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Dietary restriction (DR) alters a significant environmental factor in carcinogenesis, dietary intake,
thus inhibiting both spontaneous and induced tumorigenesis. Potential mechanisms for the
inhibition of spontaneous cancer may include the effects of DR to do the following: decrease
body weight, which decreases cellular proliferation and increases apoptosis in a number of
organs that increase and decrease with body size; decrease body temperature, thereby lowering
the amount of endogenous DNA damage temperature generates; decrease oxidative damage, by
increasing antioxidant damage defense systems; decrease, generally, cellular proliferation; and
protect the fidelity of the genome by decreasing DNA damage, increasing DNA repair, and
preventing aberrant gene expression. Potential mechanisms for reducing induced tumor
incidence include lowering agent activation, changing agent disposition, decreasing the adducts
most associated with agent toxicity, and inhibiting tumor progression through mechanisms
similar to those that can effect spontaneous tumorigenesis. As a method to control a major
source of environmental cancer, and as the major modulator of the agent induction of this
disease, understanding how DR works may significantly contribute to the efforts to explain how
diet impacts on development of cancer in the United States, and may suggest methods to reduce
the adverse impacts of other environmental agents on the disease. Environ Health Perspect
1 05(Suppl 4):989-992 (1997)
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Introduction
Dietary restriction (DR) inhibits both
spontaneous (1-3) and induced (3-5) car-
cinogenesis. Although many other environ-
mental factors play a role in carcinogenesis
[e.g., viruses (6)], diet remains the most
significant overall (7-11). DR also modu-
lates induced toxicity (10,12-16), inhibit-
ing the induction of cancer by chemical
(12-15), physical (ultraviolet light) (16),
and viral (10) agents.

Despite its long history of study, the
mechanism(s) by which DR inhibits cancer
are not known. However, based on recent
studies, there are a number of hypotheses
that appear to provide a reasonable explana-
tion for how DR modulates carcinogenesis.
DR has been used to describe a wide

variety of protocols. As defined here, DR is
a reduction in the amount of diet con-
sumed to a level less than that eaten by

ad libitum (AL)-fed animals, without any
observable malnutrition. Malnutrition is
important to evaluate (and avoid) since it
can cause immunodeficiency, which can
enhance the expression of cancer (17).
Restriction of dietary macronutrients can
influence disease. For example, a reduction
in fat intake reduces mammary tumors in
rats (18), and protein restriction (PR)
appears to inhibit certain cancers, such as
liver or kidney tumors (19). However, fat
restriction is almost always accompanied
by total energy intake restriction, and fat
restriction itself appears to be less impor-
tant than total calorie restriction or protein
(18,20). Additionally, the effect of PR is
usually significantly less than with total DR
(18,19). Thus, the rest of this discussion
will focus on the anticarcinogenic action of
caloric restriction without malnutrition.
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Dietary Restriction and
Spontaneous Cancer
BodyWeight Consideratons

DR delays the onset (8,10) and progression
(21) of a number of cancers in rodents. A
strong correlation among DR, body weight
(BW), and cancer occurrence has been
established (10,18,22,23). For instance, in
B6C3F1 mice and F344 rats, the inci-
dences of a number of common tumors
appear to be correlated to BW at certain
ages (10,18,22,23). The major tumor sites
effected by DR in these animals are in the
organs whose size is a function of animal
BW. The factors that control organ weight
have yet to be fully characterized, but
appear to include levels of endogenous
growth factors, whose presence stimulates
increased proliferation and growth and
whose absence induces increased apoptosis
and organ shrinkage. Consistent with this
idea is the observation that larger livers
(even in the absence of increased BW, i.e.,
hepatomegaly) are correlated with an

increased incidence of liver tumors (Figure
1). With DR, animals have smaller livers
(1.07 vs 1.63 g in controls)(24), increased
apoptosis (25), and a decrease in tumor
incidences (11). Increased apoptosis may
selectively remove damaged cells, thus
reducing the chance of transformation
(25). Exposure of cells with oxidative dam-
age in organs to endogenous growth factors
may be biologically the equivalent to pro-

motion, for which oxidative damage is the
initiator. Both BW and selected metabolic
parameters are important predictors for
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Figure 1. Relationship of liver weight to liver tumor
incidence in male B6C3F1 mice. Each data point is a
study with at least 48 animals derived from controls in
National Toxicology Program studies (46-54).
Relationship is a power function, where the power is
approximately 1.5; r=0.92. Turturro et al. (22) present
examples of techniques used.
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breast cancer in women and colon cancer in
men and women (26). These studies sug-
gest common mechanisms may exist across
species. This is not totally unexpected, since
the mechanisms underlying the extra-
polation are such basic biological processes.

Body Temperature Considerations
Another mechanism that may inhibit
cancer is the lowering of body temperature
that occurs with DR. Core body tempera-
ture is significantly lower in animals with
DR (27). This decrease occurs whether the
animals are fed every other day or every
day, and the magnitude of the average
decrement appears to be similar. A lowered
body temperature will result in a decrease
in the number of apurinic sites, apyrimi-
dinic sites, and cross-links in the cellular
DNA. This factor may also contribute to
decrease in oxidative damage.

Free Radical Considerations
It as been suggested that DR operates via
modulation of free radical metabolism,
both by reducing the formation of free rad-
icals and by a stimulation of free radical
scavenger enzymes (28). This approach is
supported by the impact of DR on cata-
lase. Catalase is better protected from
autooxidation in DR-fed animals (28),
which enhances its activity. The activities
of other liver free radical scavenger enzymes
are also enhanced.

