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ABSTRACT
Likelihood methods have been developed to partition individuals in a sample into full-sib and half-sib

families using genetic marker data without parental information. They invariably make the critical assump-
tion that marker data are free of genotyping errors and mutations and are thus completely reliable in
inferring sibships. Unfortunately, however, this assumption is rarely tenable for virtually all kinds of genetic
markers in practical use and, if violated, can severely bias sibship estimates as shown by simulations in
this article. I propose a new likelihood method with simple and robust models of typing error incorporated
into it. Simulations show that the new method can be used to infer full- and half-sibships accurately from
marker data with a high error rate and to identify typing errors at each locus in each reconstructed sib
family. The new method also improves previous ones by adopting a fresh iterative procedure for updating
allele frequencies with reconstructed sibships taken into account, by allowing for the use of parental
information, and by using efficient algorithms for calculating the likelihood function and searching for
the maximum-likelihood configuration. It is tested extensively on simulated data with a varying number
of marker loci, different rates of typing errors, and various sample sizes and family structures and applied
to two empirical data sets to demonstrate its usefulness.

KNOWLEDGE of the genealogical relationships lar relationship is calculated as the likelihood of the
relationship, and the inferred relationship is the oneamong individuals in a population (sample) is im-

portant in many research areas in behavioral, ecological, with the maximum likelihood (e.g., Thompson 1975;
Boehnke and Cox 1997; Epstein et al. 2000; McPeekand evolutionary genetics and in conservation biology.

It is crucial in studying the social behavior, mating sys- and Sun 2000). These methods can potentially infer any
possible relationships in data, although they have difficul-tem, and sex and reproductive allocations in social insect

and other species (Queller and Strassmann 1998); in ties in distinguishing relationships similar in identity-
by-descent (IBD) sharing, such as half-sibs, grandparent-managing the conservation of populations of endan-

gered species (Frankham 1995); and in assessing the grandchild, and avuncular (Epstein et al. 2000; McPeek
and Sun 2000). Pairwise methods are also simple togenetic variation and inheritance of quantitative traits

(Lynch and Walsh 1998). In practice, relationships implement because all individuals (and their potential
impact) other than the pair under consideration arecan be estimated easily from pedigree records. Unfortu-

nately, however, detailed pedigree information is rarely ignored. However, valuable information may be lost in
breaking the sampled individuals into pairs and consid-available for most natural populations. Genetic markers

can be used, instead, to infer the relationships among ering each in isolation (Thomas and Hill 2000; Sie-
berts et al. 2002). All individuals in a sample may pro-individuals without pedigree information. Recent de-

velopments of highly polymorphic markers, such as mi- vide direct and indirect information concerning the
relationship of a dyad, especially those closely relatedcrosatellites, have greatly increased the power of rela-
to the dyad. In diploid species, for example, exclusiontionship inference from markers and enabled many
of sibships is impossible for pairs but is possible forfine-scaled analyses across various species.
trios of individuals using autosomal markers, and moreNumerous methods have been advanced for inferring
accurate relationship inferences are achieved from triosrelationships among individuals solely from marker infor-
than from pairs of individuals (Sieberts et al. 2002). Inmation (Blouin 2003). They can be classified broadly
addition to a possible loss of power due to the insuf-into two categories, the pairwise and group approaches.
ficient use of data, pairwise approaches infer relation-Pairwise approaches infer the relationship of a pair of
ships directly at the lowest level, between a pair of indi-individuals (dyad) using their marker genotypes, ignor-
viduals only. Such pairwise relationships suffice in someing the other individuals in the sample. Typically, the
instances when they are used, for example, to avoidprobability of the marker data of a dyad under a particu-
mating between relatives (Herbinger et al. 1995). In
most cases, however, knowledge of higher-order rela-
tionships is desirable, which requires all the individuals1Address for correspondence: Institute of Zoology, Regent’s Park, Lon-

don NW1 4RY, United Kingdom. E-mail: jinliang.wang@ioz.ac.uk in a sample to be allocated into distinctive genetic groups
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of a variable size (Smith et al. 2001). Further informa- al. 1998; Neff et al. 2002) and other relationships (e.g.,
Douglas et al. 2000; Epstein et al. 2000). Several empiri-tion may be lost in subsequent analyses, such as estimat-

ing heritability (Thomas and Hill 2000), if only pair- cal studies verified the importance of typing errors in
affecting parentage determinations (e.g., Blouin et al.wise relationships are inferred and used. Some methods

consider trios of individuals for the candidate relation- 1996; O’Reilly et al. 1998).
In contrast, all previous group-likelihood approachesship of a parental pair and an offspring (Jones and

Ardren 2003) or combinations of candidate relation- ignored typing errors and mutations completely. This
is unfortunate because, on one hand, typing errors areships of full- and half-sibs, unrelated individuals, and

identical twins (Sieberts et al. 2002). These share essen- expected to have a much more devastating consequence
on relationship inference for group approaches thantially the same properties (e.g., fixed group size) as pair-

wise methods and are thus loosely categorized into pair- for pairwise approaches. For the former, a typing error
may not only cause the individual carrying it to be incor-wise approaches.

Group-likelihood approaches consider all individuals rectly assigned into a genetic group, but also affect the
assignment of the sibs of this individual. When the indi-in the entire sample and partition them simultaneously

into distinctive genetic groups of variable sizes (Painter vidual with a typing error is assigned incorrectly to a sib
family, it may drag along with it some of its sibs with1997; Thomas and Hill 2000, 2002; Smith et al. 2001).

Currently, they are applicable to a sample of individuals similar genotypes into the same false family. On the
other hand, typing errors can be potentially identifiedcoming from a single cohort consisting of full- and half-

sibships only (e.g., tadpoles in a pond). In such circum- and accounted for more effectively by group approaches
than by pairwise approaches. This is because the multi-stances, group approaches are expected to be more

powerful than pairwise approaches because the former locus genotypes of a group of individuals serve as mutual
references and collectively they provide informationuses information of the multilocus genotypes of all sam-

pled individuals in assigning them simultaneously into about both a given relationship and possible typing er-
rors. The larger the group, the more effectively group-sib groups. Group approaches can also refine allele fre-

quency estimates by accounting for the estimated rela- likelihood approaches can detect and account for typing
errors in relationship determination.tionships in a sample, which are then used to improve

relationship inference (Thomas and Hill 2000, 2002; It is possible to accommodate typing errors in marker
data in group-likelihood approaches to sibship recon-Smith et al. 2001). Such an iterative procedure is ex-

pected to improve estimates of both relationships and struction. If a typing error occurs at a locus of an individ-
ual and leads to a genotype incompatible with those ofallele frequencies from a sample.

The accuracy of both pairwise and group approaches its full-sibs, then the likelihood of the full-sib family is
zero no matter how many other loci are correctly typedrelies heavily on the reliability of marker information

used in relationship inference. The exclusion of a given and thus support the full-sib relationship. When typing
errors are allowed for in an appropriate model, however,relationship because of its incompatibility with the ob-

served genotypes is legitimate only when the genetic the likelihood of this full-sib family is always greater
than zero and the family can be correctly recovered ifdata are perfect. Unfortunately, however, genotype er-

rors can be quite common in practice and are difficult genotypes at most loci of most individuals support the
full-sib relationship even though one or more individu-to avoid. Even in the most favorable situation where a

large amount of high-quality DNA is available for re- als are incorrectly typed at one or more loci. In this
article, I propose two simple models of typing errorspeated genotyping under optimized PCR conditions,

relationship inference can still suffer from mutations and incorporate them into a group-likelihood approach
to sibship reconstruction. I use simulations to show thatthat may occur at a rate as high as 1.4 � 10�2 for micro-

satellites (Talbot et al. 1995). In practice, typing errors typing errors can cause severe biases in sibship infer-
ence if they are ignored. Yet, sibships can be inferredmay occur frequently, especially when repeated typing

is limited or even impossible due to the constraint of accurately from data in which typing errors occur at high
rates, if typing errors are taken properly into account inDNA amount or typing cost, when the quality of DNA

is poor and/or PCR is not optimized. Such typing errors estimation. I also propose a novel method based on
Bayes’ theorem to estimate allele frequencies from sam-and mutations could have a devastating effect on rela-

tionship inference if they are not accounted for. A single ples using the inferred relationships, a method to iden-
tify typing errors at each locus of each reconstructedscoring error (mutation) at just one locus of an individ-

ual may lead to its exclusion from being assigned the family, and a method to infer parental genotypes. The
performance of these methods and their robustness tocorrect relationship with others no matter how many

other loci of the individual are correctly scored. Some the violation of some assumptions are checked by exten-
sive simulations. Finally, I apply the proposed methodspairwise approaches have been developed to account

for typing errors and mutations in inferring parentage to two empirical data sets to infer the sibship structures
and mating systems.(e.g., SanCristobal and Chevalet 1997; Marshall et
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METHODS is difficult or impossible to provide a universal model
that reflects the detailed patterns of all kinds of typingFirst, I briefly review the factors affecting sibship infer-
errors in all marker data sets. Here I focus on microsatel-ence from markers. In particular, the effects of genotype
lite markers, which are used widely in ecological, behav-errors and how to correct for them in sibship reconstruc-
ioral, and evolutionary studies, and categorize theirtion are described. Second, the likelihood functions of
common typing errors into two classes that are modeleda nested half-sib family given population allele frequen-
separately.cies are derived for both diploid and haplo-diploid spe-

Class I includes allelic dropouts only. An allelic drop-cies. Third, an algorithm to search for the maximum-
out occurs when PCR fails to amplify one of an individu-likelihood configuration of sibship structures for an
al’s two homologous genes (one from each parent) at aentire sample is presented. Fourth, a method to estimate
locus. If the individual is a heterozygote, then a dropoutpopulation allele frequencies from a sample with the
yields a false homozygote. When dropouts are the solereconstructed sibships accounted for is described. Fifth,
source of typing errors, an observed heterozygote isI propose a method to detect typing errors at each locus
always correct but an observed homozygote can be ei-within each reconstructed family in data and a method
ther correct or incorrect. If incorrect, the actual (true)to infer parental genotypes. Last, I describe the simula-
genotype can be any heterozygotes containing the ob-tion procedures employed to generate simulated data
served allele. For microsatellites, allelic dropouts seemsets and the statistics used to measure the accuracy and
to be the most serious problem (Gagneux et al. 1997)precision of the proposed methods in inferring relation-
and could occur at an extremely high rate with low DNAships, typing errors, and allele frequencies.
concentration in PCR (Taberlet et al. 1996). Because of

Assumptions and models of typing errors: To infer
their common occurrence and the special error pattern

sibships from genetic markers without parental informa-
(affecting heterozygotes only), allelic dropouts are con-

tion, several assumptions are necessary in either pair-
sidered individually. To account for allelic dropouts in

wise- (Smith et al. 2001) or group- (Painter 1997; sibship inference, I assume that each of the two alleles
Almudevar and Field 1999; Thomas and Hill 2000, in any heterozygote at a locus is equally likely to drop
2002; Smith et al. 2001) likelihood approaches. out, at rate ε1. Ignoring double dropouts at the same

A sample of individuals is assumed to be taken from locus and individual (which rarely occurs and, if it does,
a single cohort in a large random-mating population. can be easily detected and thus rectified by regenotyping
This assumption implies that the genotype frequencies in practice), we obtain the probabilities of 1 � 2e1, e1, and
of the parents of sampled individuals can be calculated e1 [where e1 � ε1/(1 � ε1)] for an actual heterozygote, say
from population allele frequencies under Hardy-Wein- A1A2, being observed as A1A2, A1A1, and A2A2, respec-
berg equilibrium and that the probability of a given tively. Error rate ε1 is allowed to vary across loci.
mating type is just the product of the frequencies of Class II includes all kinds of stochastic typing errors
the two parental genotypes. It is possible to relax this other than allelic dropouts. These errors can come from
assumption and incorporate nonrandom mating into mutations, false alleles (polymerase errors rendering
the framework, if information about mating system (e.g., an allele other than the true one), miscalling (allele
selfing rate) is available. identification error), contaminant DNA, and data entry.

All genetic markers used in sibship inference are as- Systematic typing errors, such as misplacing or admixing
sumed to be neutral, unlinked between loci, and in samples during DNA extraction, which may cause the
linkage equilibrium. Each marker locus is assumed to entire multilocus genotype of an individual to be errone-
have two or more codominant alleles and to follow Men- ous, are excluded. Compared with class I, class II errors
delian segregation. All of the observed genotypes in a are usually less frequent and can affect any homozygous
sample are free of errors and mutations, so that they or heterozygous genotype. To account for class II errors
can be trusted completely in inferring sibships. in data, I assume that the two homologous genes in any

Here, I follow previous studies in adopting the above individual genotype at a locus are independently and
assumptions, except for typing errors. In this study, typ- equally likely to be incorrectly observed, with rate ε2. I
ing errors are broadly defined as any changes in a geno- also assume that, for a locus with k codominant alleles,
type that could potentially cause incorrect relationship any allele is observed to be any one of the other alleles
inference. They can come from the inheritance process with an equal probability, e 2 � ε2/(k � 1). This error
(e.g., mutations), the genotyping procedure (e.g., mis- model is similar to that of Sieberts et al. (2002) but
calling or allelic dropout), and the course of data analy- removes the restriction that only one error per locus
ses (e.g., data entry error). The detailed patterns of per individual is allowed. Similar to ε1, ε2 can be variable
changes in genotype are different among various kinds among loci. Both ε1 and ε2 are assumed known for each
of typing errors and may vary among marker types [e.g., locus in data.
microsatellites vs. restriction fragment length polymor- Hereafter, observed and actual genotypes are distin-

guished and called phenotypes and genotypes, respec-phisms (RFLPs)] and samples or studies. Obviously it
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tively, for simplicity. Genotypes and phenotypes are de- number of f putative full-sib families. Suppose, in full-
noted by G and R, respectively, when subscripts indexing sib family j (j � 1, . . . , f), we observe dj distinctive
alleles are used. Phenotypes are also denoted by r when phenotypes {r1,j, r2,j, . . . , rdj,j } with corresponding counts
subscripts indexing individuals and families are used. {n1,j, n2,j, . . . , ndj,j}. Under random mating, the probability

For a locus with k codominant alleles (denoted by Aw of the phenotype data of the putative half-sib family
with index w � 1, . . . , k), there are k(k � 1)/2 possible (i.e., likelihood) is
(ordered) genotypes and phenotypes, Gw,x � AwAx, and
Rw,x � AwAx for w � x � 1, . . . , k. Taking typing errors

L � �
k

w�1
�

k

x�w

Qw,x�
f

j�1
�

k

y�1
�

k

z�y

Qy,z �
dj

i�1

(Pr[ri,j|Gw,x,Gy,z])ni,j. (3)of both classes into account, I obtain the transitional
probability from a genotype Gw,x to a phenotype Ru,v,

In (3), the probability of observing an offspring pheno-
type ri,j (i � 1, . . . , dj) given parental genotypes Gw,x

and Gy,z is derived from Mendelian segregation:

Pr[ri,j|Gw,x,Gy,z] � 1⁄4(Pr[ri,j|Gw,y] � Pr[ri,j|Gw,z]
Pr[Ru,v|Gw,x] �











(1 � ε 2)2 � e 2
2 � 2e1(1 � ε 2 � e 2)2

(u � w, v � x)
e2(1 � ε 2) � e1(1 � ε2 � e 2)2

(u � v � w) or (u � v � x)
(2 � �u,v)e 2

2

(u � w, u � x, v � w, v � x)
e 2(1 � ε2 � e 2)

(otherwise)

(1)
� Pr[ri,j|Gx,y] � Pr[ri,j|Gx,z]). (4)

For a given offspring phenotype ri,j � AuAv, each term
on the right side of (4) is calculated by (1) or (2).

Although (1–4) are complete for calculating the likeli-
if Gw,x is a heterozygote (w � x), and hood of a half-sib family, they require substantial compu-

tation. This problem becomes especially important
when Monte Carlo techniques are used in searching for
the sibship configuration with the maximum likelihood
(below) and the markers are highly polymorphic (kPr[Ru,v|Gw,x] �









(1 � ε 2)2

(u � v � w)
2e 2(1 � ε 2)

(u � w, v � w) or (v � w, u � w)
(2 � �u,v) e 2

2

(u � w, v � w)

(2)
large). Computation can be reduced dramatically by
considering just the observed alleles and an “allele”
pooled over all the unobserved alleles for a putative

if Gw,x is a homozygote (w � x). In (1) and (2), �u,v is
family.

Kronecker delta variable with values 1 and 0 when u �
Suppose a number of mj distinctive alleles are ob-v and u � v, respectively. In deriving the first two equa-

served in the jth full-sib family in a given putative half-tions in (1), I assumed that class II errors occur after
sib family. We pool the k � mj unobserved alleles asclass I errors, because the latter are generally more
allele Ak�j�1, whose population frequency is the sum offrequent than the former. A reversed sequence of error
those of the unobserved alleles. Denote the set of in-events leads to a different formulation of but little nu-
dexes of the mj observed alleles and the pooled unob-merical difference in Pr[Ru,v|Gw,x] when ε1 and ε2 are not
served allele by �j. Similarly, for the entire half-sib fam-high, as is expected because the probability of both error
ily, the set of indexes of the m0 observed alleles and theevents occurring to a single-locus genotype is minute.
single allele (Ak�1) pooled over all unobserved ones isThe likelihood of a putative half-sib family: I assume
denoted by �0. By these arrangements, the likelihooda population of a dioecious species with one sex monog-
function (3) reduces toamous and the other sex polygamous. The polygamous

sex can be either males or females. A sample of individu-
L � �

w��0

�
x��0
x�w

Qw,x�
f

j�1
�

y��j

�
z��j

z�y

Qy,z�
dj

i�1

(Pr[ri,j|Gw,x,Gy,z])ni,j. (5)als taken from a single cohort in the population may
thus contain full-sib families nested within half-sib fami-
lies. I derive the likelihood of such a half-sib family for

The computational cost of (5) can be a tiny fraction ofa single locus. If markers are statistically independent,
that of (3) because generally only a small subset ofthe multilocus likelihood of a putative sib family is sim-
alleles is observed in a sib family.ply the product of the single-locus likelihoods.

Note that (3) and (5) are derived for a family with fFor a locus with k codominant alleles, denote the
(f � 1) full-sibships nested within a half-sibship. Obvi-population frequency of allele Aw by pw (w � 1, . . . , k)
ously, they apply to pure half-sib and pure full-sib fami-and the population frequency of the parental diploid
lies, which are just two special cases when f 	 1 andgenotype Gw,x � AwAx by Qw,x. Under Hardy-Weinberg
each full-sibship has just one offspring and when f �equilibrium, Qw,x � (2 � �w,x)pwpx, where �w,x is the Kro-
1, respectively. For a pure full-sib family (f � 1 and �0 �necker delta variable with values 1 and 0 when w � x
�1), the likelihood computational load can be furtherand w � x, respectively.

Consider a putative half-sib family consisting of a reduced by using
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For a given offspring phenotype gi,j � AuAv, the right-
L � �

w��1

�
x��1

x�w

Qw,x � � �
z��1

z�x

Qw,z(2 � �x,z)�
d1

i�1

(Pr[ri,1|Gw,x,Gw,z])ni,1 side terms of (7) are calculated by (1) and (2).
A phenotype of a diploid parent, if available, can be

used in sibship inference in the same way as the diploid
case. Any phenotype of a haploid parent can also be

� 2 �
y��1

y�w�1

�
z��1

z�y

Qy,z�
d1

i�1

(Pr[ri,1|Gw,x,Gy,z])ni,1� incorporated in sibship inference after considering its
possible typing errors. Suppose the haploid phenotype

(5
) of the parent of the jth full-sib family is observed as Au;
then the sum over all possible genotypes of this haploid

instead of (5). The computational burden of (5
) is parent in (6), �z��j
pz, should be replaced by

approximately half of that of (5).
Group-likelihood methods can use the phenotype

�
z��j

pz(�z,u(1 � ε 2) � (1 � �z,u)e 2)
pu(1 � ε 2) � (1 � pu)e 2

data of individuals in a sample to partition them into sib
families without the need for any parental information.

derived from Bayes’ theorem.However, if parental phenotypes are available, they
Algorithm for searching the maximum likelihood:should be used in sibship inference because they could

Suppose a number of N offspring are sampled and geno-improve the inference dramatically. Previous group-like-
typed to infer their relationships. A particular partitionlihood methods invariably ignored the use of parental
of these N offspring into a number of sib families isgenotypes in sibship inference (e.g., Painter 1997;
called a sibship configuration. The total likelihood ofAlmudevar and Field 1999; Thomas and Hill 2000,
a given configuration is the product of single-family2002; Smith et al. 2001). Here I present a method to
likelihoods, each being calculated as shown above. Anyuse parental phenotypes in sibship reconstruction, after
prior information about the distribution of sib familyaccounting for their possible typing errors.
sizes in the sample, if available, can be readily incorpo-Suppose the phenotype of the parent in the monoga-
rated into the likelihood function.mous sex of the jth full-sib family is observed as Ru,v �

There are many possible configurations even for aAuAv. Given Ru,v, the posterior probability of genotype
small sample size (N). With N � 10 and possible relation-Gs,t (s � t � �j) of the parent is calculated as Q*s,t �
ships constrained to either full-sibs or unrelated, forQs,tPr[Ru,v|Gs,t]/(�y��j

�z��jz�y
Qy,zPr[Ru,v|Gy,z]) from Bayes’ theo-

example, there are still 115,975 possible configurationsrem. The sum over all possible genotypes, �y��j
�z��jz�y

Qy,z,
(Thomas and Hill 2000). In fact, the feasible configu-

of that parent in calculating (5) should then be replaced
rations quickly become too numerous to enumerate

by �y��j
�z��jz�y

Q*y,z. A known phenotype of a parent of the with an increasing N. Our task is to search for, through
polygamous sex can be treated similarly. this vast configuration space, the best configuration with

Likelihood of a sib family in haplo-diploid species: the maximum likelihood without considering all the
For haplo-diploid species, there are two possible scenar- possible configurations. This is accomplished by the
ios for the hierarchical sibship structure of full-sib fami- algorithm described below, based on the simulated an-
lies nested within a half-sib family: the polygamous and nealing technique (Kirkpatrick et al. 1983).
monogamous sexes are diploid and haploid, respec-

1. Generate an initial configuration by allocating thosetively, or are haploid and diploid, respectively. Here I
offspring known to be full-sibs to a full-sib family,consider the first scenario only since the second one
those known to be half-sibs to a half-sib family, andcan be treated similarly. Assuming sampled offspring
those with unknown relationships each to a singleare all diploids, the likelihood of a nested half-sib fam-
half-sib family (Thomas and Hill 2000; Smith et al.ily is
2001). Calculate and store the likelihood of each sib
family in the initial configuration.L � �

w��0

�
x��0

x�w

Qw,x�
f

j�1
�

z��j

pz�
dj

i�1

(Pr[ri,j|Gw,x,Gy,z])ni,j. (6)
2. Generate a proposal configuration by changing part

of the old one. Changes within and between half-sib
families are allowed to occur with an equal proba-In (6), Qw,x is the probability of the diploid parent’s
bility. For a within-half-sib-family change, a full-sibgenotype being Gw,x � AwAx calculated as above, and pz
family, F1, is drawn uniformly from the filled onesis the probability of the haploid parent’s genotype being
(containing at least one individual) in the currentGz � Az, which is the population frequency of allele Az.
configuration. If F1 is known to be a genuine full-sibThe probability of observing the ith distinctive offspring
family (whether the parents’ phenotypes are avail-phenotype in the jth full-sib family (ri,j) given parental
able or not) from another source of information,genotypes Gw,x and Gz is derived from Mendelian segrega-
then it is replaced by another draw. Repeat this pro-tion:
cess until a full-sib family, F1, without prior informa-
tion is obtained. Then, draw an integer number uni-Pr[ri,j|Gw,x,Gz] � 1⁄2(Pr[ri,j|Gw,z] � Pr[ri,j|Gx,z]). (7)
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formly from [1, nF,1] (where nF,1 is the number of process is stopped and the best configuration with
the maximum likelihood is reported.individuals in F1) and choose at random that number

of individuals from F1. These chosen individuals are
Estimating population allele frequency: Sibship re-to be moved to another family, F2, selected at random

construction must use the allele frequencies in the pa-from the full-sib families (including an empty one
rental population, which are assumed known above.with no individual in it) within the half-sib family
In practice, however, population allele frequencies arefrom which F1 comes. Like F1, F2 must not be a full-
generally unavailable and have to be estimated fromsib family known to be genuine from prior informa-
the sample in which sibships are to be inferred. In othertion. For a between-half-sib-family change, a half-sib
words, usually the only information available is the sam-family, H1, is chosen uniformly from the filled ones.
ple from which we have to deduce population alleleDraw an integer number uniformly from [1, nH,1] frequencies necessary for sibship reconstruction. To bet-(where nH,1 is the number of filled full-sib families in
ter estimate population allele frequencies, sibships in aH1) and choose at random that number of full-sib
sample should be taken into account, especially whenfamilies from H1 to be moved into another half-sib
a sample is dominated by a few large families. Ignoringfamily, H2, chosen at random from the half-sib fami-
sibships in a sample leads to overestimates of populationlies (including an empty one with no individual in
frequencies for the alleles present in large families,it) in the current configuration. Similar to within-
which results in the likelihoods of large families beinghalf-sib-family changes, both H1 and H2 must not be
too small and those of small families being too large. Ahalf-sib families known to be authentic from prior
possible consequence is that large families tend to splitinformation.
into smaller ones (Thomas and Hill 2000).3. Calculate the old likelihood (Lold) of the parts of the

