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Activation of the K-ras protooncogene and inactivation of the p53 tumor suppressor gene are

events common to many types of human cancers. Molecular epidemiology studies have
associated mutational profiles in these genes with specific exposures. The purpose of this paper

is to review investigations that have examined the role of the K-ras and p53 genes in lung tumors
induced in the F344 rat by mutagenic and nonmutagenic exposures. Mutation profiles within the
K-ras and p53 genes, if present in rat lung tumors, would help to define some of the molecular
mechanisms underlying cancer induction by various environmental agents. Pulmonary
adenocarcinomas or squamous cell carcinomas were induced by tetranitromethane (TNM),
4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK), beryllium metal, plutonium-239, X-ray, diesel
exhaust, or carbon black. These agents were chosen because the tumors they produced could
arise via different types of DNA damage. Mutation of the K-ras gene was determined by
approaches that included DNA transfection, direct sequencing, mismatch hybridization, and
restriction fragment length polymorphism analysis. The frequency for mutation of the K-ras gene
was exposure dependent. Only two agents, TNM and plutonium, led to mutation frequencies of
> 10%. In both cases, the transition mutations formed could have been derived from deamination
of cytosine. The identification of non-ras transforming genes in rat lung tumors induced by
mutagenic and nonmutagenic exposures such as NNK and beryllium would help define some of
the mechanisms underlying cancer induction by different types of DNA damage. Alteration in the
p53 gene was assessed by immunohistochemical analysis for p53 protein and single-strand
conformation polymorphism (SSCP) analysis of exons 4 to 9. None of the 93 adenocarinomas
examined was immunoreactive toward the anti-p53 antibody CM1. In contrast, 14 of 71
squamous cell carcinomas exhibited nuclear p53 immunoreactivity with no correlation to type of
exposure. However, SSCP analysis only detected mutations in 2 of 14 squamous cell tumors that
were immunoreactive, suggesting that protein stabilization did not stem from mutations within
the p53 gene. Thus, the p53 gene does not appear to be involved in the genesis of most rat lung
tumors- Environ Health Perspect 105(Suppl 4):901-906 (1997)
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Introduction
Activation of the K-ras protooncogene and For example, lung tumors from cigarette
inactivation of the p53 tumor suppressor smokers (3) or induced in mice by exposure
gene are events common to many types of to polycyclic aromatic hydrocarbons (4)
human cancers (1,2). Molecular epidemi- contain a GGT -* TGT transversion
olgy studies have associated mutational pro- mutation in codon 12 of the K-ras gene.
files in these genes with specific exposures. Further evidence that some carcinogens
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may produce a specific and recognizable
pattern of gene mutations has been
demonstrated by mutational hot spots in
the p53 gene in liver and skin tumors asso-
ciated with exposure to aflatoxin (5) and
ultraviolet radiation (6), respectively. In
all these cases, the specific mutation could
be ascribed to the type of DNA damage
produced by the exposure.

Lung cancer attributable to tobacco use
is the leading cause of cancer-related death
in the United States (7). However, only
16% of habitual smokers develop lung
cancer, suggesting that host susceptibility
and other environmental factors (e.g., air
pollution) contribute to the risk for devel-
oping this disease. The best example of a
combined exposure increasing lung cancer
risk can be seen in underground uranium
miners who were highly exposed to radon
progeny in conjunction with tobacco use.
Their lifetime risk for developing lung
cancer is > 50% (8). Chronic low-level
inhalation of radon in the home has also
been estimated to contribute to 10% of all
lung cancer deaths in the United States
(8). The effect of exposure to other types
of environmental pollutants (e.g., diesel
exhaust, ionizing radiation) may also be an
added risk factor for lung cancer (9).

The F344 rat has been used as a model
to evaluate the carcinogenic potential of
chronic exposure to environmental chemi-
cals or mixtures. Several exposures have
resulted in a significant increase in primary
lung tumors. Mutation profiles within the
K-ras and p53 genes, if present in rat lung
tumors, could help define some of the mol-
ecular mechanisms underlying cancer
induction by these environmental agents.
The establishment of distinct mutational
profiles within these genes for a specific
environmental agent would also improve
risk estimates from exposures in the home
and workplace. The purpose of this paper
is to review investigations that have exam-
ined the role of the K-ras and p53 genes in
lung tumors induced in the rat by muta-
genic (genotoxic) and nonmutagenic
(nongenotoxic) exposures. Lung tumors
were induced by tetranitromethane
(TNM) (10), 4-methylnitrosamino-1-(3-
pyridyl)- 1 -butafione (NNK) (11), beryl-
lium metal (12), plutonium-239 (13),
X-ray (14), diesel exhaust, or carbon black
(15). These exposures were chosen because
the tumors produced could arise via
different types of DNA damage. TNM can
stimulate cell proliferation by its irritant
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properties and cause deamination of DNA
(10). NNK is a tobacco-specific nitrosamine
that is genotoxic to DNA through the gen-
eration of alkylating (11) and pyridy-
loxobutylating agents (16). Beryllium
metal is a nongenotoxic carcinogen that
illicits a chronic inflammatory response
involving the recruitment of macrophages
and neutrophils that can release cytokines
and oxygen radicals (12). Plutonium-239
and X-ray exposures damage DNA directly
and through the production of free radicals
(17). Diesel exhaust contains 8% particle-
associated, extractable, organic compounds
by weight in conjunction with the insoluble
particles within the carbon matrix, thereby
not only producing genotoxic effects on
DNA, but also causing chronic inflamma-
tion and epithelial proliferation (15).
Carbon black contains only 0.12%
extractable organics and serves as a surro-
gate for the elemental matrix of diesel
exhaust soot (15).

Materials and Methods
Exposure and Sampling

The exposures have previously been
described in detail (10-15). All exposures
except NNK were by the inhalation route
using respirable aerosols. NNK was admin-
istered by sc injection. Lung neoplasms
were fixed in 4% buffered paraformalde-
hyde or in 10% neutral buffered formalin.
These samples were embedded in paraffin,
cut at 5 pm, stained with hematoxylin and
eosin, and examined by light microscopy
for histologic diagnosis. Serial sections were
also cut for immunohistochemical assays
and DNA analysis. If lung tumor speci-
mens were > 0.15 mg, the additional tissue
was frozen in liquid nitrogen and stored at
-80°C. DNA was isolated from fixed and
frozen tissue for the analyses described below
using standardized techniques (12,18).

Analysis ofMutations
in the K-ras Gene
The first and second exons of the K-ras
gene, specifically codons 12, 13, and 61,
contain the majority of activating muta-
tions identified in human and murine
tumors (1). Several methods for detecting
mutations within this gene have been used
over the past 10 years^and have been
described previously (10,12,14,18-22).
These methods include DNA transfection,
oligonucleotide mismatch hybridization,
direct sequencing of exons 1 and 2 fol-
lowing amplification by the polymerase
chain reaction, and BstNI restriction

fragment length polymorphism assay. In
all the present studies described, two
independent assays were used to confirm
the detected mutations.

Analysis ofMutations
in thep53 Gene
Two screening methods were used to
detect evidence for alterations in the p53
gene. First, immunohistochemical analysis
of the p53 protein, which relies on the
nuclear localization and increased stability
of mutant p53 proteins, was used to iden-
tify cells with altered expression of the p53
gene (12). Second, to identify the exon
containing the possible mutation, exons 4
to 9 of the p53 gene were screened for
mutations by single-strand conformation
polymorphism (SSCP) analysis (18);
> 90% of the mutations in p53 are local-
ized within these exons (2). Finally, muta-
tions were identified by direct sequencing
of exon-specific polymerase chain reaction
products (12).

