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ABSTRACT
In standard interval mapping of quantitative trait loci (QTL), the QTL effect is described by a normal

mixture model. At any given location in the genome, the evidence of a putative QTL is measured by the
likelihood ratio of the mixture model compared to a single normal distribution (the LOD score). This
approach can occasionally produce spurious LOD score peaks in regions of low genotype information
(e.g., widely spaced markers), especially if the phenotype distribution deviates markedly from a normal
distribution. Such peaks are not indicative of a QTL effect; rather, they are caused by the fact that a
mixture of normals always produces a better fit than a single normal distribution. In this study, a mixture
model for QTL mapping that avoids the problems of such spurious LOD score peaks is presented.

FOR more than a decade, interval mapping (Lander than the single-component model, even in a model with-
and Botstein 1989) has been the most commonly out any genetic (marker) information and even if there

used method for quantitative trait locus (QTL) mapping is no real QTL.
in experimental crosses. Often, interval mapping is used As an example, consider the following preliminary
to identify regions of interest in the genome, which data set from an ongoing study of yellow rust (Puccinia
are then analyzed with more refined methods such as striiformis) resistance in wheat (Triticum aestivum): 55
composite interval mapping (Zeng 1993, 1994) or multi- doubled haploid lines (DHLs; see, for example, Lynch
ple interval mapping (Kao et al. 1999). In cases where and Walsh 1998) were scored for rust resistance using
interval mapping suggests the existence of a QTL in a a 0–9 scale in which 0 is no rust and 9 is total infection.
region that is sparsely covered with markers, it may be The phenotypes were taken to be the scores divided by
decided to develop more markers in this region to map 10 and arc sine square root transformed, a transforma-
the putative QTL more accurately. There may, however, tion often used for observations on a finite interval. The
be situations where interval mapping produces strong DHLs were genotyped for a suite of microsatellite markers
evidence for a QTL, when in fact there is none. If, for and interval mapping was performed (Figure 1).
instance, the residual environmental variation does not As can be seen from Figure 1, there were three large
follow a normal distribution, interval mapping can re- LOD score peaks that all occurred in regions where the
sult in spurious LOD score peaks in regions of low geno- markers were very far apart (80–100 cM). Also, it was
type information (e.g., widely spaced markers or much noted that when all genotype information was disre-
missing marker data; Broman 2003). garded and a mixture of two normal distributions was

In standard interval mapping the distribution of the fitted to the phenotypic data, this resulted in a LOD
phenotype is modeled as a mixture of two (or more) score of 9.83 compared to a single normal distribution.
components corresponding to the two (or more) different The fact that the three LOD score peaks were of the
genotypes at the putative QTL (Lander and Botstein same order of magnitude as the LOD score based on
1989). When a specific basic distribution like the normal no genotype information and that the peaks occurred in
is used for each component this approach has the side regions of little genotype information strongly suggests
effect that even without genetic (marker) information that these peaks are artifacts.
the distribution is a mixture of two or more normals In the wheat data set, visual inspection of the pheno-
when a QTL is included in the model, while under type distribution (Figure 2) hints that in areas of little
the null hypothesis of no QTL there is only a single genotype information a mixture of two normal distribu-
component. If the basic distribution is not normal the tions could produce a better fit than a single normal
model including a QTL may fit to data much better

distribution, and hence that spurious LOD score peaks
could occur.

In other cases, however, it may be less clear whether
1Corresponding author: Department of Natural Sciences, Royal Veteri- a LOD score peak is an artifact or not. We presentnary and Agricultural University, Thorvaldsensvej 40, DK-1871 Freder-

iksberg C, Denmark. E-mail: bjarke@dina.kvl.dk a new model (Equation 1) that is a mixture of two
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Figure 1.—Spurious LOD score peaks pro-
duced by standard interval mapping of data
from 55 DHLs in wheat. The corresponding
LOD score curve from the two-component
mixture model (1) is included for compari-
son. The segments 1A, 2B, . . . , 7D represent
different chromosomes.

components whether a QTL is present or not and there- where f(y; �, �) is the density function for a normal
distribution with mean � and standard deviation �. Thefore avoids the problems of such spurious LOD score

peaks (see Figure 1). index j may be thought of as the genotype at the putative
QTL. The number pij is the conditional probability,
given the marker data and the QTL position, that indi-

METHODS
vidual i has genotype j. The distribution of the pheno-
type of individuals with genotype j is now (unconven-For simplicity, we consider a sample of n individuals

from a backcross (BC) population (see, for example, tionally) modeled as a mixture of the two normal
Lynch and Walsh 1998), but the results extend easily to components with weights �j and 1 � �j , respectively.
other kinds of crosses. Let yi and mi denote the quantitative Under normal assumptions we would like to see the
phenotype and the multipoint marker data, respectively, estimates of these weights at a QTL position close to
for individual i. zero or one, indicating that a given genotype essentially

To avoid the problem of spurious LOD score peaks results in a single-component normal distribution.
we make sure that the model satisfies the following re- The likelihood function may be rewritten as
quirements: the distribution has the same number of

L(�) � �
i
(ci f(yi ; �1, �) � (1 � ci)f(yi ; �2, �)), (2)components whether a QTL is present or not; without

genetic information the model with and without a QTL
where ci � �j pij �j is the weight of the first componentis the same; and the model contains our original genetic
in the two-component mixture distribution for individ-model as a special case.
ual i.More concretely, the likelihood function of the pa-

Now, the null hypothesis of no QTL effect isrameter vector � � (�1, �2, �, �1, �2) is given by

H0: �j � �, for all j,L(�) � �
i
�

j
pij(�j f(yi ; �1, �) � (1 � �j)f(yi ; �2, �)),

(1) implying that the distribution does not depend on the
genotype of the putative QTL. The corresponding likeli-
hood function is

L(�) � �
i
(� f(yi ; �1, �) � (1 � �) f(yi ; �2, �)), (3)

which, again, is a mixture of two normal distributions
as required. In this case, however, the mixture coeffi-
cients do not depend on the QTL genotypes. Thus, the
likelihood under H0 is calculated just once.

Under the full model, we obtain maximum-likelihood
estimates of the parameters with a form of the expecta-
tion-maximization (EM) algorithm (Dempster et al.
1977). In the following, let zi be an unobserved variable
indicating whether the observation yi comes from the
first component (zi � 1) or from the second component
(zi � 2) of the mixture. Let qi be another unobserved
variable indicating the true genotype at the putativeFigure 2.—Histogram of transformed disease resistance
QTL for individual i (i.e., qi � 1 or qi � 2). Assume atscores of 55 DHLs in wheat. Approximately 30% of the DHLs

showed no sign of rust infection. iteration s � 1 we have estimates of the parameters �̂(s ).
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In the E-step we must find E(l c(�̂(s ))|yi), the conditional w (s�1)
i,1 � Pr(zi � 1|yi, mi, �̂(s))

mean of the complete data log-likelihood function given
the observed phenotypes. To do so, we calculate three �

�̂ (s)f(yi ; �̂(s)
1 , �̂(s))

�̂(s)f(yi ; �̂(s)
1 , �̂(s)) � (1 � �̂ (s))f(yi ; �̂(s)

2 , �̂(s))
(8)

different weights for each individual. First, for each of
the two components in the mixture distribution, and

w (s�1)
i,1 � Pr(zi � 1|yi, mi, �̂(s)) w (s�1)

i,2 � 1 � w (s�1)
i,1 .

In the M-step, we obtain updated parameter estimates�
ĉ (s)

i f(yi ; �̂(s)
1 , �̂(s))

ĉ (s)
i f(yi ; �̂(s)

1 , �̂(s)) � (1 � ĉ (s)
i )f(yi ; �̂(s)

2 , �̂(s)) of �1, �2, and � using Equations 4 and 5 and estimate
� by the following equation:

and

�̂(s�1) � �iw
(s�1)
i,1

n
. (9)w (s�1)

i,2 � 1 � w (s�1)
i,1 .

Second, for each of the two possible QTL genotypes,
We initiate the EM algorithm by taking w (0)

i,l � 0.5,
which, however, causes �̂(0)

1 and �̂(0)
2 to be equal and �̂(0)u(s�1)

i,1 � Pr(qi � 1|yi , mi, �̂(s))
to be 0.5. In that case, as is seen from Equation 8, the
weights and estimates are not changed by the iterations.�

pi1�̂
(s)
1 f(yi ; �̂(s)

1 , �̂(s)) � pi1(1 � �̂(s)
1 )f(yi ; �̂(s)

2 , �̂(s))
ĉ (s)

i f(yi ; �̂(s)
1 , �̂(s)) � (1 � ĉ (s)

i )f (yi ; �̂(s)
2 , �̂(s)) This is a consequence of the symmetry of the model in

the two components; in fact �1 � �2 � y is a stationaryand
point on the likelihood surface. Thus, to prevent the

u (s�1)
i,2 � 1 � u (s�1)

i,1 . algorithm from getting stuck, we offset the initial �
values slightly in opposite directions. We iterate until

Third, for the combination of mixture component and the estimates converge.
QTL genotype,

v(s�1)
i � Pr(ziqi � 1|yi , mi, �̂(s))

SIMULATIONS

�
pi1�̂

(s)
1 f(yi ; �̂(s)

1 , �̂(s))
ĉ (s)

i f(yi ; �̂(s)
1 , �̂(s)) � (1 � ĉ (s)

i )f (yi ; �̂(s)
2 , �̂(s))

. To illustrate the properties of the two-component
mixture model and to compare its performance with
standard interval mapping, we performed a small simu-In the M-step, updated estimates of �1, �2, �, �1, and
lation study. We assessed the occurrence of spurious�2 are given by
LOD score peaks by simulating 80 BC individuals under
a null model of no QTL. We simulated 12 chromosomes,�̂(s�1)

l � �iw
(s�1)
i,l yi

�iw
(s�1)
i,l

(4)
each 120 cM long and each with four to nine randomly
distributed markers. A random 10% of the marker geno-
type data was missing. Phenotypes were simulated from�̂(s�1) � �1

n�
i
�

l
(yi � �̂(s�1)

l )2w (s�1)
i,l (5)

a threshold model; first a random number was drawn
from a standard normal distribution and then it was
rounded upward to the nearest of the following thresh-�̂(s�1)

1 � �iv
(s�1)
i

�iu
(s�1)
i,l

(6)
olds: 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5.0. The
phenotype was taken to be the threshold value in ques-

�̂(s�1)
2 � �i(w (s�1)

i,1 � v (s�1)
i )

�iu
(s�1)
i,2

, (7) tion. A total of 2000 simulations were done and in each
case the data were analyzed both with a standard interval

where l � 1, 2 is the index of the mixture component. mapping model and the two-component mixture
Initial values for the EM algorithm may, for example, be model. For each simulated data set, the maximum LOD
obtained by letting �j � 0.5 and taking w (0)

i,l � �jpij �j , and score and the length of the interval where it occurred
by letting �̂(0)

1 and �̂(0)
2 equal the estimates of �1 and �2 were recorded. Figure 3 shows the maximum LOD score

that are obtained under the null hypothesis. We iterate as a function of interval length. A priori, when there is
until the estimates converge. no QTL, one would expect no dependence of maximum

Under the null hypothesis, we also use a form of the LOD score on interval length, but the figure suggests
EM algorithm to obtain maximum-likelihood estimates otherwise for standard interval mapping; 59 maximum
of the parameters. As before, let zi indicate which one LOD scores exceeded 4 and they almost exclusively oc-
of the two mixture components the observation yi comes curred in intervals �40 cM. In contrast, the two-compo-
from. Under the null hypothesis, there is no QTL effect, nent model showed no such trend; only 7 LOD scores
so zi is the only unobserved variable. In the E-step we were �4 and there was no tendency of increasing LOD
calculate weights for each individual and for each of scores with increasing interval length (Figure 3). Also,

in standard interval mapping the number of maximumthe two components in the mixture distribution,
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Figure 3.—Maximum
LOD score as a function of
the length of the interval
where the maximum oc-
curred for 2000 simulated
data sets.

