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ABSTRACT
Microsatellites are short tandem repeats that are widely dispersed among eukaryotic genomes. Many of

them are highly polymorphic; they have been used widely in genetic studies. Statistical properties of all
measures of genetic variation at microsatellites critically depend upon the composite parameter � � 4N�,
where N is the effective population size and � is mutation rate per locus per generation. Since mutation
leads to expansion or contraction of a repeat number in a stepwise fashion, the stepwise mutation model
has been widely used to study the dynamics of these loci. We developed an estimator of �, �̂F, on the basis
of sample homozygosity under the single-step stepwise mutation model. The estimator is unbiased and is
much more efficient than the variance-based estimator under the single-step stepwise mutation model. It
also has smaller bias and mean square error (MSE) than the variance-based estimator when the mutation
follows the multistep generalized stepwise mutation model. Compared with the maximum-likelihood
estimator �̂L by Nielsen (1997), �̂F has less bias and smaller MSE in general. �̂L has a slight advantage
when � is small, but in such a situation the bias in �̂L may be more of a concern.

MICROSATELLITE loci, also known as short tan- from locus to locus, depending on the motif as well as
the size of alleles at each locus. Empirical and theoreti-dem repeats, are tandem repeat loci with repeat

motifs of two to six nucleotides in length (Tautz 1993). cal studies indicate that for most microsatellite loci,
mutations lead to stepwise changes of the repeat sizeMicrosatellites are highly informative as polymorphic

markers. Variations at microsatellite loci have been used of alleles although the rate of mutation leading to
expansion may not be equal to that of contraction ofto study the history and genetic structure of individual

populations, such as DNA fingerprinting, paternity and allele size (Chakraborty et al. 1997; Deka et al. 1999).
The stepwise mutation model, originally proposed forrelatedness testing, reconstruction of evolutionary trees,

and genetic distance. In addition, they are useful for the study of protein charge changes (Ohta and Kimura
1973), in a more generalized form may be more suitableinferring migration histories, for identifying individuals
for the study of most microsatellite loci (Kimmel et al.of unknown origin, and for detecting the hidden popu-
1996).lation substructure. Microsatellites are also widely used

Although a number of estimators of � (Wehrhahnin linkage mapping.
1975; Nielsen 1997; Fu and Chakraborty 1998) useStatistical properties of all measures of genetic varia-
microsatellite data, each has its limitations, in part beingtion critically depend upon the composite parameter
either too complicated or too simple. There is need for� � 4N�, where N is the effective population size and
a relatively simple yet robust estimator and the purpose� is the mutation rate per locus per generation. An
of this article is to develop one such estimator of � usingaccurate estimate of � will greatly facilitate the inference
microsatellite data. Here we assume the neutral Wright-on the basis of variation at microsatellite loci. While the
Fisher model without population substructure. The esti-variation at microsatellites is extremely useful, little has
mation of � becomes the estimation of effective popula-been done to estimate � using microsatellite data. This
tion size, N, when the mutation rate, �, is known oris partly due to the unknown mutation mechanism at
the estimation of mutation rate, �, when the effectivesuch loci. Microsatellite loci are hypervariable and the
population size, N, is known.mechanisms that produce new variation at such loci are

unusual in comparison with those of classical loci. While
the exact mechanism of mutations at such loci is still METHODS AND RESULTS
not well characterized at a molecular level (Jeffreys et

Existing estimators: Assuming the single-step stepwiseal. 1994), it is generally believed that the processes and
mutation model, in which each mutation produces ei-the patterns of mutations at different loci may differ
ther one-step contraction or expansion in allele size,
for a population without substructure and a neutral
locus, the variance in allele size from a sample, Vs, has
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TABLE 1 posed before (Zouros 1979; Chakraborty and Weiss
1991), which is based on an analytical relationship be-Large sample variance of estimator �̂V
tween the expected value of the � estimator and real
value of �. Unfortunately, such an analytical formula is� Var(�̂V) SDa

not yet known for genetic loci evolving under the step-
1 1.67 1.29 wise mutation model.5 35.0 5.92

Besides the two estimators of � using microsatellite10 136.67 11.69
data, Nielsen (1997) proposed an estimator using the50 3350.0 57.88
maximum-likelihood approach. In addition to being

a Standard deviation of �̂V. restricted to the single-step stepwise mutation model,
the estimator is rather demanding computationally and
can handle only modest sample size. Fu and Chakra-�̂V � 2Vs. (1)
borty (1998) proposed an approach to simultaneously

The estimator �̂V is rather simple, but the price of its estimate all the parameters in a generalized stepwise
simplicity is a large variance. The variance of allele size mutation model, including �. They use a minimum chi-
variance, Vs, was given by Zhivotovsky and Feldman square method to perform a grid search of all the possi-
(1995) as ble values in the multidimensional parameter space,

which makes it a challenge to analyze a large amount
Var(Vs) �

1
12

� �
1
3

�2. (2) of data. To date, many population studies using microsa-
tellites involve larger and larger samples and multiple

Consequently, the variance of �̂V is given by loci. A relatively simple yet efficient estimator is highly
desirable. In many ways, such an estimator can serve a

Var(�̂V) �
1
3

� �
4
3

�2. (3) role similar to that of Watterson’s or Tajima’s estimator
of � for DNA sequence data, despite the fact that several
sophisticated estimators of � for DNA sequence dataSeveral examples of the value of �̂V are shown in Table
have been available.1. In general the standard deviation is ��.

New estimator: The approach we take uses a combina-An even better known quantity is heterozygosity, de-
tion of computer simulation and statistical regression,noted as H and defined as the probability that two ran-
trying to find the relationship between the expectationdomly chosen sequences are of different allelic type; it
of �̃F and the real value of �. On the basis of the relation-is a measure of genetic variation at a microsatellite locus.
ship, we try to develop a new unbiased estimator of �.The complement of heterozygosity, F � 1 � H, is called
Computer simulation is an efficient way to study thehomozygosity. Since F contains the information of both

number of alleles and allele frequency, an estimator properties of the homozygosity-based estimator �̃F . For
based on F may be a possible solution. each combination of � value and sample size, n, a large

Under the single-step stepwise mutation model, for number of samples are simulated according to coales-
a population without substructure and a neutral locus, cent theory. For each sample, the homozygosity is esti-
the expected homozygosity (Ohta and Kimura 1973) mated through Equation 5. Then the homozygosity-
is given by based estimate is obtained through Equation 6. Some

of the results are shown in Figure 1, where each point
E(F) �

1

√1 � 2�
. (4) in the figure is the mean of �̃F over 50,000 simulated

samples. Figure 1 shows that �̃F on average overestimates
�. The magnitude of overestimation is a function ofSupposing a sample is taken from a population and
sample size n and �, and, in many cases, the biases areletting k be the number of alleles in the sample, the
severe.homozygosity F can be estimated by

To summarize the relationship among �, n, and the
F̂ � �

k

i�1

p 2
i , (5) mean of �̃F, a regression approach can be used. The

challenge is to find the simplest equation that is suffi-
ciently accurate for describing the relationship. Fromwhere pi is the allele frequency of the ith allele in the
Figure 1, it seems that mean of �̂F is reversely related tosample. Then a moment estimator of � can be derived
sample size and positively proportional to �. We includefrom Equation 4, replacing F with F̂:
the terms 1/n and � in the regression formula. We
started to consider equations that incorporate 1/n and�̃F �

1
2�

1
F̂ 2

� 1� . (6)
√� in various ways. Choosing √� as the basic unit was
partly inspired by Equation 4. The most complex equa-Since the transformation is not linear, the estimator �̃F

tion we consider is a polynomial including all combina-is usually biased, particularly when � is large. Simple
correction based on the infinite allele model was pro- tions of 1/n, √�, and (1/n)2.
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marized in Table 2. Table 2 shows that the estimator �̂
is unbiased (or nearly so). The small bias is likely due
to fluctuation in simulation and is insignificant com-
pared to the variance.

Next we compare the performance of our estimator
�̂F with that of the estimator based on allele size variance,
�̂V. There are two ways to compute the variance of �̂V.
The theoretical value of the large sample variance can
be computed through Equation 3 and the variance can
also be estimated through computer simulation. We
computed it in both ways because on the one hand the
validity of our simulation program can be checked and
on the other hand the results can corroborate each
other. The results are summarized in Table 3. Table 3
shows that the theoretical value of the variance of �̂V

agrees well with the simulation value, which indicates
that our simulation is accurate. More importantly, Table
3 shows that while both estimators are unbiased, ourFigure 1.—Relationship and regression of �, sample size
homozygosity-based estimator �̂F is better than the sizen, and mean of �̃F. Each dot is the mean of �̃F over 50,000

simulated samples and curves are the regression equations. variance-based estimator �̂V in that the variance of �̂ is
The number on the right side of each curve is the � value for smaller than that of �̂V. The relative efficiency of �̂F
simulating the samples upon which the mean �̃F is taken. against �̂V, defined as the ratio of the variance of �̂V and

variance of �̂F, is also given in Table 3. The relative
efficiency increases as � increases, which means that �̂F

The regression analysis shows that two regression becomes more and more efficient with increasing �
equations summarize remarkably well (R 2 � 99.99%) value. Note that since microsatellite loci have a relatively
the relationship of �, n, and mean of �̃F (see Figure 1). high mutation rate, the � value can easily be of the
For � � 10, range of 10–100, which makes �̂F superior to �̂V for most

microsatellite loci.
E(�̃F) � �1.1313 �

3.4882
n

�
28.2878

n2 �� � 0.3998√�. (7) Comparison with the maximum-likelihood estimator:
The performance of the homozygosity-based estimator
�̂F is further compared to that of the maximum-likeli-For � � 10,
hood (ML) estimator �̂L proposed by Nielsen (1997).
Assuming the single-step stepwise mutation model, 10,000

E(�̃F ) � �1.1675 �
3.3232

n
�

63.698
n2 �� � 0.2569√�. (8)

samples are simulated for a number of combinations of
� and sample size. The two estimators, �̂F and �̂L, are

The regression equations have two nice properties. First, computed for each simulated sample. The mean value
when �̃F � 0, we have � � 0. Second, when sample size and mean square error (MSE) for the corresponding
n → ∞, �̃F has a limit value, which does not depend on estimates are then computed and the results are summa-
n. Actually, when n � 200, the effect of sample size is rized in Table 4. Two conclusions are obvious from
very small. Table 4. First, the ML estimator �̂L is, in general, up-

On the basis of the above regression equations, we wardly biased. Although the bias decreases with sample
propose the following new estimator �̂F: size, it is still appreciable even when the sample size is

300. In comparison, the mean value of the homozygos-
�̂F � �� value satisfies Equation 7 with �̃F replacing E (�̃F ) if �̃F � 15

� value satisfies Equation 8 with �̃F replacing E (�̃F ) otherwise. ity-based estimator �̂F exhibits little bias, similar to the
case of comparing �̂F and �̂V. Second, in general the ML

The threshold value 15 is based on the observation that estimator �̂L has a larger MSE than that of �̂F, except in
90% of the value of �̃F is �15.0 with � � 10. However, we the cases where � is small and sample size is large. It
found that the choice is not critical, because choosing 10 is somehow surprising that as � increases, the relative
as the threshold value does not make much difference. performance of �̂L, measured by MSE, gets worse com-
This is because when � is �10, Equations 7 and 8 give pared to �̂F. Two possible causes might be that the ML
very similar results. estimator implemented by Nielsen may not be a true

The performance of �̂F was investigated through simu- ML estimator and it is not efficient. Indeed, in Nielsen’s
lation. For a given combination of � and sample size n, algorithm, a k-allele model was used to approximate the
50,000 samples were simulated and for each sample �̃F stepwise mutation model (Nielsen 1997) in which the
was estimated by Equation 6 and then corrected through accuracy is not well known. Because of a high mutation

rate for microsatellites, the � value can be quite largeEquation 7 or Equation 8. Some of the results are sum-
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TABLE 2

Properties of �̂F

� n �F �Fe Bias MSE Variance

2 30 3.094 2.019 0.019 3.66 3.66
50 3.009 2.053 0.053 3.40 3.39

100 2.927 2.056 0.056 3.16 3.16
200 2.884 2.054 0.054 3.11 3.11
300 2.878 2.058 0.058 3.02 3.02
400 2.869 2.056 0.056 3.06 3.06
600 2.865 2.057 0.057 3.05 3.05

1000 2.878 2.071 0.071 3.07 3.07

5 30 7.225 4.999 �0.001 16.52 16.52
50 6.939 5.031 0.031 14.25 14.25

100 6.742 5.043 0.043 12.90 12.90
200 6.636 5.036 0.036 12.26 12.26
300 6.604 5.035 0.035 12.10 12.10
400 6.603 5.046 0.046 12.00 12.00
600 6.561 5.023 0.023 11.78 11.78

1000 6.575 5.045 0.045 11.98 11.97

10 30 14.186 10.157 0.157 61.03 61.00
50 13.354 10.026 0.026 48.81 48.81

100 12.958 10.051 0.051 42.02 42.01
200 12.778 10.062 0.062 39.51 39.51
300 12.691 10.041 0.041 38.43 38.43
400 12.605 9.994 �0.006 37.79 37.79
600 12.625 10.035 0.035 36.90 36.90

1000 12.610 10.043 0.043 36.88 36.88

20 30 27.940 19.909 �0.091 217.52 217.51
50 26.249 19.973 �0.027 171.77 171.77

100 25.260 20.012 0.012 142.82 142.82
200 24.941 20.099 0.099 131.68 131.67
300 24.600 19.923 �0.077 125.90 125.89
400 24.604 19.977 �0.023 124.55 124.55
600 24.579 20.006 0.006 123.72 123.72

1000 24.493 19.972 �0.028 122.48 122.48

30 30 41.942 30.104 0.104 514.50 514.49
50 39.140 30.010 0.010 377.85 377.85

100 37.721 30.126 0.126 308.05 308.03
200 36.932 30.002 0.002 278.08 278.08
300 36.850 30.094 0.094 270.54 270.53
400 36.646 30.000 0.000 262.49 262.49
600 36.565 30.007 0.007 262.79 262.79

1000 36.480 29.994 �0.006 256.49 256.49

40 30 55.986 40.358 0.358 927.53 927.40
50 51.862 39.946 �0.054 643.28 643.28

100 49.832 39.986 �0.014 527.34 527.34
200 49.100 40.085 0.085 481.06 481.05
300 48.776 40.028 0.028 466.07 466.07
400 48.829 40.174 0.174 451.92 451.89
600 48.553 40.044 0.044 450.49 450.49

1000 48.433 40.020 0.020 441.63 441.63

even for a modest population size. For example, many To address the issue of efficiency, we performed a
large-scale simulation to see the extent to which perfor-samples from human populations have yielded estimates

of � � 10. This makes �̂F more preferable in general mance of the ML estimator is affected by the number
of runs through the Markov chain. In the comparisonthan �̂L.
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TABLE 3

Comparison of �̂F and �̂V

�̂F �̂V

� Bias MSE Var Bias MSE Var Var(T)a Efficiencyb

1 0.052 1.16 1.16 �0.002 1.65 1.65 1.67 1.44
2 0.071 3.07 3.07 0.015 6.11 6.11 6.00 1.96
3 0.062 5.36 5.35 �0.010 12.57 12.57 13.00 2.43
4 0.045 8.36 8.36 0.001 23.32 23.32 22.67 2.71
5 0.045 11.98 11.97 0.012 35.71 35.71 35.00 2.92
6 0.049 16.25 16.25 0.006 51.54 51.54 50.00 3.08
8 0.040 25.85 25.85 �0.016 86.66 86.66 88.00 3.40

10 0.043 36.88 36.88 �0.059 129.69 129.69 136.67 3.71
12 0.064 51.23 51.22 �0.023 191.19 191.19 196.00 3.83
14 0.071 65.10 65.09 0.005 262.74 262.74 266.00 4.09
16 0.055 81.94 81.93 �0.109 337.60 337.59 346.67 4.23
18 0.021 101.61 101.61 �0.070 423.15 423.14 438.00 4.31
20 �0.028 122.48 122.48 0.108 549.14 549.13 540.00 4.41
25 �0.003 182.73 182.73 0.019 847.60 847.60 841.67 4.61
30 �0.006 256.49 256.49 0.124 1221.03 1221.01 1210.00 4.72
35 �0.068 340.53 340.53 �0.105 1649.56 1649.54 1645.00 4.83
40 0.020 441.63 441.63 �0.129 2103.78 2103.76 2146.67 4.86

a Theoretical value of variance of �̂V.
b Relative efficiency of �̂F over �̂V.

with the ML estimator �̂L shown in Table 4, the �̂L was the absolute value of the offset U is sampled from a
computed using the default Markov chain steps, 100,000 geometric distribution with parameter 	; that is,
runs. Table 5 shows the results with three different num-

P(|U | � x) � (1 � 	)x�1	, 0 � 	 � 1. (9)bers of runs through the Markov chain, 10,000, 100,000
and 1,000,000, where � is set to 10.0. It is clear from The performance of both estimators under this gener-
Table 5 that there is a big improvement in the perfor- alized stepwise mutation model was investigated through
mance of �̂L in terms of MSE when the number of runs computer simulation. A total of 50,000 samples were
through the Markov chain changes from 10,000 to 100,000, simulated assuming the generalized model with 	 �
but only a small improvement when the replicate num- 0.67. With this 	 value,
ber changes from 100,000 to 1,000,000. More impor-
tantly, even when 1,000,000 replicates were used for the E(|U |) � 1/	 � 1.5.
�̂L, it still has larger bias and MSE than the homozygosity-

That is, on average each mutation causes a jump ofbased estimator �̂F when � � 10.0. An extreme case was
allele sizes of �1.5 repeat units. For each simulatedcarried out in which the number of runs through the
sample, the sample procedure as before was taken toMarkov chain for �̂L was set to 10,000,000 when � �
obtain the two estimators, �F and �V. The bias and MSE10.0 and sample size n � 50. In this case, the MSE of
were also taken for each estimator. The corresponding�̂L was 69.53, which is still �50.62, the MSE of �̂F.
theoretical values for the bias and MSE of �̂V were alsoRobustness of the estimator: So far, the analysis is
computed. The details are in the appendix. The simula-based on the single-step stepwise mutation model. While
tion value agrees well with the theoretical value. Thethis may be true for some microsatellite loci, statistical
results are shown in Table 6.analysis suggests that not all of them adhere to this

Table 6 shows that under the generalized stepwisesimple version of the stepwise mutation model (Shriver
mutation model, both estimators are upwardly biased.et al. 1993; Di Rienzo et al. 1994). Furthermore, direct
That is, both estimators on average overestimate themutation assays at several loci showed that occasionally
real � value. The bias is an increasing function of �.mutation may lead to jumps of allele sizes beyond one
When the bias of �̂F is compared to that of �̂V, the formerrepeat unit (Weber and Wong 1993). On the basis of
always has a smaller bias than the latter, which meansthese lines of evidence, a generalized version of the
that �̂F is less biased than �̂V especially when � is high.stepwise mutation model (Kimmel and Chakraborty
Comparison between the corresponding MSEs also1996; Fu and Chakraborty 1998) was proposed in
shows that �̂F has a smaller MSE than �̂V. These twowhich each mutation is supposed to change the allele

size from X to X � U. The mutation is symmetric and points make �̂F still more preferable than �̂V even when
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TABLE 5TABLE 4

Comparison of �̂F and �̂L under various combinations Comparison of �̂F and �̂L when � � 100 for different numbers
of runs through the Markov chainof � and sample size (n)

�̂F �̂L �̂F �̂L

� n Mean MSE Mean MSE MC replicates n Mean MSE Mean MSE

10,000 30 10.12 60.28 12.59 129.902 30 2.027 3.635 2.358 3.249
50 2.028 3.403 2.306 2.812 50 9.93 48.83 11.93 96.72

100 10.07 42.87 11.55 81.39100 2.041 3.193 2.238 2.159
200 2.086 3.189 2.203 1.901 200 10.03 39.50 11.08 73.05

300 10.03 37.65 11.01 70.18300 2.039 3.015 2.158 1.725

100,000 30 9.99 58.36 12.19 106.185 30 4.921 16.328 5.727 19.949
50 4.956 13.502 5.534 14.356 50 10.00 47.55 11.95 85.58

100 9.97 42.25 11.30 58.67100 5.036 12.618 5.382 11.569
200 5.014 11.694 5.321 10.029 200 9.93 38.28 10.95 47.27

300 10.06 38.73 10.87 45.99300 5.075 12.091 5.224 9.579

1,000,000 30 9.95 61.30 11.90 102.6010 30 9.987 58.355 12.189 106.184
50 10.002 47.552 11.945 85.583 50 10.07 48.44 11.59 76.51

