowledge
used could be extended to include more
information, e.g., 3D structure, knowledge
about metabolism, subchronic in vivo toxic-
ity, route of administration, minimally
toxic dose (MTD) levels, etc.

Other SAR Algorithms
Compared with Progol
The train/test dataset has previously been
studied using a number of SAR methods.
We use the predictions from these methods
and the predictions from two default
methods to compare their results with
those of Progol. The two default methods
that we implemented were the following:
* The largest class prediction method is

to predict all compounds to be carcino-
genic (the largest class).
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* The Ames prediction method is to pre-
dict a compound to be carcinogenic if
it has any form of a positive Ames test.
The previously applied prediction

methods that were compared with Progol
can be placed into two groups. In the first
group are the prediction methods that do
not directly use data from experiments on
rodents. The Progol SAR method belongs
to this group and can be directly compared
with such methods. These methods are
as follows:
* The Bakale and McCreary method (9)

used experimentally measured elec-
trophilic reactivity (Ke) values to dis-
criminate between carcinogenic and
noncarcinogenic compounds.

* The DEREK method (deductive esti-
mation of risk from existing knowledge)
(5) is an expert-system that predicts car-
cinogenesis based on a set of rules
derived from experienced chemists.

* The COMPACT method (computer-
optimized molecular parametric analy-
sis of chemical toxicity) (10) predicts
carcinogenesis based on the predicted
interaction of the compound with
cytochrome P450 and the Ah receptor.

* The CASE method (25) is based
on a statistical method of selecting
chemical substructures associated with
carcinogenesis.

* The TOPKAT system (toxicity predic-
tion by komputer [sic] assisted technol-
ogy) (11) uses structural attributes to
describe the compounds and applies
statistical discrimination and regression
to estimate the probability of carcino-
genesis; it uses a number of noncar-
cinogenic pharmaceuticals and food
additives to increase the number of
negative examples.

* The Benigni method (12) forms a
Hansch-type quantitative structure-
activity relationship (QSAR) using esti-
mated electrophilic reactivity (K) and
Ashby's structural alerts (below).
The second group of prediction methods

that have been previously applied uses
information from biological tests on
rodents. It is unfair to directly compare
these procedures with methods based only
on chemical structure and Salmonella
mutagenicity since they use more informa-
tion. Rodent biological tests are very
expensive both in money and animal wel-
fare terms. The prediction methods that
use rodent biological tests are as follows:
* The Ashby prediction method (3) is

based on the expert judgment of
chemists to evaluate evidence from a

set of chemical structural indicators
Salmonella mutagenicity, subchronic in
vivo toxicity, the route of administra-
tion of the compound, and MTD levels
(4). When experimental carcinogenic-
ity results from previous studies were
available in the literature, this evidence
was also taken into consideration (15).

* The TIPT method (tree induction for
predictive toxicology) (8) uses the
machine learning algorithm C4.5 (a
propositional tree-learning method) to
combine the same evidence used by the
Ashby prediction method. It cannot
identify new structural alerts.

* The RASH method (rapid screening of
hazards) (13) uses relative potency
analysis and dose levels to modulate the
Ashby method.

Results
Train/Test Results

The predictions of Progol on round 1 of
the NTP carcinogenicity trial are given in
Tables 2 and 3. The data consisted of 291
training compounds and 39 test com-
pounds (8). The small size of the test
dataset makes it difficult to show statisti-
cally significant differences between algo-
rithms; this difficulty is compounded
because some algorithms cannot predict all
the examples. Comparing the predictions,
using a binomial McNemar test for
changes (26), shows that no algorithm is
significantly more accurate than Progol
(p< 0.05). The McNemar test exploits the
fact that the different prediction methods
are applied to the same data and are based

on counting the examples for which the
methods disagree about predictions.

Progol is marginally the most accurate
prediction method that does not use
rodent tests (although this is not statisti-
cally significant). The more accurate pre-
diction methods of Ashby, TIPT, and
RASH are based on use of short-term
rodent in vivo tests. This information is
much more difficult and expensive to
obtain than chemical structural and
Salmonella mutagenicity data. The Ashby
and RASH methods are also based on the
subjective application of a set of structural
alerts formed by Ashby et al. (4); the TIPT
method uses an objective application of
these expert defined alerts.

A number of the errors in prediction
made by Progol were repeated by most
other methods, suggesting some anomaly
with these compounds (14)-methyl-
phenidate hydrochloride and methyl
bromide. Progol correctly identified naph-
thalene as a carcinogen, while it was missed
by all other methods.