Results
K-ras Mutations
in Rat LungTumors

The frequency for mutation of the K- ras
gene was exposure dependent, but was not
associated with histologic tumor type.
Mutations detected were present at similar
frequencies in adenocarcinomas and squa-
mous cell carcinomas. Results are summa-
rized in Table 1. All lung tumors induced by
TNM contained a GGT -+ GAT transition
mutation within codon 12 of the K-ras gene
(10). In marked contrast, no activating
mutations were present in lung tumors
induced by NNK (19). Mutation frequen-
cies of 6 and 10% were detected in tumors
associated with carbon black and diesel
exhaust exposure, respectively. Only 10% of
tumors induced by beryllium metal con-
tained a K-ras mutation; in both cases a
GGT -> GTT transversion was observed

(12). Lung tumors induced by plutonium
showed a higher frequency for mutation of
the K-ras gene than tumors induced by X-ray;
46% of tumors induced by plutonium con-
tained a mutation within this gene, predomi-
nantly a GGT - AGT transition in codon
12 (20). In contrast, only 3% of X-ray-
induced tumors contained an activating
mutation (14). No mutations were detected
in the four sham-exposed lung tumors.
A BstN1 enrichment assay, which can

detect one mutant allele in 104 copies of
wild-type allele, was required to detect the
mutations observed in the beryllium- and
X-ray-induced tumors. All other mutations
were detected without enriching for the
mutant allele. Thus, the activation of the
K-ras gene in the beryllium- and X ray-
induced tumors is both a rare and a late
event, possibly stemming from genomic
instability during tumor progression.

p53 Mutations
in Rat LingTumors
All lung tumors, except those induced by
TNM (not available for analysis) were
examined immunohistochemically for the
p53 protein. A sarcoma induced in the
nude mouse by the SV40 immortalized rat
2 cell line showed strong immunoreactivity
toward the anti-p53 antibody CM1 and
was used as a positive control (12).
Positivity for p53 protein was associated
with tumor histology. None of the 93 ade-
nocarcinomas examined (all exposures)
were immunoreactive with the p53
antibody. In contrast, 14 of 71 squamous
cell carcinomas exhibited nuclear p53
immunostaining as summarized in Table
2. Immunoreactivity was detected in 57
and 50% of squamous cell carcinomas
induced by diesel exhaust or carbon black
(18), albeit with low sample sizes (n = 7
and 4), while only 18 and 7% of tumors
induced by X-rays (14) or plutonium (21),
respectively, contained aberrant p53 pro-
tein. Only 18% of squamous cell tumors

Table 1. Pattern and frequency of K-ras gene mutations in rat lung tumors.
K-ras activation

Exposure Frequency % Activating mutation
Sham 0/4 0
TNM 19/19 100 Codon 12: GGT-GAT
NNK 0/21 0
Beryllium 2/24 10 Codon 12: GGT - GTT
Diesel exhaust 2/21 10 Codon 12: GGT - GAT

Codon 61: CMA CAT
Carbon black 1/18 6 Codon 12: GGT -* GTT
Plutonium 33/7l 46 Codon 12: GGTe AGT

Codon 12: GGT - GTT
X-ray 1/35 3 Codon 12: GGTe GAT
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Table 2. Frequency for alteration of the p53gene in rat squamous cell carcinomas.a

Immunostaining SSCP Analysisb
Exposure Frequency % Frequency % Mutation

Sham 1/2 50 ND - -
NNK 2/11 18 1/11 9 Exon 5, codon 143: TTG-TCG
Diesel exhaust 4/7 57 1/5 20 Exon 8, codon 272: GTT -*GTC
Carbon black 2/4 50 0/4 0
X-ray 3/18 18 1/18 6 Exon 9, codon 309: AGC -*AAC
Plutonium 2/29 7 2/29 7 Exon 8, codon 280: CGT -* CAT

Exon 8, codon 283: GAG ->AAG

ND, no data. aLung tumors were analyzed for p53 protein with the anti-p53 antibody CM1. SSCP analysis was con-
ducted for exons 4 to 9, and direct sequencing was used to determine the specific mutation. bDue to the small size
of some neoplasms, not all were included in SSCP analysis.

induced by NNK exhibited nuclear p53
immunostaining. No squamous cell carci-
nomas were available from the beryllium
carcinogenesis study.

The immunostained nuclei in the
squamous cell carcinomas were generally
distributed throughout the neoplasm in the
basilar layers of the neoplastic cords and in
the poorly differentiated portions of the
neoplasms (Figure IA, B). The more
differentiated polyhedral, keratinizing cells
toward the centers of the neoplastic cords
showed little to no nuclear reactivity
(14,18,21,22). Immunoreactivity varied

among tumors; it was strong in intensity in
multiple foci of some tumors while more
focal, intense staining was observed in
other tumors. In some tumors staining was
diffiuse, but weak in intensity (14,18,21,22).