LOD scores in intervals �80 cM was twice that of the lower power compared to that of standard interval map-
two-component model (108 vs. 50). ping. To translate the power loss to the relative number

It might be expected that the price of extending the of observations we used the approximate relationship
model, as we do in the two-component mixture model,

�(Q) � 1 � 	(z
/2 � Q√nC) � 	(�z
/2 � Q√nC),is a loss of power. To compare power and precision of
the two-component model with the standard interval

where � is the power function, Q is the QTL effect, Cmapping model, we simulated 200 BC individuals under
is a constant, n is the number of individuals, 	 is thea single-QTL model. We simulated five chromosomes,
standard normal distribution function, and z
/2 denoteseach 100 cM long and each with 11 randomly distributed
the upper 
/2 quantile of the standard normal distribu-markers and a QTL at position 60 cM on chromosome
tion. On the basis of this relationship, the power loss1. We considered six different values of the additive
of the two-component model corresponded to �12%effect of the QTL: 0 (null model), 0.12, 0.20, 0.26, 0.32,
fewer observations in the standard interval mappingand 0.38. The trait value of an individual was deter-
model. The approximation holds in general for two-mined by a random (environmental) variable drawn
sided tests of a parameter in a well-behaved statisticalfrom a standard normal distribution plus the QTL effect
model (see van der Vaart 1998, Chap. 14), but in(QTL genotype 2) or minus the QTL effect (QTL geno-
the present setting we use it only empirically withouttype 1). We performed 5000 simulations and analyzed
claiming any theoretical justification. We also estimatedall six QTL effects with both standard interval mapping
the precision in locating the QTL by means of the root-and the two-component mixture model. We obtained
mean-square (RMS) error of the estimated QTL posi-genome-wide LOD thresholds from the data with no
tion (Figure 5B). The two methods had very similarQTL effect, as the 95th percentiles of the maximum
precision of QTL localization, although interval map-LOD score. The LOD thresholds for standard interval
ping had a marginally greater precision (smaller RMSmapping and the two-component mixture model were
error) compared to that of the two-component model.2.26 and 2.48, respectively. Figure 4 shows a simulation

The additive QTL effect was estimated in somewhatexample. LOD scores were calculated and plotted at
different ways under the two models. Since in the simula-every 2 cM. It can be seen from the figure that in a
tions the QTL genotype indexed by j � 2 correspondeddata set not leading to spurious LOD score peaks, the
to a positive additive effect, the QTL effect under standardevidence obtained by standard interval mapping and
interval mapping was estimated as âIM � 0.5 · (�̂2 � �̂1).the two-component model may be very similar.
In the case of the two-component model, the QTL effectThe power of the two methods was estimated as the
was estimated as â2C � 0.5 · (�̂2�̂1 � (1 � �̂2)�̂2 � �̂1�̂1 �proportion of the simulation replicates for which the
(1 � �̂1)�̂2). In each case, the QTL effect was estimatedmaximum LOD score exceeded the corresponding
at the position of the maximum LOD score. True andLOD threshold. As can be seen in Figure 5A, the two-

component mixture model had similar although slightly estimated effect sizes are shown in Table 1; both models
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Figure 4.—A simulation example of QTL mapping on a population of 200 BC individuals. The QTL position is indicated by
the triangle on the x-axis. The additive effect of the QTL increases in six steps from 0 (bottom solid curve) to 0.38 (top dashed
curve). Standard interval mapping (left) and the two-component mixture model (right) applied to the same data set are compared.
Genome-wide LOD thresholds are indicated by the dotted horizontal lines.

produced estimates slightly lower than the true values, null hypothesis of no QTL there is only a single compo-
nent. Now, if the phenotype distribution is not normal,since sometimes âIM and â2C were negative by chance.

Note, however, that the estimates come very close to the two- (or more) component model may fit to data
much better than the single-component model, even inthe true value as the QTL effect increases.
a model without any genetic information and even if
there is no real QTL. Thus, in cases where the pheno-

DISCUSSION
type distribution deviates from a normal distribution,
false-positive results may be obtained in regions of lowWe have demonstrated that the commonly used stan-

dard interval mapping method may occasionally result genotype information (e.g., widely spaced markers, low
degree of polymorphism, or much missing markerin spurious LOD score peaks. In interval mapping the

distribution is a mixture of two (or more) components data). The problem was seen in an application (Figure
1). Close inspection of Figure 1 reveals that the LODwhen a QTL is included in the model while under the

Figure 5.—(A) Estimated
power to detect a QTL, based
on 5000 simulation replicates.
The standard error on the esti-
mates ranged from 0.003 to
0.007. (B) Estimated root-mean-
square (RMS) error of the esti-
mated QTL location. Results
are shown for standard interval
mapping and for the two-com-
ponent mixture model.
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TABLE 1

True and estimated QTL effects from 5000 simulation replicates

True effect

0 0.12 0.20 0.26 0.32 0.38

Estimate: interval mapping �0.004 0.083 0.174 0.249 0.319 0.380
Estimate: two-component model �0.002 0.076 0.161 0.234 0.306 0.371

Standard error of the means ranged from 0.0012 to 0.0025.

score curve jumps rather abruptly at the peaks. This is distribution (a large portion of the individuals share a
common phenotype value) this may be modeled by adue partly to numerical difficulties in finding the global

maximum of the likelihood function in the vicinity of two-part parametric model (Broman 2003). However,
the two-part model may also produce spurious LODthe peaks. Thus, improved algorithms would widen and

smoothen the peaks, but would not diminish their size. score peaks since one of its two parts is a mixture of
two (or more) normal distributions when a QTL is in-We have presented a mixture model for QTL map-

ping that avoids this artifact. Our model is a mixture of cluded in the model, but only a single normal distribu-
tion under the null hypothesis. Thus, while the parttwo normal distributions (BC or DHL data) whether or

not a QTL is included in the model; the QTL affects corresponding to the common phenotype alleviates the
problem, it may still occur if the remaining phenotypethe mixing probabilities instead of the number of com-

ponents. Our simulation results indicate that the two- values deviate from a single normal distribution. One
might also take a nonparametric approach to mappingcomponent mixture model has only a minor loss of

power and comparable precision to standard interval QTL in the case of nonnormal phenotype distributions
(Kruglyak and Lander 1995; Broman 2003). Althoughmapping in locating QTL over a range of QTL effects.

The results of analysis with the two-component mix- generally a powerful alternative, nonparametric meth-
ods provide only a test for the presence of a QTL,ture model must be interpreted with some care. In the

case of a backcross population, we would like the abso- whereas parametric methods also estimate the pheno-
typic effect of the QTL.lute difference between �1 and �2 of Equation 1 to be

close to 1 at a QTL position. This would indicate that With the advent of extremely dense marker maps
in a large number of species, it might be argued thatthe QTL genotypes from the parental lines each result

in a single (different) normal distribution. In our simu- researchers need not be concerned about getting spuri-
ous LOD score peaks from interval mapping. However,lations, increasing the additive QTL effect from 0.12 to

0.38 caused the mean of |�̂1 � �̂2| at the true QTL in many agriculturally important species only few mark-
ers have been developed, and even in species with manylocation for data sets with LOD � 2.48 at that position

to increase from 0.56 to 0.73 (data not shown). While markers available, initial analyses may be undertaken
with few markers to identify important regions of thethese numbers are not that close to 1, it should be

kept in mind that the residual variance used in the genome. Moreover, the marker map may be dense and
yet the genetic data may have poor information content,simulations was quite large at 1 compared to the additive

QTL effects of 0.12–0.38. Also, it was noted that for a if, for example, the markers are dominant or if the
proportion of missing data at certain marker loci is high.given QTL effect, the estimated difference between �1

and �2 increased with increasing LOD score. Still, it Also, it should be noted that the type of cross influences
the risk of spurious LOD peaks from interval mapping.appears that the QTL effect needs to be larger com-

pared to the residual variance for the mixing parameters In the case of F2 intercross populations (see, for exam-
ple, Lynch and Walsh 1998), the phenotype is mod-�1 and �2 to be better estimated.

Several different numerical optimizations may be con- eled as a mixture of three components. In regions of
low genotype information, the three-component mix-sidered; the EM algorithm is often found to be some-

what slow but fairly robust and easy to program. As with ture distribution produces a better fit than a two-compo-
nent mixture distribution. Thus, spurious LOD peaksother methods, there is no guarantee that it will find

the global maximum rather than a local maximum, or are expected to be more of a problem in F2 intercrosses
compared to, for instance, backcrosses or DHLs. For F2even get stuck in a local minimum, but in our examples

it seemed to work well, as judged from the LOD scores intercrosses, our two-component model may be ex-
tended to three components in a straightforward man-and other results obtained.

Other methods for QTL mapping have been devel- ner. However, problems with false or no convergence
generally increase with the number of components inoped for cases where the phenotype distribution is non-

normal. If, for example, there is a spike in the phenotype mixture models.
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