Cross-validation Results
Progol has an accuracy of 63% (standard
error ± 3%) for all compounds estimated by
5-fold cross validation. This compares with
estimated accuracies of 55% using the
default rule, and 63% using the Ames rules.
There is a significant difference at p < 0.05
between the accuracy of Progol and the
default rule. Although there is no significant
difference in accuracy between Progol and
the Ames rule, there is a large difference in
the number of carcinogens identified.
Progol makes fewer errors of omission than

Table 2. Accuracy of different prediction methods on 39 compounds previously tested by the NTP.

Information Prediction method Accuracy, % Cover (PP, PN, NP, NN)
Default Ames test 59 39(10, 5,11, 13)

Largest class 54 39 (21, 18, 0, 0)
No rodent tests PROGOL (19) 64 39 (18, 11, 3, 7)

Bakale and McCreary (9) 63 30 (11, 5, 6, 8)
Benigni (12) 62 37 (16, 9, 5, 7)
DEREK (5) 57 37 (12, 8, 8, 9)
COMPACT (10) 54 37 (14, 10, 7, 6)
TOPKAT (11) 54 26 (6, 3, 9, 8)
CASE (25) 49 37 (11,9, 10,7)

Rodent tests Ashby (3) 77 39 (19, 7, 2, 11)
RASH (13) 72 29 (8, 0, 8, 13)
TIPT (8) 67 39 (19, 11, 2, 7)

Terms and abbreviations: Accuracy = number correctly predicted/total number predicted. Cover = number of com-
pounds predicted (PP= predicted to be carcinogenic and is carcinogenic, PN = predicted to be carcinogenic and is
not carcinogenic; NP = predicted to be not carcinogenic and is carcinogenic, NN = predicted to be not carcinogenic
and is not carcinogenic. Default methods are those that use simplistic prediction strategies. The basic methods are
those that use information solely from chemical structure and Salmonella mutagenicity tests. The complex meth-
ods use information from rodent biological tests; the Ashby and RASH methods also exploit expert chemical
knowledge and are therefore not automatic.
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the Ames rules and more errors of commis-
sion, i.e., Progol identifies more carcinogens
than the Ames rule at the cost of classifying
more noncarcinogens as carcinogens.

Rules
The Progol SAR method produces predic-
tion rules in the form of easily understood
chemical patterns. The prediction rules are
given in Figures 2 and 3. There is a direct
translation from the rules generated by
Progol into chemical structure. For example,
rule 3 in PROLOG notation is:

active(Drug) if
atom(Drug, Atom_1, Element 1,
ester_carbon, Chargel) and

atom(Drug, Atom_2, Element 2,
aromatic_.hydrogen, Charge2) and

less_than_or_equal(Charge2, 0.041)
(names with capital letters are
variables).

The particular use of partial charges
requires some explanation. They are given
to three significant places because of a
peculiarity in the method of assigning par-
tial charges in QUANTATM (above), not
because it is considered that these exact val-
ues are important to this accuracy.

It is important that rules produced by
any automatic SAR procedure are screened
to ensure that they make chemical sense.
More confidence can be put in a rule if a
mechanism of action can be identified
(27-29). This is a general application of
the principle of using prior knowledge to
guide decision making. All the rules found
by Progol were analyzed to try to identify
their chemical rational.

It was found that use of the Ames test
for Salmonella mutagenicity (rule 1) was
the most effective rule for predicting car-
cinogenicity. While learning rule 1, Progol
automatically searched for structural fea-
tures that improved rule 1 and no such rule
was found that had higher compression
than rule 1 (recall that compression is an
objective way of balancing sensitivity/
specificity of a rule). This does not conflict
with the results ofAshby and Tennant (4),
who showed that the Ames test was
correlated with a set of structural alerts.

The remaining rules found by Progol
are new and they automatically generated
structural alerts for carcinogenesis. As
Progol removes examples covered by previ-
ous rules when searching for a new rule,
rules found after rule 1 was covered are
indicators for carcinogenic compounds not
recognized by the Ames test. This means

Table 3. Progol predictions for the test set.

CAS No. Name Actual Prediction

6459-94 C.l. Acid Red 114 + +
.....

96-13-9 2,3-Dibromo-1-propanol + +
11~~~~~~~43q~ ~ ~ ~ I- +.. ..

1825-21-4 Pentachloranisole + +
2-42 U-:5.-: -:: :.: :. - : - .:. + -+:
91-23-6 o-Nitroanisole + +
28487-37-6CJ :;:;-e-. -- l
91-64-5 Coumarin + +

2429-744 -j- ;j
137-U0-I 7,4-Uiaminophenol ZHUI + +

....:.;. ..... .. .: .:
396-01-0 Triamterene + +

57-41-0 Diphenylhydantoin + +

62-23-7 p-Nitrobenzoic acid + +
329,90, 2':.2 ;.,',et.y'.'"'p ops ...nso,, $d,:.:.:

119-84-6 3,4-Dihydrocoumarin +
1 8.. -5.. .. .. ......

.. ... ....

298-59-9 Methylphenidate HCI +
755 , ,.,::.-,-,a nl-
10599-90-3 Chloramine

9005-56-6 Polysorbate 8018.S S 2 > ; : ;~~~~~~~~~~~~~~.. .. ,::.. :. ..;:
127-19-8 Titanocene dichloride +
5251-87 HCYiiw4.-.
100-01-6 p-Nitroaniline +

....

60-13-9 Amphetamine sulfate - ... -1 - -1; : i: ', ! ;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. !:! .:..i.;. ........
108-46 Resorcinol

79-11-8 Monochloroacetic acid +
: ....181-liJ4M''Daln~-t - lfrniec +

74183-9 Methyl bromide +

96-69-5 4,-Thiobis(6-t-butyl-m-cresol) +

Actual = the result of the NTP rodent bioassays (+, carcinogen for any species and in any organ;= an equivocal
classification treated as a noncarcinogen). Pred. = the PROGOL predictions (+, predicted to be a carcinogen; -, a
noncarcinogen).

Figure 2. The rules (alerts) found by Progol for carcinogenesis using all the compounds. The numbers in brackets
are the number of times the rule correctly occurs and the number of times it incorrectly occurs.
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A compound is carcinogenic if it has a(n)
(1) positive Ames test [99-40] or
(2) ester oxygen and . 1 methyl group [8-2] or
(3) ester oxygen and an aromatic hydrogen with a partial charge < 0.041 [9-2] or
(4) ether oxygen with a partial charge 2-0.182 [5-1] or
(5) ether oxygen with a partial charge of -0.358 [2-0] or
(6) chlorine, an hydroxyl group and a benzyl ring. [9-11 or
(7) bromine with a partial charge < -0.086 [5-01 or
(8) aldehyde oxygen [3-01 or
(9) aromatic amine group and an unsaturated carbon

with a partial charge <-0.181 [5-0] or
(10) unsaturated carbon with a partial charge of . 0.4 [4-0] or
(11) unsaturated carbon and a 6-membered carbon ring [6-1] or
(12) carbon atom in a 6-membered aromatic ring with a partial charge of 0.005 [3-01 or
(13) carbon atom in a 6-membered aromatic ring with a partial charge of 0.211 [4-1] or
(14) carbon atom in a 6-membered aromatic ring with a partial charge of -0.135 [3-1] or
(15) aliphatic carbon with a partial charge . 0.507 [7-1] or
(16) aliphatic carbon with a partial charge of -0.085. [2-0] or
(17) four halide atoms attached to tetrahedral carbons [4-1] or
(18) carbon in a 5-membered aromatic ring with the

same charge as a carbon in a 6-membered aromatic ring [3-01

-.m.
.4 n-2 f%n ly

... .... ....ii..ii i.;. :: --: .:.. .-:: .:.. .:..:" :--
^ . -1 leta
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Figure 3. Graphical interpretation of the alerts described in Figure 2.

that they could be either structural alerts
for nongenotoxic carcinogenesis (4), (i.e.,
not based on induction of DNA damage
by the test agent or its metabolites), or
structural alerts for genotoxic carcinogens
that are missed by the Ames test. Most of
the structural features identified by Progol
appear to be for highly reactive structures,
suggesting that they mainly act by geno-
toxic carcinogenesis. Chemical interpreta-
tions of the rules are given below (arranged
by chemical group):

Rules 2 and 3 identify ester groups as
indicators for carcinogenesis. The
meaning of the modifying groups is

unclear, but they are essential, as ester
groups on their own have no discrimi-
natory power. Rules 2, 6, and 11 use
the generic background knowledge that
was first used in applying Progol to
predicting mutagenesis (21).

* Rule 4 is concerned with ether oxygens
with high partial charges. All such
groups are bonded to aromatic rings,
suggesting the involvement of electro-
philic substitution in activity.