Because immunohistochemical analysis
of the p53 protein does not detect alter-
ations that result in the loss of protein
expression, nonsense mutations, or
missense mutations outside of exons 5 to 8,
SSCP analysis of exons 4 to 9 was con-
ducted on all tumors. No mutations were
detected in any of the adenocarcinomas. In
spite of the immunoreactivity observed in

the 13 squamous cell carcinomas available
for screening, SSCP analysis (Table 2) only
detected mutations in one of the NNK-
induced tumors (exon 5) and both plu-
tonium-induced tumors (exon 8). Two
additional tumors contained mutations:
one was a silent mutation within exon 8
from a diesel exhaust-induced tumor, and
the other was found in exon 9 from an
X-ray-induced tumor. Three of the muta-
tions were G -> A transitions, while the
fourth mutation was a T -> C transition
(Table 2, Figure 2).

Discussion
The results from these investigations
indicate that the involvement of the K-ras
and p53 genes in the genesis of rat lung
tumors is specific to the exposure material
and the resulting histologic form of the
tumor, respectively. The only two expo-
sures that led to activation of the K-ras
gene at frequencies > 10% were that of
TNM and plutonium. In both cases, the
mutations formed could have stemmed
from deamination of cytosine. Nitro-con-
taining compounds such as TNM can
cause subsequent base mispairing by deam-
inating a base such as cytosine (10).

Figure 1. Immunoreactivity of p53 protein in lung squamous cell carcinomas. Magnification is x300. (A) Well-differentiated squamous cell carcinoma. Only the most basal
cells of each neoplastic cord exhibit positive nuclear immunoreactivity for p53 (arrows). (B) Poorly differentiated squamous cell carcinoma. Many positively immunostained
nuclei are scattered throughout the neoplasm. Arrowheads point to examples of nuclei that are not immunoreactive. Faint hematoxylin counterstain. Reproduced from
Belinsky et al. (22), with permission.
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Figure 2. Detection of a mutation in the p53 gene. (A) Exon 5 SSCP analysis of DNA from four lung tumors induced
by NNK (lanes 1-4) and normal rat lung (lane 5). A slower migrating band suggestive of a mutation is present in
lane 3. (B) Wild-type sequence surrounding codon 143. (C) TTG -TCG mutation detected by SSCP analysis.
Sequencing was done following cloning of PCR products; therefore, the wild-type allele is not present in C.

Hydroxyl radicals, hydrogen atoms, or
solvated electron species formed by the
radiolysis of water and other adjacent
molecules resulting from the passage of
alpha particles emitted by plutonium can
also cause cytosine deamination (23).
Both transition and transversion muta-
tions were detected in the K-ras gene in
human adenocarcinomas associated with
exposure to radon (24). The lack of a spe-
cific mutation profile in these human
tumors may stem from the fact that most
of these uranium miners were also smok-
ers. Adenocarcinomas associated with
tobacco use have a higher frequency for
transversion than for transition mutations
in the K-ras gene (1).

The difference between alpha particles
and X-rays in targeting the K-ras gene may
stem from the amount of energy
deposited. Alpha particles deposit large
amounts of energy in small volumes along
their paths, while X-rays deposit relatively
sparse amounts of energy. Estimation of
DNA damage using p53 expression as a
dosimeter indicates that to produce equiva-
lent acute damage requires an absorbed
dose ofX-rays 10-fold higher than for alpha
particles (25). Therefore, the energy
deposited by plutonium alpha particles
would be expected to generate a higher

concentration of DNA damage than that
deposited by X-rays.

