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The purpose of this overview is to introduce the property of a new class of hazardous
chemicals-the inhibitors of multixenobiotic resistance (MXR) in aquatic organisms, referred to as
chemosensitizers. Aquatic organisms possess MXR, a mechanism similar to the wellknown P-
glycoprotein extrusion pump in multidrug resistant (MDR) tumor cells. MXR in aquatic organism
moves from cells and organisms both endogenous chemicals and xenobiotics, including also
some man-made chemicals. MXR in aquatic organisms represents a general biological first-line
defense mechanism for protection against environmental toxins. Many chemical agents, the
chemosensitizers, may alter the function of this fragile mechanism. It is this new, MXR-inhibiting
property, unrecognized as yet, that classifies these chemicals among top-rank hazardous water
pollutants. The knowledge that the presence of one xenobiotic may block the pumping out of
other xenobiotic(s), and hence accelerate their accumulation, may have important implications on
environmental parameters like exposure, uptake, bioaccumulation, and toxicity. In this overview
we present the evidence for the expression of MXR-phenotype in aquatic organisms, the
demonstration of toxic consequences caused by MXR inhibitors, and the description of methods
for measurement of concentration of MXR inhibitors in environmental samples. - Environ Health
Perspect 1 05(Suppl 4):855-860 (1997)
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Introduction
The phenotype of multixenobiotic resis-
tance (MXR) system found in aquatic
organisms (1) is similar to the well-known
multidrug resistance (MDR) phenomenon
involved in tumor cell lines resistant to
chemotherapeutic drugs (2). MXR mecha-
nism in aquatic organism pumps out of
cells and organisms both endogenous
chemicals and xenobiotics, including also
some man-made chemicals, preventing
their accumulation and toxic effect. MXR
in aquatic organisms represents a general
biological firstline defense mechanism for
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protection against environmental toxins.
Many chemical agents, the chemosensitiz-
ers, may alter the function of this fragile
mechanism. The knowledge that the pres-
ence of one xenobiotic may block the
pumping out of other xenobiotic(s), and
hence accelerate their accumulation, may
have important implications for ecotoxicol-
ogy. Such property classifies these xenobi-
otics among top-rank hazardous water
pollutants. In this overview we present the
evidence for the expression ofMXR-pheno-
type in aquatic organisms, the use of induc-
tion ofMXR as a biomarker of exposure,
the description of methods for measure-
ment of concentration of MvXR-inhibitors
in environmental samples, and the demon-
stration of toxic consequences caused by
MXR-inhibitors.

MDR Phenotype in
Tumor Cell Line
In MDR-positive tumor cells, a major
determinant of reduced drug accumulation
and a dominant feature in a model of clas-
sical multidrug resistance is the 170-kD
membrane glycoprotein (P1170) (3). P170
binds a cytotoxic drug and facilitates its

efflux in an energy-dependent manner (4).
Consequently, P170 mediates a reduction
of drug accumulation and causes drug
resistance. The gene coding for glycopro-
tein P170, mdrl, has been doned (5), and
its amplification and overexpression were
found to be proportional to the degree of
resistance in resistant cell lines (6,7). Some
drugs, like verapamil, bind to the active
site of glycoprotein P170, causing an inhi-
bition of efflux of cytotoxic drugs and
hence restoring the previous sensitivity to
the cytotoxic agent (8). In addition, P170-
transporting function can be modulated by
phosphorylation (9). This posttranslational
modification is catalyzed by protein kinase
C (PKC); its activators, like phorbol-12-
myristate-13-acetate (10), or its inhibitors,
like staurosporine (11), stimulate or inhibit
the efflux of drugs out of the cell.

MXR in Aquatic Organisms
Membrane vesicles isolated from the
freshwater mussel [Anodonta cygnea (12)],
from the clam [Corbicula fluminea (13)],
from the marine mussel [Mytilus gallo-
provincialis (14)], or from the sponges
[ Tethya lyncurium (15), Suberites domuncula
(16), Geodia cydonium, and Verongia aero-
phoba (17)], possess a verapamil-sensitive
potential to bind xenobiotics like 2-acety-
laminofluorene or vincristine (VCR) in a
similar manner to that measured with
membrane vesicles isolated from male
bovine adrenal cortex cells. Western blot
studies with G. cydonium and V aerophoba
revealed that polyclonal antibodies raised
against hamster P170 cross-react with
the sponge protein of Mr 125,000 kD.
Immunohistochemical confocal laser scan-
ning microscopy showed that this P125 is a
cell membrane-bound protein. The pres-
ence of a protein immunologically related
to the mammalian MDR protein was
identified also in C. fluminea (13), in
embryos of a marine worm [Urechis caupo
(18)], in oyster (Crassostrea gigas), and
marine mussel [Mytilus edulis (19)] in the
biliary spaces from dab and in phagocytic
blood cells in mussels (20). In addition,
exposure of sponges, marine mussel,
freshwater clam, or marine worm to 2-
acetylaminofluorene, benzo[a]pyrene,
daunomycine, VCR, calcein acetoxy
methyl ester (calcein AM), or rhodamine B
showed enhanced accumulation of these
compounds in the presence of verapamil
(13,14,16-18). Finally, the addition of
verapamil or staurosporine drastically
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enhanced the induction of adducts and
single-strand breaks in the DNA isolated
from fish, sponges, and clam exposed to
2-aminoanthracene or 2-acetylaminofluor-
ene (1,13). These observations are taken as
an indication that a MDR-like system,
termed multixenobiotic resistance (MXR),
might function in these organisms also in
vivo. All these indicators were found in spec-
imens collected from pristine areas, defined
by six biological and chemical parameters
(21), i.e., in specimens that have not experi-
enced exposure to pollutants. This argues
strongly that the MDR-like mechanism is
inherent in these species and that its expres-
sion does not require induction.

Taxonomical Distribution
of MDR-like Phenotype
Multidrug resistancelike genes and/or
MDR-like phenotypes have been identi-
fied in drug-resistant parasitic protozoa
[Plasmodium falciparum (22,23) and
Leishmania donovani (24)], in yeast
[Sacharomyces cerevisiae (25,26)], in bacte-
ria [Bacillus subtilis (27) Staphylococcus
aureus (28), and Salmonella typhimurium
(29)], in archaebacterium [Haloferax vol-
canii (30)], in the insect [Drosophila
melanogaster (31)], in the soil nematode
[Caenorhabditis elegans (32)] and in the
genome of a marine fish, winter flounder
[Pseudopleuronectes americanus (33)].

Physiological Functions ofthe
Multixenobiotic Resistance
Mechanism
Several recent studies indicate the wide-
spread de novo expression of mdrl gene also
in human normal, healthy kidney, liver,
intestine, adrenal, pancreas, placenta, preg-
nant uterus and blood-brain barrier sites
(34,35). In these tissues and organisms
P170 is characteristically confined to the
membranes of the luminal surfaces in secret-
ing, absorbing, or barrier tissues, reflecting
their possible physiological transport or bar-
rier function, perhaps to protect from-and
excrete-toxic natural products present in
the diet, or unknown endogenous metabo-
lites (36) or to secrete cortisol, aldosterone,
progesterone and other steroids (37).

In addition to these functions, we sug-
gested, based on experiments with mussels
and sponges exposed to vincristine or
aminoanthracene (12,15-17), the function
of pumping out "new," man-made toxic
chemicals in. aquatic organisms exposed to
polluted environment (1). Thus, one could
postulate that through the course of
evolution the cell has developed a means of

protecting itself from environmental insults
by exporting toxins before they can exert
their effect. One likely factor in the devel-
opment of such systems was the need to
protect the cell from low-molecular-weight
toxins found throughout the environment,
especially in foods. Thus, it is obvious that
P-glycoprotein may have developed not to
counteract clinically useful antineoplastics,
like vincristine and vinblastine, but rather
as a general, taxonomically broadly distrib-
uted, biological defense mechanism for pro-
tection of organisms from endogenous or
environmental toxins. Because the same
xenobiotics may induce simultaneously the
expression of MDR genes (38), drug-
metabolizing genes (39-41), glutathione
S-transferase gene (42), and heat-shock
proteins (43,44), i.e., a series of mecha-
nisms belonging to general biologic defense
system, support the conclusion that P-gly-
coprotein has a physiological function in
the protection of cells from environmental
stress. This was directly demonstrated in
soil nematode (Caenorhabditis elegans):
nematode strains with deleted P-glycopro-
tein genes, generated by transposon-medi-
ated deletion mutagenesis, become sensitive
to xenobiotics, which suggests the function
of P-glycoprotein is to protect a nematode
against toxic compounds made by plants
and microbes in the rhizosphere (32). Based
on this, it would be rational and justified to
name this phenotype as multixenobiotic
defense (MXD) mechanism.

