Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1997 Dec;105(Suppl 6):1397–1402. doi: 10.1289/ehp.97105s61397

Collective radiation biodosimetry for dose reconstruction of acute accidental exposures: a review.

B Pass 1
PMCID: PMC1469913  PMID: 9467051

Abstract

Quantification of the biologically relevant dose is required to establish cause and effect between radiation detriment or burden and important biological outcomes. Most epidemiologic studies of unanticipated radiation exposure fail to establish cause and effect because researchers have not been able to construct a valid quantification of dose for the exposed population. However, no one biodosimetric technique (biophysical or biological) meets all the requirements of an ideal dosimeter. This paper reviews how the collection of biodosimetric data for victims of radiation accidents can be used to create a dosimetric "gold standard." Particular emphasis is placed on the use of electron spin resonance, a standard for radiation accident dosimetry. As an example of this technique, a review will be presented of a previously reported study of an individual exposed to a 60Co sterilization source.

Full text

PDF
1397

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akleyev A. V., Lyubchansky E. R. Environmental and medical effects of nuclear weapon production in the southern Urals. Sci Total Environ. 1994 Mar 1;142(1-2):1–8. doi: 10.1016/0048-9697(94)90066-3. [DOI] [PubMed] [Google Scholar]
  2. Aldrich J. E., Pass B. Determining radiation exposure from nuclear accidents and atomic tests using dental enamel. Health Phys. 1988 Apr;54(4):469–471. [PubMed] [Google Scholar]
  3. Aldrich J. E., Pass B., Mailer C. Changes in the paramagnetic centres in irradiated and heated dental enamel studied using electron paramagnetic resonance. Int J Radiat Biol. 1992 Mar;61(3):433–437. doi: 10.1080/09553009214551131. [DOI] [PubMed] [Google Scholar]
  4. Azzoni C. B., Del Nero G. L., De Rysky S., Sapelli P. L., Menghini P., Vadala G. Etude préliminaire avec R.P.E. de l'émail dentaire humain irradié aux rayons X, beta, gamma. Bull Group Int Rech Sci Stomatol Odontol. 1978 Jul;21(3):149–155. doi: 10.1007/BF02383150. [DOI] [PubMed] [Google Scholar]
  5. BECKER R. O. ELECTRON PARAMAGNETIC RESONANCE IN NON-IRRADIATED BONE. Nature. 1963 Sep 28;199:1304–1305. doi: 10.1038/1991304a0. [DOI] [PubMed] [Google Scholar]
  6. BRADSHAW W. W., CADENA D. G., Jr, CRAWFORD G. W., SPETZLER H. A. The use of alanine as a solid dosimeter. Radiat Res. 1962 Jul;17:11–21. [PubMed] [Google Scholar]
  7. Baranov A. E. Otsenka dozy i prognozirovanie dinamiki kolichestva neitrofilov perifericheskoi krovi po gematologicheskim pokazateliam gamma-oblucheniia cheloveka. Med Radiol (Mosk) 1981 Aug;26(8):11–16. [PubMed] [Google Scholar]
  8. Baranov A. E., Selidovkin G. D., Butturini A., Gale R. P. Hematopoietic recovery after 10-Gy acute total body radiation. Blood. 1994 Jan 15;83(2):596–599. [PubMed] [Google Scholar]
  9. Baranov A., Gale R. P., Guskova A., Piatkin E., Selidovkin G., Muravyova L., Champlin R. E., Danilova N., Yevseeva L., Petrosyan L. Bone marrow transplantation after the Chernobyl nuclear accident. N Engl J Med. 1989 Jul 27;321(4):205–212. doi: 10.1056/NEJM198907273210401. [DOI] [PubMed] [Google Scholar]
  10. Brady J. M., Aarestad N. O., Swartz H. M. In vivo dosimetry by electron spin resonance spectroscopy. Health Phys. 1968 Jul;15(1):43–47. doi: 10.1097/00004032-196807000-00007. [DOI] [PubMed] [Google Scholar]
  11. COLE T., SILVER A. H. PRODUCTION OF HYDROGEN ATOMS IN TEETH BY X-IRRADIATION. Nature. 1963 Nov 16;200:700–701. doi: 10.1038/200700a0. [DOI] [PubMed] [Google Scholar]