The low frequency of K-ras mutations
found in the diesel exhaust- and carbon
black-induced carcinomas may result from
the lack of participation of mutagenic
organics in the induction of neoplasia by
diesel exhaust. This conclusion is sup-
ported by a recent report showing that
DNA adducts specific to polycyclic aro-
matic hydrocarbons are not increased in
rats chronically exposed to diesel exhaust
(26). The fact that K-ras mutations are
also a rare and late event in'rat lung car-
cinogenesis induced by the nongenotoxic
carcinogen, beryllium metal, provides fur-
ther support for the hypothesis that diesel
exhaust acts through a nongenotoxic mech-
anism. However, the K-ras gene in the rat
is not always a target for genotoxic carcino-
gens. For example, despite the dose-related
correlation of carcinogen-specific adducts
to the induction of rat lung neoplasms by
the genotoxic carcinogen NNK (11), the
expected mutations in the K-ras gene were
not found in these neoplasms.

The lack of ras mutations in rat lung
tumors induced by genotoxic exposures is
not necessarily an anomaly when com-
pared to human lung carcinogenesis.
Activation of the K-ras gene is detected in

< 40% of human adenocarcinomas but
rarely in squamous cell carcinomas. This
histologic preference for mutation of the
K-ras gene was not observed in rat lung
tumors, a difference that may stem from
the progenitor cells responsible for these
two tumor subtypes in rat and human
lung cancers (11,27). Other oncogenes
must also be involved in the development
of non-small-cell lung cancers. DNA from
cells transformed in vitro by X-rays
(28,29) or in vivo by NNK (19) could
transmit their malignant phenotype to
NIH 3T3 cells; however, the oncogenes
responsible were not members of the ras
gene family. Identification of these non-ras
transforming genes would be invaluable
for unraveling some of the mechanisms
underlying cancer induction by genotoxic
and nongenotoxic exposures.

Results summarized in this review
indicate that the p53 gene may be involved
in the development of some rat squamous
cell carcinomas, while alterations in this
gene have not been detected in adenocarci-
nomas. Consistent with these findings, sev-
eral recent reports indicate that alterations
in p53 are infrequently found in primary
rat neoplasms regardless of tissue or etiol-
ogy (30-37), with the exception of squa-
mous cell carcinomas (38,39). Mutations
in this gene are also infrequent in murine
lung tumors (40-42). While immunohis-
tochemical staining revealed evidence of
p53 inactivation in 14 squamous cell carci-
nomas, both SSCP analysis and direct
sequencing detected mutations in only 3 of
13 immunoreactive samples that were
examined. Given the extent and distribu-
tion of immunoreactivity in the majority of
these tumors and the sensitivity of SSCP
(43) and direct sequencing, it is unlikely
that mutant alleles present would not have
been detected. The p53 protein immunore-
activity in these neoplasms may be due to
mutations outside exons 4 through 9,
although this is unlikely because such muta-
tions have rarely been associated with pro-
tein stabilization and occur in < 5% of
human neoplasms with p53 mutations (44).

Alternatively, p53 immunoreactivity
may be due either to stabilization by other
gene products or the disruption of protein
degradation. Stabilization of p53 by
another protein may correlate with func-
tional inactivation, analogous to its inacti-
vation and extended half-life when bound
by the SV40 large-T antigen. Precedent
for this finding exists in several other
reports in which enhanced detection of
p53 by immunohistochemistry occurs in
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the absence of mutations within the con-
served region (33,44,45). One known
method of inactivating wild-type p53 is the
overexpression of the MDM2 gene prod-
uct, which may stabilize the p53 protein to
detectable levels. Immunohistochemical
staining of lung tumors induced by diesel
exhaust, carbon black, or X-rays detected
overexpression ofMDM2 in only one squa-
mous cell carcinomas induced by X-ray

exposure (14,18). This tumor also stained
positive for p53. The MDM2 gene was
not amplified in the immunoreactive X-
ray-induced tumor, suggesting that the
mechanism underlying this overexpression
could stem from enhanced translation as
described by Landers et al. (46).

It is clear that while mutation of the p53
tumor suppressor occurs in 37 and 65% of
human pulmonary adenocarcinomas and

squamous cell carcinomas, respectively,
many cancers develop independently of this
tumor suppressor gene. The recent identifi-
cation of the plj6NK4a gene at chromosome
9p2l (47) and other genes being identified
at chromosomes 3pI4, 3p2l, and 3p25
(48) should provide additional candidate
genes for analysis in rat lung tumors.
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