Thomas and Hill (2000) used a weighted least-configuration proposed to be changed. For a within-
squares approach to estimating allele frequencies, withhalf-sib-family change, Lold is the likelihood of the
the sample’s family structure accounted for by the rela-half-sib family from which F1 and F2 come. For a
tionship matrix based on current inference of sibshipbetween-half-sib-family change, Lold is the product of
structure. Smith et al. (2001) proposed a simpler methodthe likelihoods of half-sib families H1 and H2. to estimate allele frequencies using weights inversely4. Calculate the new likelihood (Lnew) of the parts of
proportional to the estimated sibship size. In spirit, thethe proposal configuration that have been changed.
two methods are similar, both weighting the informa-For a within-half-sib-family change, Lnew is the likeli-
tion from a (putative) sib family inversely to its size. Thehood of the half-sib family that has been altered. For
weighted least-squares approach, however, is computa-a between-half-sib-family change, Lnew is the product
tionally intensive because the N � N relationship matrixof the likelihoods of the two half-sib families that
must be inverted repeatedly over the iterative proce-have been changed.
dure.5. Determine whether to accept or reject the new con-

Here, I propose a simple method to estimate allelefiguration. Calculate � � Min[(Lnew/Lold)1/T, 1], where
frequencies of the parental population by using likeli-T is the annealing temperature governing the rate
hood rather than family size as the weight. Consider,at which a new configuration is accepted. Generate
as an example, a half-sib family consisting of f full-siba random number uniformly distributed between 0
families in a diploid species and the phenotypes of theand 1, and compare it with �. If it is smaller than �,
f � 1 parents are unavailable. The count of an allele,the new configuration is regarded as successful and
Au, in parent s (indexed as s � 0 for the polygamousis thus accepted; otherwise, the new configuration is
parent and s � 1, . . . , f for the sth parent of therejected and the old one is recovered.
monogamous sex) can be estimated from Bayes’ theo-6. Repeat steps 2–5 a sufficiently large number of times.
rem asThis iterative procedure ensures the likelihood to

go uphill in general, but allows it to go downhill
c�u(s) �

1
L �

w��0

�
x��0

x�w

Qw,x(�0,s(�u,w � �u,x � 1) � 1)occasionally to avoid it being stuck on a local maxi-
mum. The probability of a downhill tour is controlled
by T, which is decreased as the annealing process

� �
f

j�1
�

y��j

�
z��j

z�y

Qy,z(�j,s(�u,y � �u,z � 1) � 1)�
dj

i�1

(Pr[ri,j|Gw,x,Gy,z])ni,j ,proceeds so that a new configuration with a smaller
likelihood than the old one becomes less and less

(8)frequently accepted. T is set initially at a value of one
and reduced in multiplicative steps, each amounting where L is calculated by (5). For an unobserved allele,
to a 10% decrease. Each new value of T is held con- Av, pooled into allele Ak�s�1, we first estimate the count
stant for 5000N reconfigurations or for 100N success- (c�k�s�1(s)) of the pooled allele by (8). The count of Av
ful reconfigurations, whichever comes first. When in the sth (s � 0, 1, . . . , f) parent is then estimated by
efforts to improve configurations (increase likeli-
hood) become sufficiently discouraging, the iterative c�v(s) � c�k�s�1(s)p̂v/p̂k�s�1 , (9)
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where p̂v and p̂k�s�1 are the estimated population fre-
Pr[Gu,v|data] � �

k

w�1
�

k

x�w

Qw,x�
f

j�1
j�s

�
k

y�1
�

k

z�y

Qy,z�
dj

i�1

(Pr[ri,j|Gw,x,Gy,z])ni,j

quencies of Av and Ak�s�1 before updating. Estimate
allele counts for each parent in each putative half-sib
family in the current configuration, and update popula-

� �Qu,v

L �
ds

i�1

(Pr[ri,s|Gw,x,Gu,v])ni,s� (10b)tion allele frequencies by the mean of the estimated
allele counts across parents. The computational load of

for the sth parent of the monogamous sex, where L is(8) and (9) is minimal, because all quantities in them
the family likelihood calculated by (3). The maximum-are already known from the calculation of L.
likelihood estimate of a parental genotype is the oneFor half-sib families with partially known parental ge-
with the maximal posterior probability. For a parentnotypes, and for the case of haplo-diploid species, popu-
with observed phenotypes, its actual genotypes can belation allele frequencies are estimated similarly, using
inferred similarly.Bayes’ theorem and the corresponding likelihood func-

As is intuitively obvious, parental genotype inferencetions.
relies heavily on the correctness of sibship reconstruc-Population allele frequencies are estimated initially
tion. It is likely to be inaccurate for an incorrectly recon-by the method from the initial configuration and up-
structed sib family. Even for a correctly reconstructeddated periodically after a certain number of successful
family, the inferred parental genotypes are not guaran-reconfigurations. Because of the minimal computational
teed to be correct, especially when family size is small.cost of the proposed method, it is possible to update
For a pure full-sib family (f � 1) in a diploid species, itallele frequencies after each reconfiguration. However,
is impossible to resolve the male and female parentalit is usually unnecessary to update so frequently because
genotypes no matter how much marker information isa few improvements on the configuration do not change
available. The parental genotype combination (� � �),allele frequencies much (Thomas and Hill 2000).
A1A 2 � A3A4, has exactly the same posterior probability

Identifying possible typing errors: The group-likeli-
as A3A4 � A1A 2, for example. In such situations, one has

hood approach shown above also allows us to identify
to genotype one of the parents to infer accurately the

possible typing errors in data that occurred at each locus genotypes of both. For a pure full-sib family in haplo-
within each reconstructed sib family. From the best con- diploid species, the power of parental genotype infer-
figuration with the maximum likelihood that is finally ence is also reduced if the diploid parent is homozygous
rendered by the method, we can calculate, for each at a locus. In any case, the reliability of an inferred
family and each locus, the likelihoods considering both parental genotype is indicated by its posterior probabil-
class I and II errors (L), class I errors only (L1, setting ity. The higher this value is in comparison with those
ε2 � 0), class II errors only (L2, setting ε1 � 0), and no of alternative genotypes, the higher the confidence we
typing errors (L3, setting ε1 � ε2 � 0). A likelihood-ratio have in it.
test can then be carried out to screen the most likely Simulations: To assess the precision and accuracy of
hypothesis. Allelic dropouts are inferred to have oc- the proposed methods and their robustness when some
curred at a locus in a family when L1 calculated for the assumptions are violated, I generate simulated data with
given locus and family is significantly larger than L3, for known parameters by Monte Carlo, reconstruct sibships
example. from the simulated data by the proposed methods, and

Obviously, not all typing errors are identifiable. If a measure (below) the fit between the true and estimated
typing error causes little change in family likelihood, sibships. Different combinations of parameter values
then it is unlikely to be detected. The power of error are used in simulations to check the performance of
detection also depends critically on family size. In the the methods and to investigate the effects of different
extreme case of a family containing just a single individ- factors on the estimation. Full-sib family sizes in a sample
ual, it is impossible to ascertain typing errors. Therefore, are assumed to follow either a Poisson distribution with
the typing errors identified should be treated as conser- parameter � or a negative binomial distribution with
vative. parameters  (probability of success) and � (number

Inferring parental genotypes: From the offspring phe- of successes). For both distributions, families with no
notypes and the reconstructed sibships, we can also infer offspring are obviously not represented in a sample.
the parental genotypes using Bayes’ theorem. As an The mean and variance of full-sib family sizes in a sample
example, consider a half-sib family consisting of a num- are therefore �/(1 � e��) and e�(e� � 1 � �)�/(1 �
ber of f full-sib families in a diploid species. The poste- e�)2, respectively, for the Poisson distribution and (1 �
rior probability of a parental genotype, Gu,v, given data )�/((1 � �)) and (1 � )�(1 � �(1 � (1 � )�))/
and the reconstructed sibships, is ((1 � �))2, respectively, for the negative binomial

distribution. The number of full-sib families nested
within a half-sib family is also assumed to follow a PoissonPr[Gu,v|data] �

Qu,v

L �
f
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k

y�1
�

k
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dj
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(Pr[ri,j|Gw,x,Gy,z])ni,j (10a)
distribution. For a given family, parental genotypes are
generated using population allele frequencies underfor the polygamous parent and is
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when their actual relationship is b (Thomas and Hill
2002). In samples containing half-sib families consisting
of full-sib families, full-sib (FS), half-sib (HS), and non-
sib (NS) relationships are possible so that a, b � FS,
HS, or NS.

To assess the accuracy of allele frequency estimates,
I use the square root of mean-squared deviation
(RMSD) of estimates from true frequencies of all alleles
within and between loci. The power of the method for
detecting typing errors is measured by the proportion
of typing errors being correctly identified (�1 � number
of correctly detected errors/total number of detected
errors) and the proportion of typing errors being de-
tected (�2 � total number of detected errors/total actual
number of errors) across loci and reconstructed families
in a sample. For parental genotype inference, I use the
average proportion of parental genotypes being cor-
rectly inferred (�) to measure the accuracy of the
method. For a single diploid parent, � � 1, 1⁄2, and 0 if
2, 1, and 0 of its alleles at a locus are correctly inferred,
respectively. For a haploid parent, � � 1 and 0 when

Figure 1.—The effect of typing errors on full-sib relation-
its genotype is correctly and incorrectly inferred, respec-ship inference in haplo-diploid and diploid species. A sample
tively. When a parental genotype is unresolved for aof 100 diploid offspring, consisting of full-sib families with a

family size in the Poisson distribution of parameter 5, are pure full-sib family, � is calculated as the mean of the
genotyped for a variable number of loci, each having 10 co- � values calculated for the two alternative genotypes
dominant alleles of equal frequency. Typing errors of both inferred. � is then calculated as the average of � across
classes occur at rate 0.05 for each locus and individual. For

the two parents of all the sampled individuals and acrosseach number of marker loci, 50 data sets are simulated and
loci.analyzed comparatively with typing errors either ignored or

accounted for in sibship inference. The estimation accuracy
is indicated by the proportion of correctly inferred full-sib

RESULTSpairs in the sample, P(FS|FS).

Simulation results: Number of loci: Assuming typing
errors of both classes occur at rate 0.05 at each locus,

random mating and Hardy-Weinberg equilibrium, and I generated simulated data that were then analyzed com-
offspring genotypes are generated from parental geno- paratively with typing errors ignored and taken into
types following Mendelian segregation. These parents account, respectively. The proportions of correctly as-
and offspring genotypes are then changed, at a given signed full-sib pairs (P[FS|FS]) are shown in Figure 1
rate, following the models of class I and II typing errors as a function of the number of loci used in estimation.
to give their corresponding phenotypes. The pheno- The proportions of correctly assigned unrelated pairs
types are then taken as observed data, which are used (P[NS|NS]) are not shown because they are always close
in sibship reconstruction. For a given parameter combi- to 1 regardless of the number of loci and whether typing
nation, 50 independent data sets are generated and errors are ignored or not. Typing errors, if ignored in
analyzed. sibship reconstruction, lead to true full-sibs showing sib-

Statistics measuring the performance of the estima- incompatible phenotypes and thus to a full-sib family
tion: Several statistics can be employed to measure the being broken up into several smaller ones. With an
fit of the reconstructed to the actual sibships in simu- increasing number of loci used in sibship inference,
lated data. A stringent measurement of the overall fit both information and noise due to typing errors in-
is the number of full-sib (�FS) and half-sib (�HS) families crease. However, the impact of typing errors overwhelms
being completely recovered relative to the actual num- that of information, and, as a result, sibship inference
bers in a sample. Obviously �FS � 1 and �HS � 1 for becomes increasingly inaccurate with an increasing
a sample containing full-sib families only and half-sib number of marker loci used in estimation. This is under-
families, respectively, mean the reconstructed sibships standable because no matter how many loci are correctly
are perfect, with no individual being incorrectly as- typed and thus support a true sib family, it still breaks
signed a relationship with any other individual. To gain up into two families in reconstruction if one typing error
insight into the causes of an imperfect sibship recon- occurring at a single locus in a single individual leads
struction (�FS � 1 or �HS � 1), I examine the statistic to a phenotype incompatible with others as sibs. The

total multilocus likelihood for a group of individuals asP(a|b), the proportion of dyads assigned relationship a
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a sib family is the product of single-locus likelihoods
and is zero if a single-locus likelihood is zero. When
typing errors are accounted for in estimation, P[FS|FS]
increases rapidly with an increasing number of loci and
the full-sib relationships of a sample are completely re-
constructed (�FS � 1) once the number of loci is approxi-
mately equal to eight. The large impact of typing errors
shown in Figure 1 highlights the importance of account-
ing for typing errors of data in group-likelihood ap-
proaches to relationship inference.

Rate of typing errors: The effect of the rate of typing
errors in data on relationship inference is shown in
Figure 2. When typing errors are ignored in estimation,
P[FS|FS] declines rapidly with an increasing rate of typ-
ing errors in data. An error rate as low as 0.001, which
is possible from mutations alone for microsatellites (e.g.,
Talbot et al. 1995), can affect sibship reconstruction Figure 2.—The effect of the rate of typing errors on full-
significantly. When typing errors are accounted for in sib relationship inference. A total of 100 diploid offspring
the estimation, however, the estimator becomes very are sampled from a population of a diploid or haplo-diploid

species and are genotyped for eight loci, each having 10 co-robust and can provide accurate estimates even when
dominant alleles of equal frequency. The sample consists oftyping errors occur at an extremely high rate. In the
full-sib families with a family size in a Poisson distribution withsimulated data, the probabilities of a heterozygous and parameter 5. Typing errors of both classes occur at the same

homozygous genotype at a single locus being incorrectly rate for each locus and individual. Simulated data are gener-
typed are as high as 0.65 and 0.45, respectively, when ated assuming various values of error rate in the range �0.001–

0.256 (shown on the x-axis) and are analyzed comparativelyε1 � ε2 � 0.256. Even if in such situations where an
with typing errors either ignored or taken into account. Theobserved phenotype is more likely to be erroneous than
estimation accuracy is indicated by the mean (over 50 repli-correct, 78% of the full-sib pairs are correctly identified cates) proportion of correctly inferred full-sib pairs in the

and 40% of the full-sib families are fully reconstructed sample, P(FS|FS).
for a haplo-diploid species when typing errors are ac-
counted for. In contrast, P[FS|FS] and �FS are only 2
and 4%, respectively, when typing errors are ignored ing procedure in estimating allele frequencies also in-

creases with an increasing variance in family size (Fig-in estimation.
The rate of typing errors that the method can tolerate ure 3B).

Robustness of the models of typing errors: In the above,to yield satisfactory estimation depends on the amount
of information available from data (number of marker the rates of typing errors (ε1 and ε2) actually employed

in generating simulated data are used in sibship infer-loci and alleles per locus) and actual family sizes. With
an increasing amount of marker information and/or ence. In application, usually ε1 and ε2 are unknown but

are guessed from prior information or estimated byfamily size in data, the method can cope with an error
rate 	0.256 as shown in Figure 2. In practice, probably repeated genotyping (Gagneux et al. 1997). How robust

the method is to sampling errors of ε1 and ε2 is obviouslyno data are so dirty.
From Figures 1 and 2, we can see that typing errors of concern for practical applications. In Figure 4, the

data are generated with ε1 � ε2 � 0.05 but are analyzedhave a greater impact on sibship inference for haplo-
diploid species than for diploid species. This is because assuming various values of ε1 and ε2. As can be seen, the

accuracy of sibship inference (indicated by P[FS|FS]typing errors result in a larger probability of false exclu-
sion of sibships in haplo-diploid than in diploid species. and �FS) is quite high even though the assumed values

of ε1 and ε2 deviate over several orders from their trueUpdating allele frequencies: Figure 3 depicts the impact
of updating allele frequencies on estimating relation- value (0.05) used in simulation. Full-sibs tend to be

assigned as unrelated and unrelated individuals tend toships and allele frequencies. As is expected, the benefit
from updating allele frequencies increases with an in- be assigned as full-sibs when the assumed error rate is

much smaller and much larger than the actual value,creasing imbalance (variance) in family sizes (Figure
3A). When allele frequencies are not updated, large respectively. All such incorrect assignments occur at a

very low frequency, however, even if the assumed errorfamilies tend to split into smaller ones, resulting in some
full-sibs being incorrectly assigned as unrelated. With a rates are many times greater or smaller than the true

values. It seems that accurate sibship inference can bevariance of family size of 50 in Figure 3, for example,
the proportions of full-sib pairs being inferred as unre- obtained using a wildly guessed, rather inaccurate rate

of typing errors provided sufficient information is con-lated are 2.0 and 6.4% when allele frequencies are and
are not updated, respectively. The gain from the updat- tained in data. A similar conclusion was reached by
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Figure 4.—The effect of the error rate assumed in analyses
on full-sib relationship inference. A total of 100 diploid off-
spring, consisting of full-sib families with a family size in a
Poisson distribution with parameter 5, are sampled from a
population of haplo-diploid species and are genotyped for
eight loci, each having 10 codominant alleles of equal fre-
quency. Typing errors of both classes occur at rate 0.05 for
each locus and individual, but different values of error rate
(shown on the x-axis) are assumed in sibship reconstruction.
The solid and dashed lines indicate the mean (over 50 repli-
cates) proportions of full-sib pairs that are correctly assigned
[P(FS|FS)] and of fully recovered full-sib families (�FS), respec-Figure 3.—The effect of updating allele frequencies on full-
tively.sib relationship and allele frequency estimation. Simulated

samples contain full-sib families, with family sizes following a
negative binomial distribution with different parameter values
to yield the same mean (5) but various variances of family typing error occurs at a locus for an individual, then
size. Each sample has 100 diploid individuals taken from a typing errors are more likely to occur at other loci ofhaplo-diploid species, and each sampled individual is geno-

the same individual than at a locus of an individualtyped for five loci, each having 10 codominant alleles of equal
taken at random from the sample. To investigate thefrequency. Typing errors of both classes occur at rate 0.05 for

each locus and individual and are accounted for in sibship robustness of the model to such concordant occurrence
reconstruction. The simulated data are analyzed compara- of errors within an individual, simulated data are ob-
tively with allele frequencies updated every 1000 successful

tained by drawing an error rate from a truncated (nega-reconfigurations or left unchanged during the process in
tive values are discarded) Gaussian distribution withsearching for the maximum-likelihood configuration. (A)

Lines marked by 1 and 2 indicate the mean (over 50 replicates) mean 0.05 and standard deviation � and using it in
proportions of full-sib pairs that are correctly assigned generating typing errors of both classes across loci for
[P(FS|FS)] when allele frequencies are updated and not up- a given individual. Therefore, the larger the value of
dated, respectively, and lines marked by 3 and 4 indicate the

�, the higher the intra-individual correlation of errormean proportions of fully recovered full-sib families (�FS) when
occurrences among loci. The effect of � on sibship infer-allele frequencies are updated and not updated, respectively.

(B) The solid and dashed lines indicate the square roots of ence is shown in Figure 5, where P[FS|FS] and �FS are
mean-squared deviation of estimated from true allele frequen- plotted against �. As can be seen, the model is robust to
cies (RMSD) when allele frequencies are updated and not, moderate levels of variation in typing error rate amongrespectively.

individuals. With an increasing value of �, the propor-
tion of individuals carrying erroneous genotypes at al-
most all loci increases. For these individuals, it is obvi-SanCristobal and Chevalet (1997) in their pairwise-
ously impossible to correctly assign relationships betweenlikelihood inference for parentage and by Sieberts et
one of them and any others in the sample. When ε1 �al. (2002) in relationship inference from trios of indi-
ε2 � 0.25, an individual’s phenotype is more likely toviduals.
be erroneous than correct at each locus. The propor-The error model assumed that typing errors occur
tions of such individuals are �3.3 and 27% for � � 0.1independently across loci within an individual. This as-
and � � 0.2, respectively, in the simulated data sets.sumption can be violated if DNA quality, quantity, or

With miscalling or mutations in the single-stepwiseboth vary considerably among individuals. When DNA
model for microsatellites, a typing error usually involvesis extracted from noninvasive sources such as hair and
a single tandem repeat change and an allele is morefeces or from ancient material such as bones and scales,
likely to be observed if its size is closer to that of thefor example, both its quantity and quality can be highly
actual allele. In heterozygotes, larger alleles may bevariable among individual samples, resulting in signifi-
more likely than smaller alleles to drop out. Such size-cantly different error rates between individuals (e.g.,

Gagneux et al. 1997). Such variation implies that if a dependent dropouts may bias allele frequency estima-
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tion, which may further affect sibship inference. Fami-
lies with partially known parental genotypes may suffer
a smaller rate of typing errors than families with no
parental information available, because in the former
case some typing errors may be identified and corrected
using the known parent-offspring relationship before
the genotype data are analyzed for sibship inference.
Simulated data were generated following these error
patterns but analyzed using the proposed simple error
models. In all cases considered, accurate inference of
sibships was obtained (results not shown) when typing
error rate was not very high (say, �0.15), indicating
that the proposed models of typing errors are quite

Figure 5.—The effect of the dependence between typingrobust. This is not surprising given the results in Figures
error occurrences at different loci within an individual on

4 and 5. full-sib relationship inference. A total of 100 diploid offspring,
Hierarchical sibship structures and sample sizes: Figure 6 consisting of full-sib families with a family size in a Poisson

distribution with parameter 5, are sampled from a populationshows the proportions of the actual full-sib and half-
of haplo-diploid species and are genotyped for eight loci, eachsib pairs being assigned different relationships by the
having 10 codominant alleles of equal frequency. For eachestimator applied to samples of various sizes and com-
sampled individual, an error rate is drawn from a truncated

posed of full-sib families nested within half-sib families. Gaussian distribution with mean 0.05 and standard deviation
The assignments of unrelated pairs are almost perfect �, and typing errors of both classes are simulated to occur at

the same sampled rate across loci. The simulated data are[P(NS|NS) very close to 1] for various sample sizes and
analyzed with an assumed error rate of 0.05 for both classesare omitted from the figure. Sibship inference becomes
of errors, each individual, and each locus. The solid andincreasingly inaccurate with a decreasing sample size
dashed lines with error bars indicate the means and standard

once it becomes very small (�50) and with an increasing deviations (over 50 replicates) of the proportions of full-sib
sample size once it becomes very large (	800). The pairs that are correctly assigned [P(FS|FS)] and of fully recov-

ered full-sib families (�FS), respectively.former is due to the fact that allele frequencies used in
sibship inference are less accurately estimated with a
smaller sample size. The latter is caused mainly by the
increasing probability with sample size that individuals number of loci used in sibship inference is �2 and 	2,

respectively, in Figure 1. �1 	 0.99 is obtained evenin a sibship could have, by chance, disparate albeit com-
patible genotypes and thus the sibship may be split in though the assumed error rate is several orders larger

or smaller than the actual value (Figure 4) or the errorreconstruction. The magnitude of the effect of sample
size on sibship inference depends on the amount of model assumptions are violated (Figure 5). On the other

hand, the proportion of overall typing errors detectedmarker information and family size.
Overall, sibships are quite accurately inferred for (�2) by the likelihood method is generally low, being

�80% in simulations shown in Figures 1–5. This is nothaplo-diploid species using only five microsatellites, with
at least 95% full- and half-sib pairs being correctly in- surprising because some typing errors cause no or little

change in likelihood and are thus not detectable. Theseferred when sample size is �50–800. Even if the sample
size is as large as 1600, P(FS|FS) and P(HS|HS) are results indicate that a typing error identified by the

method is highly likely to be genuine, but not all typingstill 	92% in the examples shown in Figure 6. Sibship
inference is much less accurate for diploid than for errors are identifiable.

The inference of parental genotypes is generally lesshaplo-diploid species, as expected. The contrast is espe-
cially evident when the sample size is very large or small. accurate than sibship inference and typing error detec-

tion (�1). This is because it relies on correct sibshipObviously, the amount of marker information (five mi-
crosatellites, each with 10 alleles at equal frequency) is reconstruction and sometimes male and female paren-

tal genotypes are unresolved for full-sib families. In Fig-insufficient for accurate sibship inference in diploid
species. In Figure 6, P(FS|FS) and P(HS|HS) are 0.51 ure 1, for example, the proportion of parental geno-

types being correctly inferred (�) is �80 and 50% forand 0.38, respectively, when N � 1600 for a diploid
species. When the number of loci used in the estimation haplo-diploid and diploid species, respectively, when

three to six loci are used in estimation. The accuracyis increased to 10 loci, the corresponding values are
0.97 and 0.98, respectively. of parental genotype inference improves with nested

half-sib families, larger family sizes, and more markerIdentifying typing errors and inferring parental genotypes:
The proportion of typing errors being correctly de- information. When eight loci, each having 10 alleles of

equal frequency and a typing error rate of 0.05, aretected (�1) by the likelihood method is generally high.
For example, �1 	 0.99 for various error rates assumed used in estimating the relationships of 100 offspring

coming from nested half-sib families with the numbersin Figure 2, �1 � 0.91–0.92 and �1 	 0.96 when the
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Figure 6.—The effect of
sample size on relationship in-
ference. Samples of various
sizes containing full-sib fami-
lies nested within half-sib fami-
lies are simulated, assuming a
diploid species or a haplo-dip-
loid species with the polyga-
mous and monogamous par-
ents being diploid and haploid,
respectively. The number and
size of full-sib families within a
half-sib family are drawn from
Poisson distributions with pa-
rameters 2 and 5, respectively.
Each sampled diploid off-
spring is genotyped for five
loci, each having 10 codomi-
nant alleles of equal frequency.
Typing errors of both classes
occur at rate 0.05 for each locus
and individual and are ac-
counted for in sibship recon-
struction. Lines marked by FS,
HS, and NS show the propor-
tions of actual full-sib (top) or
half-sib (bottom) pairs being
inferred as full-sib, half-sib, and
non-sib relationships, respec-
tively.

and sizes of full-sib families being in Poisson distribu- checking the accuracy of parental genotype inference.
The rates for both allelic dropouts and other kinds oftions with parameters of 3 and 5, respectively, � is 96

and 80% for haplo-diploid and diploid species, respec- errors in this data set are unknown and are assumed to
take various values in the analyses. Allele frequenciestively.