If the enzymes that protect from free
radical scavenging are preserved in animals
on DR, they may prevent oxidative damage
from accumulating in DNA and other
macromolecules. This would lead to fewer
damage sites and, in cellular DNA, fewer
mutations. The situation, however, is not
simple. Recent studies in Emory mice have
shown that another free radical scavenger,
plasma ascorbate, is reduced up to 50%,
with glutathione significantly reduced,
when animals are fed at 60% ofAL (29).
DR appears to differentially affect different
tissues in the same animal, e.g., liver versus
muscle (28). At this point, it would appear
that any hypotheses suggesting that the
benefits of DR occur through its impact
on free radical generation or inactivation
will have to account for these strain- and
species-specific differences.

Celiular Proliferation Considerations
A more traditional explanation for the
effects of DR on cancer is that it slows
cellular proliferation in general, which
somehow reduces the age-specific incidence
of carcinogenesis (30). However, DR

appears to have little or no effect on cell
proliferation in certain tissues, such as
bone marrow (31). Based on these observa-
tions, it is hard to see how changes in cellu-
lar proliferation could be responsible for
the slowing of tumors related to these tis-
sues, e.g., induction of lymphoma by DR
in the mouse (8,11). In addition, recent
studies show that what few differences in
cell proliferation exist between AL and DR
animals seem to disappear after 10 months
of age (32), thereby further complicating
the interpretation of the relationship
between induction of tumors in animals on
DR and cellular proliferation.

Genome Integrity Considerations
Another way to explain the beneficial effects
of DR on tumor induction would be to
suggest that DR enhances the stability and
integrity of the genetic information (in
DNA) and its expression. DR does appear
to reduce the induction of DNA damage
(33). Likewise, DNA repair appears to be
enhanced by DR, but different DNA
repair systems may be altered differently
(33,34). Studies by Srivastava et al. (35)
demonstrate that the fidelity of certain
forms of DNA polymerase are enhanced
(pola) in animals on DR compared to AL-
fed ones. The impact ofDR on the fidelity
of replication of other DNA polymerases is
yet to be studied. Finally, DR also appears
to alter the expression of a number of genes
associated with cancer (33), including, but
not likely limited to, p53 (36) and H-ras
(37). These observations are consistent with
a general DR impact of reducing DNA
damage, increasing capacity to fix DNA
damage that does occur, and preventing
aberrant gene expression. Understanding the
relationship of these changes to the benefi-
cial impact of DR on cancer requires better
understanding of the role that DNA damage
plays in carcinogenesis and of how DR
induces these effects.

Dietary Restriction and
Induced Carcinogenesis
The effects ofDR on induced carcinogenesis
are striking (12,13). Even a moderate level
of DR (to 70% of AL) can eliminate the
expression of various agent-induced dis-
eases (12,38). DR appears to have many
effects, interacting at various levels of orga-
nization and with many factors important
to the induction of toxicity (39).

Agent disposition is altered with DR, as
DR increases urinary output up to 4-fold
(29), thereby enhancing compound conju-
gation and elimination (14). As specific

cytochrome P450 isoenzyme activities are
decreased by DR (decreasing agent activa-
tion) the activities of certain glucuronidases
are increased, with a result of improved
agent detoxification (40). Even when the
total amount of agent that combines with
the genome is not effected by DR, the for-
mation of specific adducts correlated with
carcinogenicity can be inhibited (41).
Thus, by a myriad of mechanisms, DR can
reduce the amount of carcinogenic insult
that results from interaction with an agent.

Another factor that impacts induced
toxicity is the effect ofDR on toxicodynam-
ics. This was illustrated in a recent experi-
ment using the newborn mouse assay (42).
In these studies, starting DR 4 months after
the carcinogenic insult resulted in an elimi-
nation of the carcinogenic action of the
agent. Other experiments have shown that
DR can not only slow the growth of diethyl-
nitrosamine (DEN)-induced preneoplastic
foci in liver, but can even induce foci regres-
sion (43). The mechanism(s) important for
the inhibition of spontaneous tumorigenesis
may also be important for this effect of DR
on induced tumorigenesis. For instance,
endogenous factors that promote the dam-
age induced by oxidative metabolism may
also promote the damage induced by agents
such as DEN. Thus the effects of DR on
spontaneous and induced cancer may be
linked at this step.

Conclusion
DR is a complex, broad paradigm that
interacts with many different stages or steps
in the carcinogenic process. Despite this
complexity and unlike many agents that
can either increase or decrease carcinogene-
sis depending on the specific paradigm of
exposure used (44), DR has not been
found to increase the incidence of any form
of cancer or the carcinogenicity of any com-
pound. This observation has led to specula-
tions about the role of DR as an adaptive
mechanism to ensure animal survival dur-
ing times of food deprivation until food
again becomes available, to help perpetuate
the species (45).

Whatever the reason for the evolution
of DR, however, because of its potent anti-
tumor action and its apparent extrapolation
to humans, elucidation of its mechanism(s)
may add more tools to the antitumor arma-
mentarium used to fight cancer. Also, since
this approach takes advantage of compo-
nents involved in simple nutrition, the
application of these mechanisms to improve
public health may be fairly straightforward
and easy to establish.
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