Skip to main content
Genetics logoLink to Genetics
. 2004 Jan;166(1):151–160. doi: 10.1534/genetics.166.1.151

sel-7, a positive regulator of lin-12 activity, encodes a novel nuclear protein in Caenorhabditis elegans.

Jiabin Chen 1, Xiajun Li 1, Iva Greenwald 1
PMCID: PMC1470699  PMID: 15020414

Abstract

Suppressor genetics in C. elegans has identified key components of the LIN-12/Notch signaling pathway. Here, we describe a genetic and molecular characterization of the suppressor gene sel-7. We show that reducing or eliminating sel-7 activity suppresses the effects of constitutive lin-12 activity, enhances the effects of partially reduced lin-12 activity, and causes a synthetic Lin-12(0) phenotype when combined with a null mutation in the sel-12 presenilin gene. These observations suggest that sel-7 is a positive regulator of lin-12 activity. We also show that SEL-7 encodes a novel nuclear protein. Through yeast two-hybrid screening, we identified an apparent interaction partner, K08E3.8, that also interacts with SEL-8, a known component of the nuclear complex that forms upon LIN-12 activation. Our data suggest potential roles for SEL-7 in the assembly or function of this nuclear complex.

Full Text

The Full Text of this article is available as a PDF (237.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ailion M., Thomas J. H. Dauer formation induced by high temperatures in Caenorhabditis elegans. Genetics. 2000 Nov;156(3):1047–1067. doi: 10.1093/genetics/156.3.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. De Strooper B., Annaert W., Cupers P., Saftig P., Craessaerts K., Mumm J. S., Schroeter E. H., Schrijvers V., Wolfe M. S., Ray W. J. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature. 1999 Apr 8;398(6727):518–522. doi: 10.1038/19083. [DOI] [PubMed] [Google Scholar]
  3. Doyle T. G., Wen C., Greenwald I. SEL-8, a nuclear protein required for LIN-12 and GLP-1 signaling in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7877–7881. doi: 10.1073/pnas.97.14.7877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fares H., Greenwald I. Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics. 2001 Sep;159(1):133–145. doi: 10.1093/genetics/159.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fares H., Greenwald I. SEL-5, a serine/threonine kinase that facilitates lin-12 activity in Caenorhabditis elegans. Genetics. 1999 Dec;153(4):1641–1654. doi: 10.1093/genetics/153.4.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Greenwald I. S., Sternberg P. W., Horvitz H. R. The lin-12 locus specifies cell fates in Caenorhabditis elegans. Cell. 1983 Sep;34(2):435–444. doi: 10.1016/0092-8674(83)90377-x. [DOI] [PubMed] [Google Scholar]
  7. Greenwald I. LIN-12/Notch signaling: lessons from worms and flies. Genes Dev. 1998 Jun 15;12(12):1751–1762. doi: 10.1101/gad.12.12.1751. [DOI] [PubMed] [Google Scholar]
  8. Greenwald I., Seydoux G. Analysis of gain-of-function mutations of the lin-12 gene of Caenorhabditis elegans. Nature. 1990 Jul 12;346(6280):197–199. doi: 10.1038/346197a0. [DOI] [PubMed] [Google Scholar]
  9. Hodgkin J., Papp A., Pulak R., Ambros V., Anderson P. A new kind of informational suppression in the nematode Caenorhabditis elegans. Genetics. 1989 Oct;123(2):301–313. doi: 10.1093/genetics/123.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kitagawa M., Oyama T., Kawashima T., Yedvobnick B., Kumar A., Matsuno K., Harigaya K. A human protein with sequence similarity to Drosophila mastermind coordinates the nuclear form of notch and a CSL protein to build a transcriptional activator complex on target promoters. Mol Cell Biol. 2001 Jul;21(13):4337–4346. doi: 10.1128/MCB.21.13.4337-4346.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Levitan D., Greenwald I. Effects of SEL-12 presenilin on LIN-12 localization and function in Caenorhabditis elegans. Development. 1998 Sep;125(18):3599–3606. doi: 10.1242/dev.125.18.3599. [DOI] [PubMed] [Google Scholar]
  12. Levitan D., Greenwald I. Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer's disease gene. Nature. 1995 Sep 28;377(6547):351–354. doi: 10.1038/377351a0. [DOI] [PubMed] [Google Scholar]
  13. Mello C., Fire A. DNA transformation. Methods Cell Biol. 1995;48:451–482. [PubMed] [Google Scholar]
  14. Pepper Anita S-R, Killian Darrell J., Hubbard E. Jane Albert. Genetic analysis of Caenorhabditis elegans glp-1 mutants suggests receptor interaction or competition. Genetics. 2003 Jan;163(1):115–132. doi: 10.1093/genetics/163.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Petcherski A. G., Kimble J. LAG-3 is a putative transcriptional activator in the C. elegans Notch pathway. Nature. 2000 May 18;405(6784):364–368. doi: 10.1038/35012645. [DOI] [PubMed] [Google Scholar]
  16. Petcherski A. G., Kimble J. Mastermind is a putative activator for Notch. Curr Biol. 2000 Jun 29;10(13):R471–R473. doi: 10.1016/s0960-9822(00)00577-7. [DOI] [PubMed] [Google Scholar]
  17. Pettitt J., Wood W. B., Plasterk R. H. cdh-3, a gene encoding a member of the cadherin superfamily, functions in epithelial cell morphogenesis in Caenorhabditis elegans. Development. 1996 Dec;122(12):4149–4157. doi: 10.1242/dev.122.12.4149. [DOI] [PubMed] [Google Scholar]
  18. Priess J. R., Schnabel H., Schnabel R. The glp-1 locus and cellular interactions in early C. elegans embryos. Cell. 1987 Nov 20;51(4):601–611. doi: 10.1016/0092-8674(87)90129-2. [DOI] [PubMed] [Google Scholar]
  19. Struhl G., Fitzgerald K., Greenwald I. Intrinsic activity of the Lin-12 and Notch intracellular domains in vivo. Cell. 1993 Jul 30;74(2):331–345. doi: 10.1016/0092-8674(93)90424-o. [DOI] [PubMed] [Google Scholar]
  20. Struhl G., Greenwald I. Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature. 1999 Apr 8;398(6727):522–525. doi: 10.1038/19091. [DOI] [PubMed] [Google Scholar]
  21. Tax F. E., Thomas J. H., Ferguson E. L., Horvitz H. R. Identification and characterization of genes that interact with lin-12 in Caenorhabditis elegans. Genetics. 1997 Dec;147(4):1675–1695. doi: 10.1093/genetics/147.4.1675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Timmons L., Court D. L., Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene. 2001 Jan 24;263(1-2):103–112. doi: 10.1016/s0378-1119(00)00579-5. [DOI] [PubMed] [Google Scholar]
  23. Timmons L., Fire A. Specific interference by ingested dsRNA. Nature. 1998 Oct 29;395(6705):854–854. doi: 10.1038/27579. [DOI] [PubMed] [Google Scholar]
  24. Weinmaster G. Notch signal transduction: a real rip and more. Curr Opin Genet Dev. 2000 Aug;10(4):363–369. doi: 10.1016/s0959-437x(00)00097-6. [DOI] [PubMed] [Google Scholar]
  25. Wen C., Metzstein M. M., Greenwald I. SUP-17, a Caenorhabditis elegans ADAM protein related to Drosophila KUZBANIAN, and its role in LIN-12/NOTCH signalling. Development. 1997 Dec;124(23):4759–4767. doi: 10.1242/dev.124.23.4759. [DOI] [PubMed] [Google Scholar]
  26. Wu L., Aster J. C., Blacklow S. C., Lake R., Artavanis-Tsakonas S., Griffin J. D. MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet. 2000 Dec;26(4):484–489. doi: 10.1038/82644. [DOI] [PubMed] [Google Scholar]
  27. Zhou S., Fujimuro M., Hsieh J. J., Chen L., Hayward S. D. A role for SKIP in EBNA2 activation of CBF1-repressed promoters. J Virol. 2000 Feb;74(4):1939–1947. doi: 10.1128/jvi.74.4.1939-1947.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES