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Although asbestos stimulates oxygen radical generation in alveolar macrophages, the exact
mechanism is still not clear. The purpose of this study was to compare the ability of three
asbestos fibers (amosite, chrysotile, and crocidolite) to generate oxygen radicals in macrophages
and examine the mechanism of this action. All asbestos fibers were able to induce chemilumi-
nescence but chrysotile induced maximal chemiluminescence at higher concentrations than
amosite and crocidolite. Protein kinase C (PKC) inhibitors (sphingosine and staurosporine)
suppressed the ability of asbestos to induce oxygen radical generation. Phospholipase C (PLC)
inhibitors (U73122 and neomycin) and protein tyrosine kinase (PTK) inhibitors (erbstatin and
genistein) decreased oxygen radical generation of asbestos-stimulated alveolar macrophages.
Oxygen radical generation was not suppressed by an adenylate cyclase activator (forskolin), a
protein kinase A inhibitor (H-8), and a protein serine-threonine phosphatase inhibitor (okadaic
acid). PLC and PTK inhibitors suppressed the increment of phosphoinositide turnover by amosite.
These results suggest that asbestos fibers induce the generation of oxygen radicals through PTK,
PLC, and PKC pathways in a dose-response pattern. — Environ Health Perspect 105(Supp! 5):
1325-1327 (1997)
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Introduction

Asbestos, a fibrous particle, causes
pulmonary fibrosis, bronchogenic carci-
noma, and mesothelioma (/1,2). Several
reports suggest that the toxicity of asbestos
is mediated by oxygen radicals in these dis-
eases. Asbestos stimulates the release of
oxygen radicals from alveolar macro-
phage(s) (AM) and the generation of oxy-
gen radicals is an important primary event
in asbestos-induced cell injury (3-7).
Among asbestos fibers, chrysotile induces

the generation of oxygen radicals in AM at

noncytotoxic doses whereas crocidolite and .

amosite do not (8). One study reports no
stimulatory effect of crocidolite in AM (9),
but some authors note the generation of
oxygen radicals in crocidolite-stimulated
AM (4,10). These results suggest that
asbestos fibers have different capabilities in
the generation of oxygen radicals.

Although the exact mechanism for the
release of oxygen radicals is not clear yet, it
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has been accepted that asbestos stimulates
oxygen radical generation by interaction
with membranes of AM; the signal trans-
duction pathway for this phenomenon also
involves phospholipase C (PLC) and pro-
tein kinase C (PKC) pathways (8). PLC
hydrolyzes phosphatidyl inositol biphos-
phate (PIP,) to diacylglycerol (DAG) and
inositol triphosphate (IP3). Whereas IP;
increases intracellular calcium by releasing
calcium from the endoplasmic reticulum,
DAG activates PKC (71). PKC has been
known to activate a reduced nicotinamide
adenine dinucleotide phosphate oxidase on
the plasma membrane, which produces
superoxide anions from oxygen (12).

In human AM, silica increases the tyro-
sine phosphorylation of proteins at 46 and
50 kDa, which suggests the activation of a
tyrosine kinase pathway (13). Currently
there is no information about the role of the
tyrosine kinase pathway in asbestos-stimu-
lated AM. Chrysotile increases intracellular
calcium by opening calcium channels.
Intracellular calcium seems to prolong the
production of chrysotile-stimulated super-
oxide anion, but it is not clear whether
intracellular calcium may be involved in the
release of oxygen radicals from amphiboles
at an early stage (/).

The purpose of this study was to
examine the hypothesis that three asbestos
fibers (amosite, crocidolite, and chrysotile)
induce the generation of oxygen radicals in
rat AM, and to determine what kinds of
signal transduction pathways are involved
in oxygen radical generation.

Methods

Crocidolite, amosite, and chrysotile
(Union Internationale Contre le Cancer
reference standard sample) were obtained
from the Japan Industrial Safety and
Health Association (Tokyo, Japan).
Ketamine, staurosporine, verapamil,
8-(diethylamino)octyl 3,4,5-trimethoxy-
benzoate hydrochloride, forskolin, okadaic
acid, and Escherichia coli lipopolysaccharide
(LPS) were obtained from Sigma Chemical
(St. Louis, MO). Sphingosine, neomycin,
U-73122, H-8, and genistein were
obtained from Calbiochem (La Jolla, CA).
Erbstatin analog was obtained from Research
Biochemicals International (Natick, MA).
LPS, ketamine, and neomycin were stored
at —20°C in isotonic saline. Other drugs
were stored at —20°C in dimethyl sulfoxide
(DMSO). The stock solutions were diluted
1000-fold into the mixing buffer such that
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‘the final DMSO concentration was no
higher than 0.1%.

All experiments were performed with
male Sprague-Dawley rats (250-300 g). We
used seven rats for chemiluminescence and
two rats for PLC activity. LPS was adminis-
tered at 0.4 mg/kg. Rats were given LPS via
trachea under ketamine anesthesia 20 hr
before AM isolation. The animals were
anesthetized with sodium phenobarbitone
(50 mg, ip). AM were harvested by bron-
choalveolar lavage. Bronchoalveolar lavage
was performed by cannulating the right and
left main bronchi with a sterilized 19-gauge
polypropylene tube. Saline solution (10 ml)
was injected into the lung via a polypropy-
lene tube and then slowly aspirated into a
collection trap using a syringe of negative
pressure. This procedure was repeated 10
times. Thereafter, cell suspension was cen-
trifuged at 300X g for 10 min at 4°C. The
pellet was treated to hypotonic shock if
erythrocyte contamination was observed,
and the cells were centrifuged again. The
pellet was resuspended in HEPES buffer at
4°C. Total cell number was measured by
hemocytometer and cell viability was eval-
uated by trypan blue exclusion (>95%).
AM were cultured for 2 hr at the concen-
tration of 1x 10° cells after elimination of
nonadherent inflammatory cells (14).

Oxygen radical generation was measured
with chemiluminescence. The reaction
mixture consisted of 0.2 ml AM cell sus-
pension (1 106 cells), and 0.2 mM lumi-
nol in HEPES-Hanks buffer. Macrophages
were allowed to equilibrate in the lumi-
nometer for 5 min prior to stimulation
with asbestos. After the pretreatment of
cells with each drug for 30 min, asbestos
was added to the incubation medium.
Chemiluminescence was measured with a
luminometer (1250, Bio-orbit, Turk,
Finland) for 30 min. For the quantitative
analysis of chemiluminescence, the highest
emission was assessed as the peak height
compared with that of controls (15).

AM cultures were metabolically labeled
for 20 hr in inositol-free medium contain-
ing 0.5% heat-inactivated fetal calf serum
and 1 pCi [*Hlmyo-inositol (NEN,
Dupont, Wilmington, DE). Cells were
washed with Hanks balanced salt solution
(HBSS) and incubated in HBSS contain-
ing 10 mM LiCl and 0.2% bovine serum
albumin with or without the specified
additives. Inositol phosphates and free
inositol were extracted into cold 10 % per-
chloric acid. The extraction solution was
neutralized by 10% KOH and loaded onto
AG 1-X8 (formate form) columns. The
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Figure 1. Concentration-response effect of asbestos fibers on chemiluminescence of lipopolysaccharide-treated
alveolar macrophages (1 x 108 cells) from one rat. Experiments were repeated six times with consistent results

(SD<10%).

[®H]Jinositol phosphates were eluted
sequentially using 0.2 M ammonium for-
mate/0.1 M formic acid (for InsP,), 0.4 M
ammonium formate/0.1 M formic acid
(for InsP;), 1 M ammonium formate/0.1
M formic acid (for InsP3)(16).

Results and Discussion

Three asbestos fibers (amosite, chrysotile,
and crocidolite) were examined to evaluate
their ability to generate oxygen radicals in
AM. All asbestos fibers induced chemilu-
minescence in a dose—response pattern
although effective doses were different.
Among the three fibers, amosite showed
the highest level of chemiluminescence at a
lower dose. Dose—response patterns in cro-

.cidolite and amosite were similar, but they

differed from the chrysotile. Chemilumi-
nescence appeared within 1 min; peak level

was observed within several minutes (Figure
1). Our data demonstrated that amphiboles
were stronger in oxygen radical generation
at lower doses than serpentine fibers.

To investigate the role of calcium in
asbestos-stimulated AM, two drugs that
decrease intracellular calcium levels were
given as pretreatments. In all asbestos
fibers, the calcium channel blocker vera-
pamil inhibited chemiluminescence to
approximately 40% of control values
(Table 1). These results support other
observations that verapamil inhibits
chrysotile-induced stimulation of AM (7).
Also, 3,4,5-trimethoxybenzoate hydrochlo-
ride, which inhibits the release of calcium
from endoplasmic reticulum, decreased the
effect of asbestos on chemiluminescence
(Table 1). These results support the fact
that calcium is an important factor in the

Table 1. Effect of various drugs on chemiluminescence of asbestos-stimulated alveolar macrophages (1 x 108 cells).