* Rule 5 identifies an ether group in a
6-membered ring. These cyclic ethers
may also be involved in electrophilic
reactions.

* Rules 6 and 7 identify reactive halides
as indicators of carcinogenesis; such
compounds have been widely recog-
nized as potential carcinogens.

* Rule 8 identifies an aldehyde group as an
indicator of carcinogenicity. Aldehyde
groups are potentially very reactive.

* In rule 9, the aromatic amine group
indicates high reactivity, as does the
low partial charge on the unsaturated
carbon (it is associated with a double
bond to an oxygen group).

* The high partial charge on the unsat-
urated carbon in rule 10 occurs in reac-
tive alkenes.

* Rule 11 occurs in substituted cyclohex-
enes; note the similarity with rule 5.

* Rule 12 occurs when a 6-membered
aromatic ring is bonded to a nonaro-
matic ring.

* Rule 13 occurs when a carbon atom in
a single 6-membered aromatic ring is
bonded to an amine or carbon-substi-
tuted amine group.

* Rule 15 occurs in chlorinated alkane
groups; see rule 6.

* Rule 16 occurs when a hydroxyl group
is attached to an aliphatic carbon.

* In rule 17 the indicator of a halide
atom is attached a tetrahedral carbon.
This is the only rule that uses the struc-
tural alerts from Ashby et al. (4), It is
possible that this rule is an artifact,
since there appears to be no chemical
reason why 4 halide atoms should be
chosen instead of, say, 3 or 5.

* Rules 14 and 18 may also be artifacts
because there appears to be no chemical
rationale for them.

Discussion
Prediction of Results of
Ongoing NTP Studies

The Progol rules were used to predict the
compounds in the second round of the
NTP test of strategies for predicting chem-
ical carcinogenesis in rodents; the 25
organic compounds were predicted but no
prediction was made for the 5 inorganic
compounds (Table 4). The predictions
made by Progol are only tentative for the
compounds with negative Ames tests
because of the limited number of examples
covered by the rules (low compression and
low statistical reliability). The predictions
based on rule 8 are probably the least reli-
able because there are no other supporting
rules and the rule is almost certainly an
over-generalization. The extent of the
agreement between the predicted results
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Table 4. Progol predictions for the second round of the NTP trial of strategies for predicting chemical carcinogenesis
in rodents.

CAS no. Name Prediction Rule

6533-68-2 Scopolamine hydrobroamide + 2,5
76-57-3 Codeine : 9:14
14747-7 1,2-Dihydro-2,2,4-trimethyequinoline + 9,14
75-52-8 Nitromethane
109-99-9 Tetrahydrofuran
1948-33-0. t-Butylhydroquinone
100-414 Ethylbenzene
126-99-81 .: Chioropre
8003-22-3 D&C Yellow No. 11 + 1
78-84-2 leobutyaldeyyd + 8
127-004 1-Chloro-2-propanol
11-42-2-- Dietfanlafeine -
77-09-8 Phenolphthalein
110-86-1 Pyridine
1300-72-7 Xylenesulfonic acid, Na
98-00-0 :: Furuyltaloho:
125-33-7 Primaclone + 1
111-76-2 . :. .. ..:Ethyienglyco monobutyl ether
115-11-7 Isobutene
93-15-2 M:thyleugenol
434-07-1 Oxymetholone
84-85-1 . ::Anth.raquxinor.. ; : ..ie.+1
518-82-1 Emodin +
5392-405...:.Citra + 8
104-55-2 Cinnamaldehyde + 8
10026-24-1 Cobaltsuteslate .heptahydrte Not.predicted
1313-27-5 Molybdenum trioxide Not predicted
13033004- - Gallium:arAenide Not pedicted.
7632-00-0 Sodium nitrite Not predicted
131442-1 V.anaium.pentozide Not prediced

+, positive; -, negative. *Rule used in the prediction.

and those experimentally predicted will
indicate how relevant the assumptions
underlying the Progol predictions are.

A major statistical problem in trying to
predict the results of this NTP trial is that
the distribution of compounds in the trial
is not the same as that from which the
rules were learned, e.g., the percentage of
compounds with positive Ames tests is
only 16% (4 of 25) compared with 42%
for the compounds previously tested.
The change in distribution between
training and test data for NTP trials has
previously been noted by Tennant et al.
(3). This is called concept drift in machine
learning and it is a problem because almost
all statistical methods are based on the
assumption of an underlying constant
distribution.

Comparison with Other SAR results
The estimated accuracy of 63% for pre-
dicting carcinogenesis by Progol is higher
but not statistically significantly higher
than the results obtained using other SAR
methods that do not incorporate results
from rodent biological tests. This confirms
the results of Benigni (15), who showed
that all the SAR approaches to carcino-
genicity had similar prediction profiles.
The relatively low prediction accuracy of
= 60% is probably due to the diversity of
mechanisms of action and the complexity
of interactions in vivo.

Comparison ofthe Ashby et al.
Structural Alerts and Those
Generated by Progol
The Ashby et al. structural alerts (2-4,28)
and those generated by Progol differ
fundamentally in their formation and

application. The Ashby alerts were gener-
ated by a human expert and applied subjec-
tively. The Progol alerts were generated
automatically by machine and are applied
objectively. The Ashby structural alerts are
based on electrophilic attack on DNA.
This means that they are not statistically
independent of the Ames test (4), and
there is some redundancy between the
Ames test and the structural alerts. The
Progol structural alerts were selected so that
they covered compounds not covered by
the Ames test. This makes them much
more independent of each other than those
ofAshby.

Many of the structural alerts found by
Progol are similar to those identified by
Ashby, e.g. Ashby recognizes forms of
esters (rules 2 and 3), ethers (rules 4 and
5), halogenated compounds (rules 6, 7,
and 15), and aldehydes (rule 9) as struc-
tural alerts. The exact forms of the alerts
differ significantly between Ashby and
Progol. This strongly suggests that it may
be possible to develop a system for predict-
ing chemical carcinogenesis that combines
the best features of human-based prediction
with the objectivity and speed of the Progol
rules to develop a superior SAR system.

The results for prediction of carcino-
genesis, taken together with the previous
successful applications of predicting muta-
genicity in nitroaromatic compounds and
inhibition of angiogenesis by suramin ana-
logues, show that Progol has a role to play
in understanding the SARs of cancer-
related compounds.

Program Availability
The ILP program Progol (implemented in
PROLOG) and the data used in the current
study can be obtained from Ashwin
Srinivasan, Oxford Laboratory, Wolfson
Building, Parks Road, Oxford, OXI 3QD,
UK; e-mail at ashwin.srinivasan@comlab.
oxford.ac.uk. They are freely available to
academics. A version of Progol is also avail-
able that is implemented in C, available by
anonymous ftp from ftp.comlab.ox.ac.uk in
directory pub/Packages/ILP/progol4. 1.
Additional information about Progol and
ILP can be found at the World Wide Web
address http://www.comlab.ox.ac.uk/oucl/
groups/machlearn
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Appendix: Illustration of Use
of the Progol Algorithm

To oudine the Progolalgorithm, we illustrate
its use on a simple SAR problem. The exam-
ple is not completely trivial, as it could not
be dealt with using simple linear regression/
discrimination. The problem data consist
of eight compounds. The positive examples
(active compounds) are high(drug3),
high(drug6), high(drug7), high(drug8). The
negative examples (inactive compounds) are
high(drugl), high(drug2), high(drug4),
high(drug5). Each drug can have a sub-
stituent at three positions: substl(drugl),
substl (drug2), substl (drug3), substl
(drug8), subst2(drugl), subst2(drug2),
subst2(drug6), subst2(drug7), subst3(drugl),
subst3(drug3), subst3(drug4), subst3(drug7).

The Progolalgorithm starts by randomly
selecting a positive example. The order of

example selection does not affect the final
theory, only the efficiency of the learning
process, e.g., drug number 3: high(drug3).
Progol generalizes the example using inverse
resolution to construct the most specific rule
that explains the example in terms of the
background knowledge. This rule logically
implies the original example. The rule is
high(X):

substI (X),
not subst2(X),
subst3(X).

In plain language, this rule states that
A drug has high activity if

it has a substitution at position 1 and
it does not have a substitution at
position 2 and

it has a substitution at position 3.

This rule covers 1 positive example and
no negative examples. Progol further gener-
alizes this rule by removal of redundant
parts of its body (literals) to find the maxi-
mally compressive rule using a complete
top-down search. The most compressive
rule for our example is
high(X):

substI (X),
not subst2(X).

This rule is the optimal in terms of
compression and the descriptive language
used. It covers two positive examples and no
negative examples. This rule is added to the
knowledge base and the examples covered
by it removed. Steps 1 to 4 are then repeated
until no more compression is possible.

The final theory produced is
A drug has high activity if

it has a substitution at position 1 or
it has a substitution at position 2.
This is called the exclusive or rule.
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