100 9.98 40.65 11.08 55.96100 9.967 42.251 11.296 58.665
200 9.930 38.276 10.945 47.266 200 10.10 40.56 10.86 47.88

300 9.98 36.89 10.56 39.73300 10.058 38.725 10.866 45.992

20 30 20.044 241.480 26.200 635.676
50 20.008 178.937 25.259 392.604

100 20.200 151.968 24.227 272.930
stant across the populations, the estimates of the ratio200 20.196 136.492 23.290 217.196
of mutation rates from different populations are the300 19.945 129.011 22.569 192.065
estimates of the same quantity. Consequently, the dis-

The default value, 100,000 for the number of runs through persion of the results is an indicator of the consistency
the Markov chain, was used to compute �̂L. of the estimator. The coefficient of variance (ratio of

standard deviation to mean) is taken as a measure of
dispersion. In almost all the cases, the coefficient of vari-
ance is smaller with �̂F than with �̂V, which indicates thatthe actual mutation model is the generalized stepwise

mutation model. the homozygosity-based estimator �̂F is more stable and
more consistent than the variance-based estimator �̂V.
Examples of the results from four loci are tabulated in

APPLICATION
Table 7, where the base locus (locus 1) is D11S935,
locus 2 is D7S640, locus 3 is D6S441, and locus 4 isTo test the performance of the homozygosity-based

estimator �̂F with real data, we use the allele frequency D5S408, with the corresponding mutation rates denoted
as �1–�4, respectively.data from the ALFRED database at Yale University

(Cheung et al. 2000). There are altogether 115 dinucle-
otide repeats with data from 10 worldwide populations.

DISCUSSION
The 10 populations are Biaka, Mbuti, Druze, Danes,
Han, Japanese, Melanesian-Nasioi, Yakut, Maya-Yucatan, Kimmel and Chakraborty (1996) showed that sam-

ple homozygosity at a microsatellite locus depends notand Surui. More information about the loci and popula-
tions can be found at http://alfred.med.yale.edu/alfred/ only on �, but also on the pattern of allele size change

caused by mutation. Therefore, any attempt to estimateindex.asp.
For each population-locus combination, �̂F and �̂V are � on the basis of homozygosity has to be mutation model

dependent. Interestingly, the regression formula wecomputed. To compare the consistency of the estima-
tors, one locus is randomly chosen as the base locus found on the basis of the single-step stepwise mutation

model is reasonably robust against deviations from theand the ratio of the estimate for other loci in the same
population is taken over the estimate for the base locus. single-step model. This is a useful property since it is

very difficult to specify the model with confidence. OnSince the effective population size is generally supposed
to be the same in the same population for all loci from the other hand, if one has sufficient confidence in a

particular model, a similar approach can be used tothe same sample, we are estimating the ratio of mutation
rates using information from different populations. As- derive the regression formula under the model. This can

be seen from our simulation study when the mutationsuming the mutation rate for a particular locus is con-
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TABLE 6

Comparison of �̂F and �̂V under the generalized model

�̂F �̂V

� Bias MSE Bias Bias(T)a MSE MSE(T)b

1 0.39 2.30 1.99 2 25.72 26
2 0.96 7.42 3.97 4 84.52 84
3 1.63 15.46 5.90 6 170.98 174
4 2.33 26.38 7.75 8 288.51 296
5 3.17 40.12 9.86 10 453.10 450
6 4.05 58.32 11.97 12 641.03 636
8 5.88 105.93 15.75 16 1,086.61 1,104

10 7.88 168.99 19.72 20 1,660.19 1,700
12 9.95 250.23 23.73 24 2,387.10 2,424
14 12.00 341.60 27.22 28 3,047.05 3,276
16 14.41 468.47 31.88 32 4,396.28 4,256
18 16.56 601.07 35.07 36 5,181.32 5,364
20 19.01 770.27 39.00 40 6,440.48 6,600
25 25.16 1,276.12 49.09 50 10,362.25 10,250
30 31.66 1,921.98 59.05 60 13,896.41 14,700
35 38.43 2,756.88 67.99 70 18,798.79 19,950
40 45.13 3,706.23 77.91 80 25,021.12 26,000

a Theoretical value of bias of �̂V under the generalized model.
b Theoretical value of variance of �̂V under the generalized model.

model deviates from the single-step stepwise mutation for small sample sizes. Indeed we found that the �̂L

approaches the true value as sample size (n) increases.model to the generalized stepwise mutation model.
Although the maximum-likelihood estimator, �̂L, pro- However, even when n � 300, there is still an apprecia-

ble amount of bias. The MSE of �̂L decreases with theposed by Nielsen (1997) is computationally demand-
ing, its performance was compared to that of the increase of the sample size. However, in the most likely

range of � for microsatellites, �̂L has in general largerhomozygosity-based estimator �̂F through a large-scale
simulation. The ML estimator �̂L is found to be slightly MSE than �̂F unless the sample size is extremely large.

�̂L has a slight advantage when � is small. However, inupwardly biased. This is not too surprising because many
maximum-likelihood estimators are known to be biased such a situation, the bias of �̂L may be more of a concern.

TABLE 7

Comparison of estimates of ratio of mutation rates with �̂F and �̂V

�̂F �̂V

Population �2/�1 �3/�1 �4/�1 �2/�1 �3/�1 �4/�1

Biaka 5.58 3.61 2.28 1.68 1.76 2.42
Mbuti 5.48 8.96 4.40 4.23 5.66 10.55
Druze 3.11 4.18 0.94 0.93 1.69 2.58
Danes 5.61 3.30 1.48 0.61 0.84 0.56
Han 5.19 1.03 0.72 0.66 0.67 0.88
Japanese 10.16 3.86 1.19 0.60 0.24 1.48
Nasioi 1.68 3.61 4.91 0.77 1.77 3.14
Yakut 3.83 2.33 0.60 0.27 0.90 0.05
Yucatan 2.86 3.18 0.23 0.91 1.51 1.43
Surui 5.33 5.20 3.24 1.47 1.99 3.58

Mean 4.88 3.93 2.00 1.21 1.70 2.67
SD of mean 0.73 0.66 0.52 0.36 0.48 0.95
Variance 5.34 4.34 2.74 1.30 2.26 8.96
Coefficient of variance 0.47 0.53 0.83 0.94 0.88 1.12
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APPENDIX: CALCULATING THE BIAS AND MSE OF(data not shown). Consequently, our homozygosity-
�̂V UNDER THE GENERALIZED STEPWISE

based estimator �̂F is applicable for single-step stepwise MUTATION MODEL
mutation, symmetric or not. Computer programs to

Given thatcarry out the analysis and to estimate �̂F are available
upon request. P(|U | � x) � (1 � 	)x�1	, where 	 � 0.67,
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E(U 2
0) � E(U 2)

Var(Vs ) �
1
3

V 2 �
1
12

V
E(U 4

0)
E(U 2

0)
. (A6)

� Var(U) � (E(U))2

Since U0 � U and U � geometric(0.67), the moment-
�

1 � 	

	2
�

1
	2 generating function of U0 is

M(t) �
	e 2

1 � 	e 2
. (A7)

�
2 � 	

	2
. (A1)

Taking the fourth derivative of Equation A7 and setting
Since �̂V � 2Vs and from Equation 4 of Kimmel and t � 1, 	 � 0.67, we have
Chakraborty (1996) we have

E(U 4
0) � 30. (A8)

E(Vs ) �
V
2

�
�

2
E(U 2

0), (A2) From Equation 5 of Kimmel and Chakraborty (1996),
we have

where V is defined in Kimmel and Chakraborty V � �E(U 2
0). (A9)

(1996),
Substituting Equations A1, A8, and A9 into Equation
A6, we have

E(�̂V) � 2E(Vs ) � 2 

�

2
E(U 2

0) �
2 � 	

	2
�. (A3)

Var(Vs ) � 3�2 �
5
2

�. (A10)
Substituting 	 � 0.67 into Equation A3, we have

Since �̂V � 2Vs, we haveE(�̂V) � 3�. (A4)
Var(�̂V) � 4 Var(Vs ) � 12�2 � 10�. (A11)

Therefore,
Therefore,

Bias(�̂V) � 3� � � � 2�. (A5)
MSE(�̂V) � [Bias(�̂V)]2 � Var(�̂V)

To calculate the MSE of �̂V we need to calculate vari-
� (2�)2 � 12�2 � 10�ance of size variance V first. From Equation 16 of Kim-

mel and Chakraborty (1996), � 16�2 � 10�. (A12)