Applications: The method developed in this study has are updated using reconstructed sibships every 1000
successful reconfigurations.been applied to estimating the number of colonies of

two bumble bee species (Bombus terrestris and B. pascu- The likelihood method completely reconstructed the
sibships of the sampled 377 workers, using their pheno-orum) whose workers visit and use a given foraging site

(Chapman et al. 2003). As further demonstrations of its type information only, without a single worker being
assigned an incorrect relationship with any other worker.usefulness, the method is applied to two empirical data

sets. The 100% successful assignments (�FS � 1) were ob-
tained with a wide range of possible typing error ratesAnalysis on an ant data set: The data set is from a study

on the mating frequency of an ant species, Leptothorax (�0.001–0.40) assumed in the analyses. However, if typ-
ing errors are ignored by setting the error rate as zero,acervorum (Hammond et al. 2001). It consists of 377 ant

workers (diploid) sampled from 10 known colonies, only 6 colonies are fully recovered (�FS � 60%) and
each of the remaining 4 colonies is split into 2 colonies,with each of 6 colonies contributing 45 workers and

the remaining 4 colonies contributing 47, 44, 9, and 7 resulting in a total number of 14 reconstructed colonies
and P[FS|FS] � 0.96. The split of the four colonies isworkers to the sample. Each sampled colony is headed

by a single (diploid) queen mated with a single (hap- due to typing errors. Indeed, a typing error at a single
locus in each of the four colonies is identified and re-loid) male. Therefore, the sampled workers are either

full-sibs from the same colony or non-sibs from different ported by the analysis when typing errors are accounted
for. Among the four typing errors identified, three cancolonies. These 377 workers are genotyped at up to six

microsatellite loci, which have a number of observed be verified because the observed data show Mendelian
inconsistency (e.g., four or more alleles at a locus arealleles varying between 3 and 22. Genotypes at the six

loci of nine queens and four of their mates from the observed among workers from a single colony). The
other typing error is highly supported by the original10 sampled colonies were also partially ascertained. The

phenotypes of the sampled workers are used alone in data, if Mendelian segregation applies to the locus and
colony.estimating the allele frequencies of the population and

reconstructing the sibships (colonies) of the sample. The analysis also inferred the parental genotypes at
each locus for each reconstructed family. In total, 67The observed parental phenotypes are used only for
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mum-likelihood estimates from an arbitrary initial
configuration. As can be seen, all runs converge to the
same configuration with the same maximum likelihood
after only �106 iterates, indicating the annealing proce-
dure adopted is powerful and well converged. The same
results are obtained assuming different values of error
rate in the range of �0.001–0.4. This differs from Smith
et al. (2001) who found a great deal of run-to-run vari-
ability in both the maximum likelihood and configura-
tion finally obtained from their likelihood method.

Analysis on a turtle data set: The data set comes from
a study on detecting multiple paternity in the Kemp’s
ridley sea turtle (Kichler et al. 1999). DNA from 26
mother and offspring groups were analyzed at three
microsatellite loci to estimate the number of males that
mate and contribute to the offspring of each mother.
The population allele frequencies at the three loci were
ascertained from another larger sample containing indi-
viduals with no known close relationships among them.
The original analysis of Kichler et al. (1999) inferred
the number of males mated with a mother by deducing
the number of paternal alleles present in the offspring
of the mother. The number of mates thus obtainedFigure 7.—Log-likelihood (A) and number of full-sib pairs

(B) as a function of the number of iterates in the analysis of could be conservative because not all paternal alleles
the ant data set. The results are obtained from five replicate are identifiable. Kichler et al. detected three and four
runs conducted under identical conditions except that differ- paternal alleles in 14 and 1 of the 26 mother-offspring
ent initial configurations and different seeds for the random

groups, respectively, indicating that at least 58% of fe-number generator are utilized. The lines from bottom to top
male turtles are mated with multiple males. Using ain the top graph (from top to bottom in the bottom graph)

represent runs started from an initial configuration with 5, likelihood framework constraining females to matings
10, 40, 100, and 377 full-sib families, each being filled with with either a single male or two males, they obtained
individuals drawn randomly from the sample of 377 offspring. the maximum-likelihood estimates that all females are

multiply mated, three-quarters of the offspring in a
clutch are fathered by a single male, and there are no

single-locus parental phenotypes are available from this mutations (typing errors) in data.
data set. If these observed phenotypes are completely Kichler et al.’s (1999) data were reanalyzed by Neff
correct, the numbers of correctly, incorrectly, and par- et al. (2002), using their Bayesian method that requires
tially (i.e., only one allele correctly inferred for a queen) that both the reproductive skew and the number of
recovered single-locus parental genotypes are 63, 2, and mates per female be constrained, a priori, to some prede-
2, respectively. The two incorrectly inferred genotypes termined values. The frequency of multiple mating for
are at the same locus of a queen and its mate, and the females was estimated to be �70–81%, depending on
queen is a homozygote. The posterior probability of the particular values of the number of sires contributing
these two inferred genotypes is 0.54, and that of the to a clutch and the reproductive skew assumed in the
alternatively inferred genotypes, which are in full agree- analysis.
ment with observations, is 0.46. The two partially recov- Assuming an error rate of 0.02 for each locus and
ered parental genotypes occur in the smallest family individual, I apply the current likelihood method to
containing seven offspring in the sample. partition the offspring sampled from each clutch (mother)

The changes in log-likelihood and the number of into full-sib families. Among the 26 sampled females, 5,
full-sib pairs as a function of the number of iterates 10, 8, and 3 females are inferred to have clutches sired
(reconfigurations) during the annealing process are by 1, 2, 3, and 4 males, respectively, giving an estimated
shown in Figure 7 for five independent analyses on the rate of polyandry of 81%. This estimate is halfway be-
data set. The five replicate runs are carried out in the tween Kichler et al.’s estimates using the paternal allele
same conditions using an error rate of 0.05 for both (58%) and likelihood (100%) methods, and is similar
classes of errors at each locus, except that different seeds to Neff et al.’s estimates (�70–81%). Among the 21
for the random number generator and different initial multiply mated mothers, the average proportion of off-
configurations are adopted. When typing errors are al- spring contributed by a single dominant male is 58%,
lowed for at each locus, it is possible to start the simu- which is lower than Kichler et al.’s likelihood estimate

(75%). This is expected because the number of poten-lated annealing algorithm in searching for the maxi-
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tial fathers for a clutch of offspring is limited to a maxi- is the first attempt made to incorporate typing errors
in group-likelihood approaches to inferring sibships.mum of two in their analysis. Under this constraint,

offspring from three or more fathers must be allocated Allowing for typing errors in group-likelihood ap-
proaches not only improves relationship inference dra-to two of them. Assuming an offspring whose father is

not inferred is equally likely to be assigned to the two matically, but also enables the detection of such errors
in data so that one can regenotype those genotypesalternative false fathers, then reproductive skew must be

overestimated due to the constraint. From the current identified as incorrect. Simulations show that not all
typing errors are detectable, and therefore only conser-analysis, 11 (52%) of the 21 polygamous females are

mated with three or four males. vative estimates of errors can be obtained. A typing error
identified by the method, however, is highly likely toThe current likelihood analysis has not detected any

typing errors in this data set, and analysis assuming a be genuine, even though relationships are poorly recon-
structed due to insufficient marker information andnil error rate gives essentially the same results as that

assuming an error rate of 0.02. This is in agreement small family size. For the ant data set, the four identified
typing errors are all verifiable by checking the originalwith Kichler et al.’s conclusion that mutations are not

important as the cause of multiple paternal alleles de- marker data and known colony structures. With large
families and sufficient marker information in a sampletected from the sample.

The current likelihood analysis partitioned the off- such as the ant data set, the likelihood method acts as
a reliable error detector to pinpoint possible typingspring from each mother into full-sib groups without

constraining the number of mates and the reproductive errors at each locus in each reconstructed family. Unlike
previous methods inferring relationships and typing er-skew. The results can be used in further analyses, such

as calculating the effective number of mates per female; rors jointly from marker data (e.g., Douglas et al. 2000;
Epstein et al. 2000; Sieberts et al. 2002), the currentinferring the distribution of full-sib family sizes within a

half-sib family; inferring sperm competition (e.g., Jones one can consider any number of individuals in a family
so that some typing errors, which do not cause Mende-and Clark 2003); and estimating the relationships be-

tween the number of sires and clutch size, female size, lian inconsistency, may become apparent and thus are
identified when the family is large. For example, we mayor age, etc.
observe 10 genotypes of A1A1 and one genotype of A1A 2

at a diploid locus in a putative full-sib family. Obviously
DISCUSSION

the data are in Mendelian consistency, but are highly
unlikely if the sibship is true. The present method canGenotyping errors can occur to almost all kinds of

markers in practical use. Their impact varies greatly also identify such kinds of typing errors. In practice,
error rate can be estimated by regenotyping. However,among different analyses. When allele frequencies

rather than genotypes are used in analyses, such as those even regenotyping is impossible due to resource con-
straints; the investigator usually still has some prior in-in estimating population size and migration rate from

temporal samples (Wang and Whitlock 2003), we ex- formation (estimate) of it from previous studies or liter-
ature. Simulations (Figure 4) show that the currentpect little effect of typing errors, except when they are

extremely frequent so that changes in allele frequency likelihood method is quite robust to sampling errors of
error rate. To be safe, it is better to assume a small errorincurred by them are substantial compared with those

caused by other factors (e.g., drift, migration, and sam- rate in the analysis when we have no information about
the reliability of data.pling). When individual genotypes are employed in

analyses such as estimating relatedness and relation- The calculation of family likelihood largely deter-
mines the overall computational load of group-likeli-ships, the consequences of ignoring typing errors criti-

cally depend on whether exclusion of an estimate based hood approaches. This is because family-likelihood
function involves summing over all possible parentalon genotypes exists in the analyses. For relatedness esti-

mation and sibship inference in diploid species by pair- genotype combinations and is thus not trivial in compu-
tation. Furthermore, it must be calculated repeatedlywise likelihood approaches, no estimate is excluded for

any possible combination of genotypes, and therefore in searching for the maximum-likelihood configuration
of the entire sample. When relationships are restrictedtyping errors should have a small effect in such analyses.

In contrast, both parentage inference in pairwise-likeli- to either full-sibs or unrelated, family likelihood for a
single locus can be calculated by one of several polyno-hood approaches and sibship reconstruction in group-

likelihood approaches involve exclusions of a particular mial functions of allele frequencies. These polynomial
functions are used by Painter (1997) and Smith et al.relationship due to its incompatibility with some geno-

type combinations and are thus badly affected by typing (2001) and can save a substantial amount of computa-
tional time. Unfortunately, however, it is difficult, if noterrors in marker data. Several methods accounting for

typing errors have been developed in inferring parent- impossible, to derive such polynomial functions when
half-sibs or typing errors are included in data. Thomasage (e.g., Marshall et al. 1998) and other relationships

(e.g., Douglas et al. 2000; Epstein et al. 2000), but this and Hill (2000, 2002) proposed a general and efficient
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method to calculate the likelihood of a full-sib or half- (paternity) and reproductive skew, they can then be
calculated naturally from the partitions.sib family from marker data free of typing errors. By

choosing a random offspring and assigning one of its Currently, all group-likelihood methods constrain the
potential relationships in a sample to full-sibs and unre-alleles to one parent and the other allele to the other

parent, their method requires summing over only k(k � lated (e.g., Painter 1997; Smith et al. 2001) or full-sibs,
half-sibs, and unrelated (Thomas and Hill 2002; this1)/2 terms [instead of k2(k � 1)2/4], each term being

a product of several factors, for the likelihood calcula- study). Can these methods infer sibships in data sets
containing relationships other than sibships and unre-tion of a diploid full-sib family and a single locus with

k alleles. In comparison, my method needs summing lated? Some simulations show that my group-likelihood
method applies to data containing background relation-over (m � 1)(m � 2)(m 2 � 3m � 4)/8 terms if m

distinctive alleles are observed in a full-sib family and ships ignored by the method. The power of the method
could be reduced substantially, however. For the caseall the k � m unobserved alleles are pooled (see Equa-

tion 5a). For a true full-sib family, m � 4 and can be of haplo-diploid species shown in Figure 1, for example,
P[FS|FS]s are 99.3 and 100% when typing errors aremuch smaller than k for typical microsatellites. When

m � 1, 2, 3, and 4, and when approximately k � 3, 6, accounted for and 6 and 10 loci are used in estimation,
respectively. However, if half of the mothers of the sam-10, and 15, respectively, my method is more efficient

than Thomas and Hill’s method. More importantly, pled 100 offspring are from a single full-sib family (thus
�24% pairs of the sampled offspring assumed to betheir method is not applicable to accounting for typing

errors in data. unrelated are actually first cousins), P[FS|FS]s are re-
duced to 79.1 and 94.9% when 6 and 10 loci are usedMy simulated annealing algorithm in searching for

the maximum-likelihood configuration is well behaved in estimation, respectively. Similar results are obtained
for nested half-sib families and for diploid species. Itand converged as verified by the analyses of both simu-

lated and real data sets. In simulations, I calculated the seems that the method is applicable to sibship inference
from data containing unaccounted relationships not toolikelihood of the true configuration and compared it

with the maximum likelihood of the best configuration close in relatedness coefficient to sibships and having
a reasonable amount of marker information.found for each replicate. For all simulations conducted

that are only partly shown in Figures 1–6, the maximum Although my group-likelihood approach is based on
the models of typing errors commonly found in microsa-likelihood is always not smaller than the likelihood of

the true configuration. Convergence is well evidenced tellites, it can also use other codominant markers (such
as allozymes and proteins, single-nucleotide polymor-even for very large samples (say, 1600 individuals). Mul-

tiple runs on a single data set (e.g., Figure 7) using phisms, and RFLPs) in sibship reconstruction. In such
cases, allelic dropouts may be omitted and only class IIindependent random number series and different ini-

tial configurations give identical results. All these sug- typing errors need to be considered. Given the ro-
bustness of the error models as verified by both simu-gest the convergence of the proposed algorithm. The

computational time required by the current algorithm lated and empirical data, any small deviations in error
patterns between different markers should have littleis determined mainly by sample size, family structure

(full- or nested half-sib family), and number of marker effect on the power of the method. Obviously, these
less polymorphic markers necessitate more loci toloci. For each of the two empirical data sets, the analysis

takes �15 min on a Pentium4 PC. achieve the same power of inference as microsatellites.
In Figure 1, P[FS|FS] is 0.955 for a diploid species whenMating patterns (monogamous vs. polygamous) and

reproductive allocations (skew) in social insects and 6 loci, each with 10 alleles of an equal frequency and
each with an error rate of 0.05, are used in sibshipother species are of interest in the fields of ecology,

evolutionary genetics, and conservation. Numerous meth- inference. When 20, 30, and 40 loci, each having 2
alleles of an equal frequency and an error rate of 0.0190,ods have been developed (e.g., Harshman and Clark

1998; Kichler et al. 1999; Pedersen and Boomsma 0.0131, 0.0095, respectively, to give the same probability
of an erroneous multilocus genotype, are used in infer-1999; Neff et al. 2002; Jones and Clark 2003) to esti-

mate the number of sires and their reproductive skews ring sibships, P[FS|FS]s are 0.674, 0.897, and 0.970, re-
spectively. It is difficult to determine exactly how manyfrom the marker genotypes of a brood of offspring and

their mother. Most of these methods require constraining loci are necessary to achieve a certain level of power in
sibship inference. In parentage analysis, one can useeither the number of sires or the reproductive skew to

estimate both. Group-likelihood methods (Thomas and the exclusion probability of a marker to quantify its
ability to exclude a random individual from paternity.Hill 2002; this study) make it possible to partition sam-

pled offspring into full-sib families nested within half- Such a probability depends solely on the number and
frequencies of alleles for a given locus and can be calcu-sib families, using their genotypes solely or together with

the information about brood structure and maternal lated for multiple loci (e.g., Gerber et al. 2000). In
practice, such probabilities help to choose marker locigenotypes. Without any constraint to the quantities of

interest, such as actual and effective numbers of mates and to determine the power of parentage inference.
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Although a similar exclusion probability can be defined are inferred conditional to an estimated sibship struc-
ture. A full Bayesian approach to the joint estimationand calculated for sibship inference, it would be highly

dependent on both size and structure (full- and half- of all the parameters in the model would account for the
uncertainty related to point estimates of each nuisancesibs) of sib families, in addition to marker properties.

For a given marker, higher accuracy of sibship assign- parameter and allow for the incorporation of any prior
information about the parameters.ment is obtained from samples with larger sibship sizes.

In diploid species, exclusion of sibships is impossible A software package, COLONY, implementing the like-
lihood method described in this article, is available forfor pairs of individuals or for diallelic markers. Further-

more, the inclusion of typing errors makes the calcula- free download from http://www.zoo.cam.ac.uk/ioz/
software.htm.tion of exclusion probability even more problematic.

As a rough guide, one may characterize the amount of I thank Andrew Bourke and Rob Hammond for providing me with
information from a marker locus by the heterozygosity their original data and Andrew Bourke, Rob Hammond, Bill Hill, Bill

Jordan, and two anonymous referees for constructive comments onin sibship inference.
earlier versions of this manuscript.With slight modification, my group-likelihood meth-

od can use dominant markers, such as random ampli-
fied polymorphic DNA and amplified fragment length
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