Expression and Induction ofMXR
in Aquatic Organisms
MXR mechanism is inherently present in
all aquatic organisms investigated so far. At
present we know that there are differences
between species in the level of MDR
expression. However, we do not know the
range of differences in MDR expression on
interindividual and interpopulation level.
Both these parameters have been shown to
be important in predictions and strategies
in combating resistance in pest control
(45). The experience from pest-resistance
control demonstrates the importance of
measurement of natural variation in the
level ofMXR expression between individu-
als as well as between different populations
of the same species. Such information
would represent the basic requirement in
the assessment of overexpression of MXR
in populations exposed to pollution. The
basic question concerning such induced
MXR is if and how it can be used as bio-
marker. Would it be the biomarker of
exposure, or the biomarker of effect, or

both? Since such enhanced expression of
MXR gene product in aquatic organisms
can be induced by pollution, it certainly
may serve as a biomarker of biologically
relevant exposure to pollution. However, if
overexpression of MXR was induced by
mutagenic and/or carcinogenic xenobi-
otics, resulting in the preferential resistance
to the selective agent (47), then it may
serve as a biomarker of effect.

Expression ofMXR
in Aquatic Organisms
To explore MXR expression in the
populations of aquatic organisms, we com-
pared the characteristics of MXR expres-
sion in the population of a marine snail
(Monodonta turbinata) living at an unaf-
fected site with the characteristics of a pop-
ulation inhabiting a site affected by
cannery wastewaters. Snails from the unaf-
fected site accumulated 281% more 3H-
VCR than those from a polluted site. It is
obvious that the population of snails from
the polluted area is much better protected
from xenobiotics than the population of
snails from the unpolluted site. The results
of these experiments indicate how differ-
ences in the activity of MXR may critically
influence the susceptibility of populations
to the same concentration of xenobiotics.
Furthermore, the accumulation of vin-
cristine in M. turbinata collected at a less
polluted site and exposed for 48 hr at a site
heavily affected by the cannery waters was
significantly lower than in control, unex-
posed specimens, reflecting probably the
induction of P170 pumping activity. The
48 hr period of exposure to the mixture of
xenobiotics present at the polluted site
induced the activity of this defense mecha-
nism to the level that decreased the accu-
mulation of vincristine for 33%, in
comparison to the accumulation measured
in uninduced specimens (46).

Similarly, the state of induction of
MXR in the gills of mussel (Mytilus gallo-
provinciallis) from the same scale of pollu-
tion was proportional to the level of
pollution: gills from mussels living at pol-
luted sites accumulate less vincristine, the
vincristine accumulation is less sensitive to
verapamil, and in most cases expresses
higher levels of P-glycoprotein (47).
Mussels transplanted from a unpolluted
site to a polluted site for 3 days induce
their MXR and behave like mussels living
at a polluted site (48).

Similar induction of MXR was found
in gills of a freshwater clam (Corbicula
fluminea): induced clams, i.e., clams freshly
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collected at a polluted Rhein River site, or
control clams exposed for 3 days either to
water experimentally polluted with diesel-2
oil or to Rhein River sediments, accumu-
lated significantly less vincristine than con-
trol clams, i.e., clams held in aquaria for
6 weeks. Similarly, the number of single
strand breaks (SSB) in gill DNA after
exposure to acetylaminofluorene was sig-
nificantly lower in induced clams than
were SSB found in control clams (49).

Thus, all these examples illustrate how
aquatic organisms may protect themselves
from toxic xenobiotics. This defense mech-
anism is inducible: it enhances its activity
in polluted waters. However, it is fragile:
its protective role in all examples men-
tioned above was annuled in the presence
of chemosenziters.

MXR-eversi.ng Agents and
Their Measurement
Recognition that the presence of one
xenobiotic that is a good substrate for
P170 pump may inhibit or block the
pumping out of other xenobiotic(s), hence
reducing accumulation of the first, and
unusually increasing accumulation of the
second or others, may help us to under-
stand and interpret data on bioaccumula-
tion, bioavailability, metabolism, toxicity,
dose-effect relationships, exposure experi-
ments, and other related parameters. For
example, the effect of the addition of one
nontoxic compound that is a good sub-
strate of P170, to one already polluted
ecosystem may cause a toxic effect in a
variety of species. Such toxic effects would
be unexpected and unexplainable by the
levels of toxic substances well below the
established toxic thresholds. Another
group of interesting speculations could be
drawn from the possible consequences of
blocking the physiological function of
P170-pump in extrusion of endogenous
toxic substances: exposure to a nontoxic
"chemosensitizer" may well cause some-
thing like a "self-intoxication" in an organ-
ism with its own endogenous products. For
example,.the findings of tissue- or species-
specific profiles of indigenous DNA
adducts (I-spots) induced by estrogens,
chow diet, vitamin E, caloric restriction,
or aging in mammals (50), or I-spots
induced in fish and marine invertebrates
during the spawning time, or after the
exposure to xenobiotics (51-53), may well
be explained by the inhibitory effect of
hormones, nonnutrient natural products,
vitamin E, or xenobiotics on physiological
function of P-glycoprotein to pump out the

endogenous DNA-reactive electrophilic
metabolites. A wide variety of compounds
have now been shown to reverse MDR in
vitro, including calcium channel antago-
nists (verapamil, dihydropyridines, and
derivatives), calmodulin antagonists (tri-
fluoroperazine and analogues), antihyper-
tensive agents (reserpine), noncytotoxic
analogues of cytotoxic agents (anthracy-
clines and vinca-alkaloids), steroids (prog-
esterone), antiarythmics (amiodarone,
quinidine), antiparasitic agents (quina-
crine, quinine), immunosuppressants
(cyclosporins), monoclonal antibodies
against P170, and recently, a novel triazi-
noaminopiperidine derivative, Servier 9788
(21,54-56). Because of the clinical impor-
tance of acquired MDR, a great deal of
effort has been focused on the discovery of
novel agents that inhibit P-glycoprotein-
mediated efflux of cytotoxicity drugs.
These efforts have focused on either the
development of analogues of known resis-
tance modifiers (57), identification of
novel reversing agents by screening (58), or
through structure-based selection (59).
MDR-inhibiting properties of substances
were frequently discovered in a programs
initiated to identify MDR-circumventing
agents among, for example, many different
strains of blue-green algae, or thousands of
fungi and Actinomycetes, or a variety of
marine species, like tolyporphin (60), or two
naphto-g-pyrones (61), or patellamide
(62), respectively. Most of these com-
pounds act by increasing the intracellular
concentration of cytotoxic drugs probably
through direct interaction with the P-glyco-
protein. Some of them have shown activity
in in vivo models of MDR (63) and
verapamil has been extensively tested as a
modulator in the clinic (64). However,
nontoxic lipophilic agents, natural or
manmade, may also be recognized and
processed by this molecular mechanism,
and, at high concentrations, they might
consequentially saturate the system and
thereby reverse multidrug resistance (65).
In addition to such nontoxic substrates of
P170, there are agents that may alter the
regulation of this fragile MDR mechanism,
like activators and inhibitors of protein
kinase C. This new class of compounds,
referred to as "chemosensitizers," deserves a
top rank among environmentally hazardous
chemicals, as they may block the basic bio-
logic defense mechanism and revert natural
resistance to a pathobiologic sensitivity.

The development of methods to screen
for such a MXR-reverting potential of
xenobiotics should therefore be a rational

approach for the assessment of risks from
chemicals in the environment. Recently we
found, using the method of Yoshimura et
al. (66) with measurement of rhodamine
6G- or 3H-vincristine accumulation in a
confluent monolayer of mouse sarcoma
cells (S180) and S180 cells selected for
resistance to doxorubycin (S180dox) in
96-wells microplate, that concentrates of
polluted Sava River waters, or its sedi-
ments, contained about 3 times more
MXR-inhibiting substances, expressed as
verapamil-equivalents, than verapamil-
equivalents of MXR-reversing xenobiotics
present in water or sediment concentrates
from a less polluted Korana River (both in
Croatia) (49). This method has been con-
siderably improved by use of standardized
NIH 3T3 mouse fibroblasts stably express-
ing the human multidrug transporter
(MDR-1 transfected NIH-3T3 cells) in
combination with the measurement of
accumulation of a calcein acetoxymethyl
ester (calcein AM) (67), an advantageous
functional assay of the multidrug trans-
porter (68). In addition, environmental
samples expressing anti-MDR potential
were characterized for the nature of their
interaction with the P-glycoprotein using a
relatively simple, sensitive, and short-term
assay described by Sarkadi et al. (69,70):
This assay measures the property of sample
to stimulate or inhibit the vanadate sensi-
tive MDR1-ATPase activity in isolated
membranes of Sf9 cells infected with a
recombinant baculovirus containing an
MDR1 cDNA. The results of these deter-
minations were well correlated with results
obtained by methods described earlier, i.e.,
both with in vitro, indirect, "binding"
method and with the in vivo "accumula-
tion" method. The latter represents the
best in vivo confirmation of determinations
obtained by cell culture technique and,
together with methods demonstrating the
toxication effects, illustrates the ecological
significance of chemosenziters. Thus,
methods needed to screen and control
these hazardous chemicals are available.

MXR in Aquatic Organisms:
Impliaions ;for Ecotoxicology
There is no doubt that the discovery of
the presence and operation of MXR
mechanism in aquatic organisms should
have important implications in environ-
mental xenobiotic-risk assessment studies.
Apparently, this paradigm plays a central
role among the phenomena most often
used in both the assessment of the impact
of pollution and in serving as a basis for
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legislative regulation, like uptake, bioavail-
abilty, toxicity, bioaccumulation, and expo-
sure. Therefore, it is reasonable to raise the
question of how to capitalize on a) the
implementation of this new knowledge to
our present concepts in ecotoxicology, b)
the potential use of measurements of the
activity ofMXR and exploitation of inhibi-
tion or inducibility of MEXR as a biomarker
of pollution, and c) the measurement of
concentration of MXR-reversing substances
in polluted aquatic environments.

To demonstrate how xenobiotics that
are good substrates of P170 may competi-
tively inhibit the pumping out of other
xenobiotics, we exposed M. galloprovincialis
to (G-3H) vincristine in the presence of
diesel-2 oil. The presence of this conven-
tional pollutant enhanced the accumulation
of the radioactivity by 3-fold, or to the level
equivalent to enhanced accumulation
caused by 8.5 jiM verapamil (48).

The second demonstration was done by
an indirect "chemosensitizer," the PKC
inhibitor staurosporine. Staurosporine (0.5
mM) reversed the MXR in a fresh-water
clam Corbicula fluminea and switched the
no observed effect concentrations (NOEC)
(71) of aminoanthracene (0.01 pM), as
measured by alkaline filter elution detec-
tion of single strand breaks, to the observed

effect concentrations (OEC) equivalent
to that caused by an order of magnitude
higher (0.10 pM) concentration of
acetylaminofluorene (13).

The third demonstration of the toxicat-
ing effect of an MXR-inhibitor was done
by a direct "chemosensitizer," verapamil.
The time needed for the induction of
mixed-function oxidase activity (EROD
and benzo[a]pyrene monoxygenase) in the
livers of carp exposed to a low concentra-
tion of diesel-2 oil was shortened in the
presence of 2 pM verapamil to 2 days, i.e.,
to the period reached otherwise after expo-
sure to five times higher concentration of
diesel-2 oil, demonstrating how the inhibi-
tion of P170 glycoprotein enhances the
internal dosing of diesel-2 oil (72).

Finally, we demonstrated that environ-
mental samples, like water concentrates and
sediment extracts, enhanced the accumula-
tion of rhodamine123 or calceine AM in
vivo in clams Dreissena and Corbicula.
However, even the xenobiotics present in
native polluted river (Rhein River) water
enhanced the accumulation of these dyes, in
comparison with unpolluted (Morgenbach)
waters. Similarly, waters collected from
beads of Caulerpa taxifolia, a rapidly
expanding marine seaweed introduced into
Mediterrannean, contain agents that reverse

MXR in M galloprovincialis (enhancement
of R123 accumulation) (73). A lipophilic
extract from C. taxifolia contains a strong
anti-MDR agent. It belongs to a cyclo-
sporinelike inhibitors, since it inhibits the
MDR-protein ATPase (74).

Multixenobiotic resistance phenotype
expressed in aquatic organisms serves as a
defense mechanism that protects organ-
isms by the mechanism that pumps out of
the cell many structurally diverse lipo-
philic xenobiotics. The exposure to pol-
luted water induces the expression of
MXR. Thus, measurement of the level of
MXR-expression can be used as a bio-
marker of exposure. Many classes of chem-
icals are capable of inhibiting the MXR
mechanism. This new class of compounds,
referred to as "chemosensitizers," deserves
a top rank among environmentally haz-
ardous chemicals, since it may block the
basic biologic defense mechanism and
revert natural resistance to pathobiologic
sensitivity. Therefore the detection and
control of MXR inhibitors deserves the
highest priority in ecological risk assess-
ment studies. Methods for measuring the
concentration of such MXR chemosense-
tizers in environmental samples, or for
measurement of the MXR-inhibiting
property of chemicals, are available.
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