Chemiluminescence, mV@

Treatment group Amosite, 5 mg/ml Crocidolite, 5 mg/ml Chrysotile, 10 mg/ml
Control 12£15 6+1 9+0.8
Verapamil (50puM) 492+1.2* 1.92+0.2* 3.96+0.3*
TMB-8 (50 uM) 8.4+0.5*% 396+0.2* 5.49+0.4*
Staurosporine (2 M) 0.3+0* 0.3+0* 0.3+0*
Sphingosine (50 M) 0.3+0* 0.3+0" 030"
Neomycin (2 mM) 1.68+0.2* 09+0° 3.2410.1°
U73122 (10 yM) 468+02* 1.4410.2* 27£0.1*
Genistein (20 M) 26401 1.92+0.2* 297+0.2*
Erbstatin (10 yM) 0.3+0* 0.3+0* 0.3+0*
Okadaic acid (0.5 yM) 1421 48+23 13207
H-8(0.2 yM) 12+2 48+32 9105
Forskolin (1 pM) 120 45122 8+0.7

TMB-8, 3,4,5-trimethoxybenzoate hydrochloride. #Data represent the mean + SD of six experiments. *, significantly

different from control group (p<0.0001).
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signal transduction mechanism for the
generation of oxygen radicals in asbestos-
stimulated AM.

Sphingosine and staurosporine, which
are PKC inhibitors, suppressed asbestos-
induced chemiluminescence. Pretreatment
of sphingosine (50 pM) completely sup-
pressed the effects of asbestos fibers on the
generation of oxygen radicals in AM.
Staurosporine also showed nearly identical
effects at 2 uM (Table 1). The data sup-
port the hypothesis that oxygen radical
generation is mediated through PKC (12).

To examine the role of PLC, we pre-
treated AM with PLC inhibitors, neo-
mycin, and U73122. U73122 inhibited
chemiluminescence to approximately 40%
of control values at the concentration of 1
M. Asbestos-induced chemiluminescence
was decreased by pretreatment with neo-
mycin at 2 pM, and its level was between
20 and 40% of control values (Table 1).
Although PLC inhibitors could not sup-
press asbestos-induced chemiluminescence
completely, our results showed that
asbestos-induced oxygen radical generation
in AM was mediated through the PLC
pathway. These results support other obser-
vations that demonstrate the involvement

of the PLC pathway in oxygen radical
generation by asbestos (8).

In this experiment, we observed the
effects of protein tyrosine kinase (PTK)
inhibitors on asbestos-induced chemi-
luminescence. Genistein and erbstatin
suppressed asbestos-induced chemilumi-
nescence (Table 1). Our results suggest
the involvement of a PTK pathway in the
oxygen radical generation in asbestos-
stimulated AM.

Pretreatment with okadaic acid (serine—
threonine phosphatase inhibitor) did not
change asbestos-induced chemilumines-
cence. Also, H-8 (protein kinase A
inhibitor) and foskolin (adenylate cyclase
activator) did not change the effect of
asbestos (Table 1).

To further clarify relationships in the
signal transduction pathway, we measured
phosphoinositide (PI) turnover in asbestos-
stimulated AM after the pretreatment of
PTK and PLC inhibitors. Amosite stimu-
lated PI turnover in AM, whereas U73122
and neomycin completely suppressed PI
turnover in amosite-stimulated AM. Two
PTK inhibitors showed different inhibition
levels in PI turnover similar to those in
chemiluminescence. Genistein suppressed

Table 2. Effect of various drugs on phospholipase C
activi% of amosite-stimulated alveolar macrophages
(1% 10° cells).

Drug PLC activity (CPM)?
Control 24126
Neomycin (2 mM) 101£8%*
U73122 (10 pM) 99+22**
Genistein (20 pM) 197 +8*
Erbstatin (10 yM) 121+6*

CPM, counts per minute. #Concentration of amosite:
20 mg/ml. *, significantly different from control group
(p<0.05). **, significantly different from control group
(p<0.01).

amosite-stimulated PI turnover, and
erbstatin inhibited the action of amosite on
PI turnover (Table 2). From these results,
we suggest that the activation of PTK and
PLC is involved in asbestos-induced
PI turnover.

In summary, different asbestos fibers
induced the generation of oxygen radicals
with different dose—response patterns. Our
results also show that asbestos stimulated
oxygen radical generation in AM through
PTK, PLC, and PKC pathways. Moreover,
intracellular calcium might play an important
role in oxygen radical generation.
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