  12. Callens F. J., Verbeeck R. M., Matthys P. F., Martens L. C., Boesman E. R. The contribution of CO3(3-) and CO2- to the ESR spectrum near g = 2 of powdered human tooth enamel. Calcif Tissue Int. 1987 Sep;41(3):124–129. doi: 10.1007/BF02563791. [DOI] [PubMed] [Google Scholar]
  13. Cervc P., Schara M., Ravnik C. Electron paramagnetic resonance study of irradiated tooth enamel. Radiat Res. 1972 Sep;51(3):581–589. [PubMed] [Google Scholar]
  14. Chapman M. R., Miller A. G., Stoebe T. G. Thermoluminescence in hydroxyapatite. Med Phys. 1979 Nov-Dec;6(6):494–499. doi: 10.1118/1.594611. [DOI] [PubMed] [Google Scholar]
  15. Copeland J. F., Kase K. R., Chabot G. E., Greenaway F. T., Inglis G. B. Spectral energy effects in ESR bone dosimetry: photons and electrons. Appl Radiat Isot. 1993 Jan-Feb;44(1-2):101–106. doi: 10.1016/0969-8043(93)90204-n. [DOI] [PubMed] [Google Scholar]
  16. Degteva M. O., Kozheurov V. P., Vorobiova M. I. General approach to dose reconstruction in the population exposed as a result of the release of radioactive wastes into the Techa River. Sci Total Environ. 1994 Mar 1;142(1-2):49–61. doi: 10.1016/0048-9697(94)90073-6. [DOI] [PubMed] [Google Scholar]
  17. Desrosiers M. F. Assessing radiation dose to food. Nature. 1990 Jun 7;345(6275):485–485. doi: 10.1038/345485a0. [DOI] [PubMed] [Google Scholar]
  18. Desrosiers M. F. In vivo assessment of radiation exposure. Health Phys. 1991 Dec;61(6):859–861. doi: 10.1097/00004032-199112000-00018. [DOI] [PubMed] [Google Scholar]
  19. Doi Y., Aoba T., Okazaki M., Takahashi J., Moriwaki Y. 13C enriched carbonate apatites studied by ESR: comparison with human tooth enamel apatites. Calcif Tissue Int. 1981;33(1):81–82. doi: 10.1007/BF02409416. [DOI] [PubMed] [Google Scholar]
  20. Godfrey-Smith D. I., Haskell E. H. Application of optically stimulated luminescence to the dosimetry of recent radiation events involving low total absorbed doses. Health Phys. 1993 Oct;65(4):396–404. doi: 10.1097/00004032-199310000-00007. [DOI] [PubMed] [Google Scholar]
  21. Gordy W., Ard W. B., Shields H. MICROWAVE SPECTROSCOPY OF BIOLOGICAL SUBSTANCES. I. PARAMAGNETIC RESONANCE IN X-IRRADIATED AMINO ACIDS AND PROTEINS. Proc Natl Acad Sci U S A. 1955 Nov 15;41(11):983–996. doi: 10.1073/pnas.41.11.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Greenstock C. L., Trivedi A. Biological and biophysical techniques to assess radiation exposure: a perspective. Prog Biophys Mol Biol. 1994;61(2):81–130. doi: 10.1016/0079-6107(94)90007-8. [DOI] [PubMed] [Google Scholar]
  23. Ignatiev E. A., Romanyukha A. A., Koshta A. A., Wieser A. Selective saturation method for EPR dosimetry with tooth enamel. Appl Radiat Isot. 1996 Mar;47(3):333–337. doi: 10.1016/0969-8043(95)00293-6. [DOI] [PubMed] [Google Scholar]
  24. Ikeya M., Miki T. Electron spin resonance dating of animal and human bones. Science. 1980 Feb 29;207(4434):977–979. doi: 10.1126/science.207.4434.977. [DOI] [PubMed] [Google Scholar]
  25. Jasińska M., Niewiadomski T. Thermoluminescence of biological materials. Nature. 1970 Sep 12;227(5263):1159–1160. doi: 10.1038/2271159b0. [DOI] [PubMed] [Google Scholar]
  26. Kolberg S., Prydz S., Dahm S. Thermally stimulated luminescence in dental hard tissues and bone. Calcif Tissue Res. 1974;17(1):9–23. doi: 10.1007/BF02547211. [DOI] [PubMed] [Google Scholar]
  27. Müller W. U., Streffer C. Biological indicators for radiation damage. Int J Radiat Biol. 1991 Apr;59(4):863–873. doi: 10.1080/09553009114550771. [DOI] [PubMed] [Google Scholar]
  28. Nakajima T. Estimation of absorbed dose to evacuees at pripyat-city using ESR measurements of sugar and exposure rate calculations. Appl Radiat Isot. 1994 Jan;45(1):113–120. doi: 10.1016/0969-8043(94)90156-2. [DOI] [PubMed] [Google Scholar]
  29. Ostrowski K., Dziedzic-Goclawska A., Stachowicz W., Michalik J. Accuracy, sensitivity, and specificity of electron spin resonance analysis of mineral constituents of irradiated tissues. Ann N Y Acad Sci. 1974;238:186–201. doi: 10.1111/j.1749-6632.1974.tb26788.x. [DOI] [PubMed] [Google Scholar]
  30. Padovani L., Caporossi D., Tedeschi B., Vernole P., Nicoletti B., Mauro F. Cytogenetic study in lymphocytes from children exposed to ionizing radiation after the Chernobyl accident. Mutat Res. 1993 Sep;319(1):55–60. doi: 10.1016/0165-1218(93)90030-h. [DOI] [PubMed] [Google Scholar]
  31. Panepucci H., Farach H. A. ESR spectra of quasirandomly oriented centers: application to radiation damage centers in bone. Med Phys. 1977 Jan-Feb;4(1):46–48. doi: 10.1118/1.594301. [DOI] [PubMed] [Google Scholar]
  32. Pass B., Aldrich J. E. Dental enamel as an in vivo radiation dosimeter. Med Phys. 1985 May-Jun;12(3):305–307. doi: 10.1118/1.595768. [DOI] [PubMed] [Google Scholar]
  33. Romanyukha A. A., Regulla D., Vasilenko E., Wieser A. South Ural nuclear workers: comparison of individual doses from retrospective EPR dosimetry and operational personal monitoring. Appl Radiat Isot. 1994 Dec;45(12):1195–1199. doi: 10.1016/0969-8043(94)90036-1. [DOI] [PubMed] [Google Scholar]
  34. SLAGER U. T., ZUCKER M. J., REILLY E. B. THE PERSISTENCE OF ELECTRON SPIN RESONANCE IN BONE GRAFTS STERILIZED BY IONIZING RADIATION. Radiat Res. 1964 Jul;22:556–563. [PubMed] [Google Scholar]
  35. SWARTZ H. M. LONG-LIVED ELECTRON SPIN RESONANCES IN RATS IRRADIATED AT ROOM TEMPERATURE. Radiat Res. 1965 Apr;24:579–586. [PubMed] [Google Scholar]
  36. Sagstuen E., Theisen H., Henriksen T. Dosimetry by ESR spectroscopy following a radiation accident. Health Phys. 1983 Nov;45(5):961–968. doi: 10.1097/00004032-198311000-00001. [DOI] [PubMed] [Google Scholar]
  37. Salassidis K., Schmid E., Peter R. U., Braselmann H., Bauchinger M. Dicentric and translocation analysis for retrospective dose estimation in humans exposed to ionising radiation during the Chernobyl nuclear power plant accident. Mutat Res. 1994 Nov 1;311(1):39–48. doi: 10.1016/0027-5107(94)90071-x. [DOI] [PubMed] [Google Scholar]
  38. Sato K. Study of an asymmetric ESR signal in x-irradiated human tooth enamel. Calcif Tissue Int. 1979 Nov 26;29(2):95–99. doi: 10.1007/BF02408063. [DOI] [PubMed] [Google Scholar]
  39. Schauer D. A., Coursey B. M., Dick C. E., McLaughlin W. L., Puhl J. M., Desrosiers M. F., Jacobson A. D. A radiation accident at an industrial accelerator facility. Health Phys. 1993 Aug;65(2):131–140. doi: 10.1097/00004032-199308000-00001. [DOI] [PubMed] [Google Scholar]
  40. Semov A. B., Iofa E. L., Akaeva E. A., Shevchenko V. A. Dozovaia zavisimost' induktsii khromosomnykh aberratsii u likvidatorov Chernobyl'skoi avarii. Radiats Biol Radioecol. 1994 Nov-Dec;34(6):865–871. [PubMed] [Google Scholar]
  41. Shimano T., Iwasaki M., Miyazawa C., Miki T., Kai A., Ikeya M. Human tooth dosimetry for gamma-rays and dental x-rays using ESR. Int J Rad Appl Instrum A. 1989;40(10-12):1035–1038. doi: 10.1016/0883-2889(89)90037-3. [DOI] [PubMed] [Google Scholar]
  42. Shleien B., Ruttenber A. J., Sage M. Epidemiologic studies of cancer in populations near nuclear facilities. Health Phys. 1991 Dec;61(6):699–713. doi: 10.1097/00004032-199112000-00001. [DOI] [PubMed] [Google Scholar]
  43. Trivedi A., Greenstock C. L. Use of sugars and hair for ESR emergency dosimetry. Appl Radiat Isot. 1993 Jan-Feb;44(1-2):85–90. doi: 10.1016/0969-8043(93)90201-k. [DOI] [PubMed] [Google Scholar]
  44. Vugman N. V., Rossi A. M., Rigby S. E. EPR dating CO2- sites in tooth enamel apatites by ENDOR and triple resonance. Appl Radiat Isot. 1995 May;46(5):311–315. doi: 10.1016/0969-8043(94)00154-r. [DOI] [PubMed] [Google Scholar]
  45. Willhoit D. G., Poland A. D. Thermoluminescent characteristics of irradiated enamel and dentin. Health Phys. 1968 Jul;15(1):91–93. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES