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ABSTRACT
The problem of locating multiple interacting quantitative trait loci (QTL) can be addressed as a multiple

regression problem, with marker genotypes being the regressor variables. An important and difficult part
in fitting such a regression model is the estimation of the QTL number and respective interactions. Among
the many model selection criteria that can be used to estimate the number of regressor variables, none
are used to estimate the number of interactions. Our simulations demonstrate that epistatic terms appearing
in a model without the related main effects cause the standard model selection criteria to have a strong
tendency to overestimate the number of interactions, and so the QTL number. With this as our motivation
we investigate the behavior of the Schwarz Bayesian information criterion (BIC) by explaining the phenome-
non of the overestimation and proposing a novel modification of BIC that allows the detection of main
effects and pairwise interactions in a backcross population. Results of an extensive simulation study
demonstrate that our modified version of BIC performs very well in practice. Our methodology can be
extended to general populations and higher-order interactions.

POPULAR methods for mapping quantitative trait sional genome searches as a means of mapping epistatic
loci (QTL) include interval mapping (Lander and QTL. In particular they proposed an interesting exten-

Botstein 1989), composite interval mapping (Zeng sion of MQM by addressing a crucial problem pertaining
1993, 1994) and multiple QTL mapping (MQM; Jansen to the choice of marker cofactors. By including all avail-
1993; Jansen and Stam 1994). These statistical methods able markers in a regression equation and using a Bayes-
do not allow the location of QTL in situations when ian approach to penalize large values of the correspond-
there are no main effects for the respective QTL, but ing regression coefficients many of the previously
there are (epistatic) interactions with other QTL mentioned issues are eliminated. The disadvantage of
(genes) that influence the quantitative trait. Epistatic this method is that, when detecting epistatic QTL, it
QTL are known to play important roles in many disease requires the choice of “the effective dimension” (i.e.,
studies, such as cancer (Fijneman et al. 1996, 1998), number of QTL) for epistatic interactions, which has
and it is also suspected that they play a key role in the strong influence on the power of detection.
evolutionary process (Wolf et al. 2000). An alternative way to approach the problem of map-

A direct solution to detecting epistatic QTL is to ping epistatic QTL relies on developing new methods
search for several QTL simultaneously and fit an appro- for reducing the numerical complexity of MIM. In re-
priate multiple regression model with interactions. cent work Carlborg et al. (2000), Nakamichi et al.
However, the utility of such an approach, which is re- (2001), and Broman and Speed (2002) use random
ferred to as a multidimensional version of interval map- search methods to accelerate the search over the class
ping, called multiple interval mapping (MIM; Kao et al. of possible multidimensional models. The results from
1999), is limited by two interconnected issues. The first their approach hold great potential for further progress
is the requirement of deciding how many terms (main in solving the problem of the computational complexity
effects and epistasis) should be included in the model. of MIM.
The second issue is the computational complexity of Regardless of which method we use to search the
the search over the space of possible multidimensional genome for QTL we need to solve the problem of esti-
models. To avoid these problems Jannink and Jansen mating QTL number, which in turn directly affects the
(2001) and Boer et al. (2002) proposed one-dimen- dimensionality of the model space. The standard way of

deciding how many main and interacting (QTL) effects
should appear in the model relies on using many statisti-

1Corresponding author: Department of Statistics, 1399 Math Bldg., cal tests (see Kao et al. 1999). A disadvantage of thisPurdue University, West Lafayette, Indiana 47907.
E-mail: doerge@purdue.edu approach is that it allows the comparison of only nested
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models. It is also unclear how to adjust the significance mate the model dimension. To address this issue we
follow the approach suggested by Ball (2001) and pro-thresholds for each consecutive test.

Model selection criteria have been used as an alterna- pose an easy modification of BIC that relies on taking
into account the realistic prior distribution on the settive approach for the problem of model selection in

QTL mapping. Two easy-to-compute model selection of compared models. In comparison to Ball (2001) we
extend the method to cover models with interactionscriteria that are often employed in statistics are the

Akaike information criterion (AIC; Akaike 1974) or the and calibrate the prior to gain the control over the type
I error of our procedure. An extensive simulation studySchwarz Bayesian information criterion (BIC; Schwarz

1978). These criteria belong to the family of the so- verifies that our proposed criterion deals very well with
the problem of overfitting the model and allows thecalled penalized maximum likelihood methods and are based

on the recommendation of choosing the model for detection of main effects and pairwise interactions in a
backcross population. While our proposal is based onwhich the likelihood of the data minus the penalty for

the model dimension obtains the maximal value. These QTL mapping in a backcross population, our methodol-
ogy can be extended to general populations and tocriteria were used by Jansen (1993) and Jansen and

Stam (1994) to choose marker covariates for MQM and higher-order interactions.
by Piepho and Gauch (2001), Nakamichi et al. (2001),
Ball (2001), Broman and Speed (2002), and Siegmund

METHODS(2003) to directly estimate QTL number. For a review
and discussion of model selection methods as applied Consider a backcross population where qij denotes
to QTL mapping see Balding et al. (2002) or Silanpää the genotype of the ith individual at the jth QTL: qij �
and Corander (2002). �1⁄2 if the ith individual is homozygous at the jth QTL

Piepho and Gauch (2001) investigated many model and qij � 1⁄2 if it is heterozygous. We assume that the
selection criteria via simulation. In their study different relationship between the trait value Yi and QTL geno-
criteria were used to choose pairs of markers flanking types is given by a normal regression model,
QTL. Their results suggest that out of the considered

Yi � � � �
m

j�1

�jqij � �
1�j�l�m

�jlqijqil � εi , (1)criteria BIC has the best properties and can be recom-
mended for the estimation of the number of QTL with
main effects. Broman and Speed (2002), however, rec- where m is the QTL number and εi � N(0, 	2) is the

environmental noise. The second summation in ourommend a modification of BIC to select markers
strongly associated with the trait. Contrary to Piepho model corresponds to pairwise epistatic interactions.

The formulation of the model allows some of the coeffi-and Gauch (2001) they use BIC to choose single mark-
ers instead of pairs. Broman and Speed (2002) observe cients �j and �jl to be zero to accommodate cases when

there are QTL that are not involved in epistatic effects.that in this situation the original BIC has a tendency to
overestimate the QTL number. To solve the problem It also addresses the scenario when QTL might not have

their own main effects, yet influence the quantitativeof the overfitting they propose a modification of BIC,
with a larger penalty for model dimension. Simulations trait by interacting with other genes, (i.e., epistasis).

Later we use p to denote the number of QTL with mainreported in Broman and Speed (2002) show that their
modified version of BIC performs very well and detects effects and q to denote the number of nonzero epistatic

terms.the correct model more often than composite interval
mapping does (Zeng 1993, 1994). We rely on MIM (Kao et al. 1999) to simultaneously

locate multiple QTL. This method requires fitting theWhile both of the methods put forth by Piepho and
Gauch (2001) and Broman and Speed (2002) can be model (1) for a dense grid of possible QTL positions.

For each of the possible genomic locations the geno-used to estimate the number of QTL with main effects,
they do not generalize directly to the situation where types of the putative QTL are inferred using the geno-

types of flanking markers and the EM algorithminteraction terms appear in the model. Our extensive
simulations (Bogdan and Doerge 2003) showed that (Dempster et al. 1977) is employed to estimate parame-

ters of the model (1). The locations for which the fittedthe phenomenon of overfitting becomes even more sig-
nificant when we allow interaction terms to appear in model yields the largest likelihood are subsequently

chosen.the model without the related main effects.
In the present work we concentrate on BIC, which, A first step in the reduction of the complexity of MIM

sometimes relies on identifying interesting genomic re-according to the QTL simulation study of Piepho and
Gauch (2001) and our independent simulations, per- gions on the basis of an initial, relatively coarse search.

In the Bayesian setting this approach was suggested byforms better than other popularly used model selection
criteria. In particular, we recall the Bayesian roots of Sen and Churchill (2001), who used an initial scan

based on a 10-cM pseudo-marker grid. However, for theBIC and explain the reasons why this criterion, when
used to select single markers, has a tendency to overesti- situation where an accurate genetic map exists a natural
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approach is to base the initial search on the net of where RSS is the residual sum of squares from regres-
marker positions and then use more refined methods sion.
(e.g., MIM) to search in the neighborhood of the chosen Rationale for modifying BIC: Broman and Speed
markers. Ball (2001), Broman and Speed (2002), Yi (2002) report that the original BIC, when used to select
et al. (2003a), and Xu (2003) successfully search over single markers with significant main effects, has a ten-
markers to locate multiple QTL and are justified in dency to overestimate QTL number. On the basis of
doing so on the basis of the fact that flanking markers work not shown here (Bogdan and Doerge 2003) we
absorb all the information associated with the QTL have found that the tendency to overestimate QTL num-
(Whittaker et al. 1996). ber becomes more significant when the portion (or

If we reduce MIM to a search over markers, then the entirety) of the genome under investigation increases.
problem of the QTL location reduces to the problem To understand this further we compare the rates at
of choosing the best model of the form which the number of different models increases as the

number of available markers increases. Our rationaleYi � � � �
j�I

�jXij � �
(u,v)�U

�uvXiuXiv � εi , (2)
is based on the observation that the number of possible
models of the particular form (2), involving k distinctwhere Xij denotes the genotype of the ith individual at
markers, is equal to �Nm

k �, where Nm is the total numberthe jth marker; I is a certain subset of the set � � {1,
. . . , Nm}, where Nm is the number of available markers; of available markers. Thus, when k is much smaller than

Nm, the number of models involving k markers increasesand U is a certain subset of � 
 �. For a backcross
with Nm approximately like Nm

k . The difference in thepopulation the random variables XiuXiv correspond to
numbers of possible “small” and “large” models in-the epistatic terms that are not correlated to any of the
creases quickly with Nm, and for large Nm the probabilitymain effects. In particular, XiuXiv is not correlated to

either Xiu or Xiv even if the uth and vth markers are of choosing models with many components, just by ran-
statistically dependent via linkage. Thus, the epistatic dom chance, is relatively high. Furthermore, for a large
effects are statistically not confounded with any of the number of interaction terms, Bogdan and Doerge
main effects, and in most cases they will be detected (2003) show that the original BIC has a tendency to
only if the epistatic interactions are present. choose models with epistatic terms even when in reality

One difficulty in fitting model (2) is the estimation there is no epistasis.
of the number of main effects and interaction terms to The phenomenon of overestimation itself suggests
be included in the model. There is a vast statistical the way the standard model selection criteria should
literature on the choice of the number of terms in a be modified to make them useful for QTL mapping.
linear model (see Miller 1990 or McQuarrie and Tsai Namely, the high rate at which the number of multidi-
1998) and there are many model selection criteria that mensional models increases, when the number of avail-
can be used for this purpose. As mentioned earlier Bro- able markers increases, suggests that the penalty for the
man and Speed (2002) and Piepho and Gauch (2001) model dimension should increase with this number.
recommend using the Schwarz BIC (Schwarz 1978) to This condition is satisfied, for example, by criteria pro-
estimate the number of QTL with main effects. In a posed by Broman and Speed (2002) and Siegmund
general statistical context BIC recommends choosing (2003). Second, the fact that there are many more inter-
the model that maximizes the expression action terms than the main effects suggests that the

penalty for including an interaction should be larger
S � log L(Y |�) �

1
2
k log n, (3) than the penalty for including a main effect. Following

these two suggestions we modify BIC by supplementing
where � is the vector of model parameters, L(Y |�) is it with a realistic prior distribution on the set of possible
the likelihood of the data, k is the number of parameters models. Taking advantage of the fact that BIC is the
(dimension of �), and n is the sample size. BIC belongs approximation to the Bayesian rule for the choice of
to the wide class of the so-called penalized maximum- the “best” model we denote by �i � (�, �1, . . . , �p(i),likelihood methods and the second term in this crite-

�1, . . . , �q(i), 	) the vector of parameters of the ith linear
rion, 1⁄2k log n, is called the penalty for the complexity model, Mi, given by Equation 2. Here p(i) and q(i)
of the model. An important advantage of BIC is that denote the number of main effects and interaction
for a wide range of statistical problems, and in particular

terms involved in Mi. We assign a certain prior distribu-for multiple regression, it is consistent (i.e., when the
tion for �i and denote the density of this distributionsample size grows to infinity, the probability of choosing
by f(�i). Moreover, let us denote the prior probabilitythe right model converges to 1). In the context of linear
of the ith model by �(i). Given that L(Y |�i, Mi) denotesregression, maximizing S is equivalent to minimizing
the likelihood of the data given the vector of parameters
�i, let p(Y |Mi) denote the likelihood of the data givenBIC � n log�RSS

n � � k log n, (4)
the model Mi,
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p(Y |Mi) � �L(Y |�i , Mi) f(�i|Mi)d�i . (5) 
 to the event that the jth interaction term appears in the
model. Our prior distribution assumes that particular

The posterior probability of the ith model, given the terms enter the model independently of others and for
data, is a particular model Mi involving p(i) main effects and

q(i) interactions we obtain
P(Mi|Y) �

�(i)p(Y |Mi)

�l
j�1�( j)p(Y |Mj)

, (6)
�(Mi) � �p(i)
q(i)(1 � �)Nm�p(i)(1 � 
)Ne�q(i).

This choice of prior implies that the prior distributionswhere l is the number of possible models.
on the number of main effects and epistatic terms areThe Bayesian rule recommends choosing the model
binomial with parameters Nm and �, and Ne and 
, re-for which the posterior probability P(Mi|Y) is the largest
spectively.(see Schwarz 1978). Since the denominator in Equa-

For simplicity we consider � and 
 as � � 1/l, 
 �tion 6 is the same for all considered models, Bayes’ rule
1/u, where l and u are certain natural numbers, andrecommends choosing the model for which �(i)p(Y |Mi)
restate the prior distribution asis the largest. The BIC criterion neglects the prior proba-

bilities �(i) of different models and approximates log log �(Mi) � C(Nm, Ne, l, u) � p(i)log(l � 1)
p(Y |Mi) by log L(Y |�̂i, Mi) � 1⁄2(p(i) � q(i) � 2)log n,

� q(i)log(u � 1),where �̂i is the maximum-likelihood estimator of �i, and
p(i) � q(i) � 2 is the number of estimated parameters

where C(Nm, Ne, l, u) is a constant dependent on Nm,[i.e., p(i) � q(i) for main and epistatic effects, and 2
Ne, l, and u. Incorporating this prior distribution intofor � and 	]. Neglecting �(i) corresponds to assigning
the BIC [modified Schwarz BIC (mBIC)] allows thethe same prior probability to all considered models.
following rule: choose the model that minimizesWhile in many applications this approach is well justi-

fied, in the context of QTL mapping it lends itself to mBIC(i) � n log RSSi � (p(i) � q(i))log n � 2p(i)
assigning unrealistically high prior probabilities to the


 log(l � 1) � 2q(i)log(u � 1). (8)events where many regressors are involved [e.g., when
200 markers are available, the number of different mod- The expected values of the prior distribution for the
els involving 100 main effects is �200

100� � 9.05 
 1058 and number of main effects are equal to Nm/l and Ne/u for
the number of interaction terms. Therefore, since thethe prior probability of the event that 100 regressors

are involved is �1056 times larger than the prior proba- choice of l and u should reflect our prior knowledge
bility of the event that there is just one regressor]. Moti- on the QTL number, the values of l and u should be
vated to improve on this we suggest supplementing BIC relatively small when we expect many QTL and large
with a more realistic prior distribution, �, on the class when we expect only few. Extensive simulations were
of possible models, and choosing the model for which performed for the purpose of investigating the standard

values of l and u when we have no prior knowledge on
S̃(i) � log �(i) � log L(Y |�̂i, Mi) the QTL number. We let l and u take on values in such

a way that for the sample sizes n � 200 the probability
�

1
2
(p(i) � q(i) � 2)log n (7) of type I error (detecting at least one QTL when there

are none) does not exceed 5%. We observed that when
obtains a maximum. markers are densely spaced (distance between markers

In the context of multiple regression is not �20 cM) we can obtain our aim by keeping the
expected values of the number of main effects and inter-

log L(Y |�̂i, Mi) � �
n
2

log RSSi � C(n), action terms at a constant level close to 2. In particular,
and as is seen next, in our simulations we used values

where C(n) is the constant dependent only on n, and l � Nm/2.2 and u � Ne/2.2. In the appendix we present
maximizing (7) is equivalent to minimizing the quantity results of some theoretical calculations that support our

empirical choice of l and u. These calculations yield
S(i) � n log RSSi � (p(i) � q(i))log n � 2 log �(i). approximate bounds on the type I error of our proce-

dure and demonstrate that the proposed choice of lPrior distribution �: Assume Nm markers are available,
and u solves the problem of multiple comparisons andand therefore Nm potential regressors and Ne � (Nm(Nm �
allows control of the type I error. In comparison to1))/2 potential interaction terms. The number of all
the original BIC the penalty in our proposed/modifiedmodels of the form (2) that can be constructed using
criterion involves additional terms 2p(i)log((Nm/2.2) � 1)subsets of Nm markers is equal to 2Nm�Ne. To assign prior
and 2q(i)log((Ne/2.2) � 1). A similar additional penaltyprobabilities to these models we follow the standard
appears in the criterion proposed by Siegmund (2003),solution proposed in George and McCulloch (1993).
who approaches the problem of QTL mapping differ-Namely, we assign the probability � to the event that

the ith main effect appears in the model and probability ently by treating it as a change-point problem. These
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TABLE 1

Simulation models

Model p Main effects [chromosome, position (cM), �] q 	 2 h2

1 0 — 0 1 0
2 1 (1, 5, 1) 0 1 0.2
3 0 — 1 1 0.195
4 2 (1, 24, 1.5), (1, 56, 1.25) 0 1 0.59
5 2 (1, 24, 1.5), (1, 56, �1.25) 0 1 0.31
6 2 (1, 20, 1.5), (1, 50, 1.25) 0 1 0.59
7 2 (1, 20, 1.5), (1, 50, �1.25) 0 1 0.3
8 2 (1, 20, 1.5), (1, 60, 1.25) 0 1 0.58
9 1 (1, 5, 1) 1 1 0.33

10 0 — 3 1 0.55
11 5 (1, 71, 1.5), (2, 49, 1.25), (3, 27, 1), (4, 8, 0.75), (5, 31, 0.5) 0 1 0.58
12 7 (1, 20, 0.76), (1, 60, 0.76), (2, 20, 0.76), (2, 60, �0.76) 0 1 0.5

(3, 40, 0.76), (4, 20, 0.76), (5, 0, 0.76)
13 12 (c, 55, 0.5) for c � 1, . . . , 12 0 1 0.43
14 12 (c, 55, 0.5) for c � 1, . . . , 12 0 0.3 0.71
15 12 (c, 55, 0.5) for c � 1, . . . , 12 0 0.09 0.89
16 2 (1, 71, 1.5), (2, 49, 1) 5 1 0.63
17 5 (1, 24, 1), (1, 96, 1), (2, 5, 1), (3, 5, 0.75), (4, 5, 0.5) 2 1 0.58

The number of QTL with main effects �j is denoted by p, and q is the number of epistatic terms with effects
�jl, as defined in model (1). The environmental noise is denoted εi � N(0, 	2). Broad sense heritability is h2,
and the epistatic effects are as described in Table 2.

additional terms make our criterion similar to the risk Miller 1990) is used to search the space of possible
multidimensional models. At each consecutive step weinflation criterion (RIC) proposed by Foster and

George (1994) in which the penalty for including k test all terms (main and interaction) not yet in the
model and choose the one whose presence in the modelorthogonal regressors is equal to 2k log t, where t is the

total number of available regressors. Note, however, that yields the lowest value of the modified BIC criterion
(Equation 8; mBIC). To save computational time thewhen n tends to infinity these additional terms are over-

shadowed by the BIC penalty (p(i) � q(i)) log n and, procedure is stopped after 30 steps and the resulting
31 models are evaluated on the basis of minimizing thecontrary to RIC, our criterion has the asymptotic proper-

ties of the BIC (i.e., consistency). mBIC (Equation 8). The number of steps is restricted
to 30 since the largest model we use in the simulations
has only 12 terms. Actually, we observe that for all the

SIMULATIONS cases that we considered, the mBIC criterion was mini-
mized by models with �20 terms and that increasingWe employ computer simulations to evaluate the ap-
the number of steps above 20 had no influence on theplicability of our proposed modification to the BIC crite-
results. However, in real data studies, when one doesrion. Marker and QTL genotypes are simulated for a
not want to bound the QTL number, we suggest usingbackcross population using 12 chromosomes of the
a larger number of steps.length 100 cM for sample sizes n � 200 and n � 500.

The number of QTL with main effects ranges between
0 and 12, and the number of epistatic terms between 0

RESULTS
and 5 (Tables 1 and 2). Models 4, 5, and 11–14 (Table
1) are included to allow for a direct comparison to the The results of searching over 1, 5, and 12 100-cM

chromosomes, respectively, with markers spaced everyresults of Broman and Speed (2002), as indicated by
model 12, and to the results of Piepho and Gauch 10 cM are shown in Tables 4–6, while Table 7 reports

the results for varying marker distances. The number(2001; models 4, 5, 11, 13, and 14). Since we are inter-
ested in how our proposed criterion adjusts to the num- of correctly identified terms (corr. id.), averaged across

100 simulations, and the average number of false posi-ber of available markers, we search for QTL over 1, 5,
and 12 chromosomes and use marker spacings of 5, tives (extr.) are reported. The false positives that occur

are divided into categories depending on their linkage10, and 20 cM. The number of available markers and
interaction terms, as well as the corresponding values to true QTL. Following Piepho and Gauch (2001) we

classify the main effect to be correct if it correspondsof l and u for each of these experiments, is specified
in Table 3. The forward selection procedure (see, e.g., to a marker lying within 15 cM of the true QTL. If
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TABLE 2

Details of epistatic effects employed in simulation (Table 1)

Model q Epistatic effects (QTL1; QTL2; �)

3 1 (1, 5; 1, 90; 2)
9 1 (2, 5; 3, 5; 2)

10 3 (1, 71; 2, 49; 3), (3, 27; 4, 8; 2.5), (5, 31; 6, 35; 2)
16 5 (3, 27; 4, 8; 2.5), (5, 31; 6, 35; 2), (7, 5; 8, 5; 1.5), (9, 5; 10, 5; 1), (11, 5; 12, 5; 0.75)
17 2 (5, 5; 6, 5; 2), (7, 5; 8, 5; 1)

QTLi (i � 1, 2) denotes the position of the ith QTL (chromosome and QTL location). The number of
epistatic terms and their effects are denoted by q and �, respectively, and are as described in model (1).

two markers from the neighborhood of one QTL are proposed criterion quickly improve with increasing sam-
ple size. Therefore, the accuracy of detecting small mod-chosen, one of these markers is arbitrarily classified as

extraneous. Epistatic terms are classified as correct if els increases (see models 1, 6, and 7 in Table 4) as
does the ability to correctly identify models with largerboth markers involved lie within 15 cM of the true QTL.

For the no-QTL model (1) the percentage of replicates numbers of QTL (see models 12, 13, 16, and 17 in Table
4). We are aware that the chance of correctly identifyingfor which the model with no QTL was chosen is re-

ported. While the 15-cM margin is somewhat arbitrary QTL depends on its heritability. In other words, when
the variance of the error is equal to 1.0 and the sampleit accommodates our situation well and illustrates the

performance of our criterion. Recall that our main goal size is n � 200, our criterion usually detects main effects
with coefficients � � 0.76 (the heritability of the singleis the estimation of QTL number and not the precise

location of QTL. If we use a narrower range (i.e., �15 QTL with such a � is 0.13) and interaction terms with
� � 2 (broad sense heritability of 0.20 with just onecM), then some of the properly identified terms will be

classified as extraneous due to the relatively large error such epistatic term in the model) even when they appear
in larger models. When the sample size is increased toof localization of weak QTL that is inherent to all QTL

mapping procedures. n � 500 our criterion usually detects main effects with
� � 0.50 (individual h2 � 0.06) and interaction termsOur modification to BIC performs very well (Tables

4–7) in practice, adjusts appropriately to the number with � � 1.5 (individual h2 � 0.12). The proposed crite-
rion (mBIC) works particularly well if QTL are locatedof available markers under consideration, and rarely

overestimates. Furthermore, in all of the examples we close to markers (compare models 4 and 6, and 5 and
7, in Tables 4–6 and models 4 and 8 in Table 7). Whenconsidered the probability of incorrectly detecting at

least one QTL, when there are none, does not exceed QTL are located in the middle of an interval defined by
two markers it is sometimes the case that both flanking0.06 and the average number of extraneous QTL, which

are not linked to true QTL, rarely exceeds 0.10. We also markers are chosen, which partially explains the rela-
tively large number of false positives for models 4 andobserve that the average number of extraneous epistatic

terms never exceeded 0.05. This confirms our expecta- 15. An additional reason for the sometimes larger num-
ber of extraneous linked QTL is a statistical error oftions that in the backcross population epistatic effects

are usually detected only when they really exist. Since localization of weak QTL. In some cases the correct
model was appropriately identified, but the chosenwe set the expected values of the prior distribution for

the number of main effects and interaction terms to be markers were slightly farther apart from the true QTL
than our set limit of 15 cM. On the basis of this reasoningequal to 2.2, our criterion more easily identifies models

with a small number of terms. The properties of our some of the false positives correspond to correctly identi-

TABLE 3

Penalty coefficients l and u used in the modified BIC (mBIC)

No. of Marker
chromosomes spacing (cM) Nm

Ne �
Nm(Nm � 1)

2 l u

1 10 11 55 5 25
5 10 55 1,485 25 675

12 10 132 8,646 60 3,930
12 5 252 31,626 115 14,375
12 20 72 2,556 33 1,162

Nm denotes the number of markers and Ne denotes the number of available interactions.



995Modifying the Schwarz Bayesian Information Criterion

TABLE 4

Results from 100 simulations that each search over 12 100-cM chromosomes with markers spaced
every 10 cM

Main terms Epistatic terms

Extr. Extr. Extr. both Extr. one Extr.both
Model n p Corr. id. linked unlinked q Corr. id. linked linked unlinked

1 200 0 0.95 — 0.03 0 — — — 0.02
1 500 0 0.99 — 0.01 0 — — — 0.00
2 200 1 1.00 0.01 0.02 0 0.00 0.00 0 0.02
3 200 0 — 0.00 0.01 1 0.95 0.01 0.00 0.01
4 200 2 1.97 0.31 0.02 0 — 0.00 0.00 0.04
5 200 2 1.98 0.06 0.02 0 — 0.00 0.01 0.03
6 200 2 2.00 0.10 0.02 0 — 0.00 0.00 0.04
6 500 2 2.00 0.02 0.02 0 — 0.00 0.00 0.01
7 200 2 2.00 0.07 0.01 0 — 0.00 0.00 0.03
7 500 2 2.00 0.01 0.01 0 — 0.00 0.00 0.02
9 200 1 1.00 0.00 0.03 1 0.92 0.03 0.00 0.01

10 200 0 — 0.01 0.01 3 2.86 0.03 0.03 0.01
11 200 5 4.08 0.18 0.00 0 — 0.00 0.02 0.00
12 200 7 5.02 0.23 0.02 0 — 0.01 0.04 0.01
12 500 7 6.99 0.13 0.01 0 — 0.00 0.03 0.00
13 200 12 2.39 0.31 — 0 — 0.02 — —
13 500 12 9.68 0.47 — 0 — 0.02 — —
14 200 12 9.53 0.75 — 0 — 0.02 — —
15 200 12 11.9 0.63 — 0 — 0.04 — —
16 200 2 1.95 0.03 0.01 5 2.08 0.12 — —
16 500 2 2.00 0.01 0.02 5 3.46 0.07 — —
17 200 5 3.67 0.18 0 2 0.80 0.04 0.00 0.01
17 500 5 4.80 0.18 0 2 1.32 0.03 0.00 0.00

p is the true number of main effects, q is the true number of epistatic terms, n is the sample size, Corr. id.
denotes the average number of correctly identified terms, Extr. linked denotes the average number of extraneous
terms that are linked to true QTL, and Extr. unlinked denotes the average number of extraneous terms that
are not linked to true QTL.

fied, but incorrectly localized QTL. Comparing results parameters generated by Markov chain Monte Carlo
of our simulations with the results reported in Piepho (MCMC) by restricting the search to marker positions.
and Gauch (2001) and Broman and Speed (2002) we Yi and Xu (2002) and Yi et al. (2003b) extend the stan-
observe, for models with only main effects, that our dard Bayesian MCMC approach to search for epistatic
modification of BIC (mBIC) performs similarly to the QTL. The common feature shared by the works of these
criteria proposed in these earlier articles. More impor- authors is that they require multiple generations from
tantly, however, our criterion allows the detection of the conditional distributions of all parameters in the
epistatic terms whereas the criteria of Piepho and regression model and are very computationally demand-
Gauch (2001) and Broman and Speed (2002) do not. ing. Moreover, as noted by Ball (2001), “a major chal-

lenge remains to obtain a rapidly converging sampler
for the full Bayesian model.” Sen and Churchill (2001)

DISCUSSION avoided using MCMC by employing an independent
sample Monte Carlo approach to generate multiple ver-The method proposed in this article can be viewed
sions of pseudo-marker genotypes on the dense grid ofas a simplification of standard Bayesian methods used
genomic locations. They computed weights for eachfor QTL mapping. In a series of articles Satagopan
pseudo-marker realization by integrating out parame-and Yandell (1996), Satagopan et al. (1996), Heath
ters of the related regression models and then used(1997), Uimari and Hoeschele (1997), Silanpää and
them to approximate the posterior distribution of theArjas (1998), Stephens and Fisch (1998), and Yi and
QTL locations. Our method, similar to the methods ofXu (2000) use the full Bayesian approach and Markov
Ball (2001) and Broman and Speed (2002), is a furtherchain Monte Carlo simulations to estimate posterior
simplification of Bayesian methodology and seems todistributions of QTL locations and other parameters in
be particularly useful when one needs to search over athe regression model. Yi et al. (2003a), Xu (2003), and

Kilpikari and Silanpää (2003) reduce the number of large space of possible models with interactions.
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TABLE 5 In principle, the modified version of BIC suggested
in this article could be used to approximate posteriorResults from 100 simulations that each search over one
probabilities of different models according to the for-100-cM chromosome with markers spaced every 10 cM
mula

Main effects Epistatic terms
P(Mi |Y) � exp(�mBIC(i)/2)

�l
j�1exp(�mBIC(j)/2)

, (9)Model n p Corr. id. Extr. q Corr. id. Extr.

1 200 0 0.96 0.03 0 — 0.03 where l is the number of possible models (see also Ball1 500 0 0.94 0.04 0 — 0.02
2001). While we are very much aware of the importance2 200 1 0.99 0.04 0 — 0.02
of this formulation, which could allow one to estimate3 200 0 — 0.02 1 0.99 0.02
the uncertainty related to the choice of the best model4 200 2 2.00 0.59 0 — 0.03

5 200 2 2.00 0.26 0 — 0.05 and to use Bayesian averaging to estimate main and
6 200 2 2.00 0.13 0 — 0.02 epistatic effects, we point out that due to the huge num-
6 500 2 2.00 0.07 0 — 0.02 ber of possible models with interactions it is practically
7 200 2 2.00 0.09 0 — 0.01

impossible to compute its denominator. To reduce the7 500 2 2.00 0.05 0 — 0.02
number of terms in the Equation 9 one could apply

p is the true number of main effects, q is the true number Occam’s window algorithm proposed by Raftery et al.
of epistatic terms, n is the sample size, Corr. id. denotes the (1997), which relies on discarding models that receive
average number of correctly identified terms, and Extr. de-

little support from the data. However, the correspond-notes the average number of extraneous terms.
ing search procedure proposed in Madigan and Raf-
tery (1994) seems to be inadequate in our setting due
to the large number of nonnested models. In practiceThe modified BIC that is presented here is closer
one may reduce the number of models considered bythan the original BIC to the concept of Bayesian think-
performing a separate search for each pair of chromo-ing since it introduces the prior distribution on the
somes, which in turn is usually good enough to detectnumber of main effects and epistatic terms. We concen-
pairwise interactions. But even in this case, the numbertrate mainly on the situation when there are no specific
of possible models with interactions will usually be tooexpectations on the number of QTL and calibrate the
large to apply Equation 9.prior so as to gain control over the type I error of our

To solve the problem of multiplicity of models andprocedure. However, we strongly suggest that in the
to identify the best one, we applied forward selectioncase when some prior information is available it should
procedure, which is simple and quick. Our simulations,be included and the penalty should be adjusted accord-
as well as results reported in Broman and Speed (2002),ingly. To estimate the type I error in that case one could
show that forward selection performs very well in thisuse computer simulations or the permutation method

of Churchill and Doerge (1994). setting. We are, however, aware that there are some

TABLE 6

Results from 100 simulations that each search over five 100-cM chromosomes with markers spaced
every 10 cM

Main effects Epistatic terms

Extr. Extr. Extr. both Extr. one Extr. both
Model p Corr. id. linked unlinked q Corr. id. linked linked unlinked

1 0 0.96 — 0.02 0 — — — 0.02
2 1 0.99 0.02 0.00 0 — 0.00 0.00 0.02
3 0 — 0.00 0.01 1 0.96 0.01 0.01 0.00
4 2 1.97 0.37 0.03 0 — 0.00 0.00 0.01
5 2 1.97 0.08 0.02 0 — 0.00 0.00 0.01
6 2 2.00 0.14 0.02 0 — 0.00 0.00 0.01
7 2 2.00 0.07 0.02 0 — 0.00 0.00 0.01
9 1 0.99 0.03 0.01 1 0.93 0.04 0.01 0.00

11 5 4.27 0.25 0.00 0 — 0.04 — —
12 7 5.55 0.27 — 0 — 0.03 — —

Sample size n � 200, p is the true number of main effects, q is the true number of epistatic terms, Corr. id.
denotes the average number of correctly identified terms, Extr. linked denotes the average number of extraneous
terms that are linked to true QTL, and Extr. unlinked denotes the average number of extraneous terms that
are not linked to true QTL.
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TABLE 7

Results of the search over 12 100-cM chromosomes based on 100 simulations and the sample size n � 200

Main effects Epistatic terms

D Extr. Extr. Extr. both Extr. one Extr. both
Model (cM) p Corr. id. linked unlinked q Corr. id. linked linked unlinked

1 5 0 0.98 — 0.01 0 — — — 0.01
1 20 0 0.95 — 0.03 0 — — — 0.02
2 5 1 0.99 0.00 0.00 0 — 0.00 0.00 0.01
2 20 1 1.00 0.02 0.02 0 — 0.00 0.00 0.03
4 5 2 2.00 0.11 0.01 0 — 0.00 0.01 0.03
4 20 2 1.87 0.54 0.03 0 — 0.00 0.03 0.01
8 20 2 2.00 0.03 0.04 0 — 0.00 0.07 0.02

10 5 0 — 0.01 0.03 3 2.94 0.03 0 0.01
10 20 0 — 0.01 0.02 3 2.21 0.10 0.02 0.02
12 5 7 4.66 0.19 0.01 0 — 0.00 0.00 0.00
12 20 7 5.23 0.43 0.08 0 — 0.01 0.03 0.04

D is the marker spacing, p is the true number of main effects, q is the true number of epistatic terms, Corr.
id. denotes the average number of correctly identified terms, Extr. linked denotes the average number of
extraneous terms that are linked to true QTL, and Extr. unlinked denotes the average number of extraneous
terms that are not linked to true QTL.

particular cases (and a real analysis is always a particular In this article we did not address the problem of
missing marker data. Currently in the QTL mappingcase) when the forward selection procedure does not

detect the best model. Thus, although statistically we literature three methods exist, which are designed to
solve this problem by using genotypes of neighboringdo not expect much improvement by replacing forward

selection with a more refined search strategy, we still markers. They include Haley and Knott (1992) regres-
sion, the E-M algorithm of Jansen and Stam (1994), orrecognize the need for further research in this direction.

Although this article is concerned solely with de- multiple imputations of missing genotypes proposed by
Sen and Churchill (2001) and Ball (2001). We be-tecting main effects and pairwise interactions, theoreti-

cally the proposed method can be directly generalized lieve that the application of any of these methods will
leave the mBIC unaffected by a moderate proportionto identify higher-order interactions. To retain control

over the type I error of the corresponding procedure, of missing marker data. The missing data methods can
also be used to apply mBIC to search for QTL withinit is anticipated that higher-order interactions should

be penalized even more than pairwise epistatic terms. intermarker intervals.
The method proposed in this article selects markersHowever, the utility of this approach needs to be verified

by additional research, since there are two main diffi- strongly associated with the trait and does not explicitly
use the information from the distance between them.culties related to any extensions of our work. First is

the numerical complexity of the search over a rapidly Therefore, in principle the mBIC approach is not sensi-
tive to map errors. However, the application of any ofincreasing number of models with higher-order interac-

tions, which can most likely be addressed by developing the missing data methods will make our method sensi-
tive to map errors in the same way as standard intervala suitable search strategy and increasing computer

power. The second issue is more difficult and of a more mapping. Our method can be also influenced by selec-
tive genotyping and genotyping errors, since selectivetheoretical nature. If we do not have prior expectations

on the number of main and epistatic effects the method genotyping will change the correlation structure in the
design matrix and might result in partial confoundingoutlined in this article can be used to control the overall

type I error. In this case, when we increase the potential of epistatic and main effects. However, our approach is
able to select the proper markers out of many stronglynumber of regressors by including higher-order interac-

tions, we must also increase the penalties for main ef- correlated neighbors; therefore we believe that it is also
robust to any partial confounding of main and epistaticfects and pairwise interactions. Thus, an attempt to de-

tect higher-order interactions will result in decreasing effects. The influence of genotyping errors will depend
on the marker information that is affected. In our mBICpower of detection of simpler effects and can be offset

only by larger sample sizes. When some prior informa- criterion, as well as in other standard model selection
criteria, the information on the data appears only intion on the number of main effects and interactions is

available the power will be less affected since the method RSS. Thus, we do not expect a significant difference
between our criterion and others with respect to thecan be used in a subjective way via an appropriate adjust-

ment of the penalties. sensitivity to genotyping errors.
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P(S̃1 � S̃0) � 2NmP�Z � √log n � 2 log(l � 1)�
APPENDIX: BOUND FOR THE TYPE I ERROR � 2NeP�Z � √log n � 2 log(u � 1)� � ε.

(A3)Our procedure recommends choosing the model that
maximizes the criterion

For each x � 0 it holds that

S̃(i) � log L(Y|�̂i) �
1
2
(p(i) � q(i))log n

P(Z � x) �
1

√2�
e�x 2/2 1

x
.

� p(i)log(l � 1) � q(i)log(u � 1). (A1)

Thus (A3) yieldsThe number of all possible one-dimensional models
[models for which p(i) � q(i) � 1] is equal to Nm �

P(S̃1 � S̃0) �
2Nm

(l � 1) √2�n(log n � 2 log(l � 1))
Ne, where, as before, Nm is the number of available mark-
ers and Ne � (Nm(Nm � 1))/2 is the number of possible
interactions. Let S̃1 denote the maximum of the crite- �

2Ne

(u � 1) √2�n(log n � 2 log(u � 1))
� ε.

rion (A1) over all such one-dimensional models and let
S̃0 � log L0(Y |�̂, 	̂) be the value of the criterion for the

For the proposed values l � Nm/2.2 and u � Ne/2.2 thenull model involving no markers (p � q � 0). Let D �
right-hand side of the above inequality is approximatelyp � q be the number of terms in the model chosen by
equal toour procedure. It holds that

P(D � 0) � P(S̃1 � S̃0) � P(D � 1, S̃1 � S̃0). 4.4

√2�n� 1

√log n � 2 log(l � 1)
�

1

√log n � 2 log(u � 1) � .
We bound the probability of the first, dominating term

(A4)of the right-hand side of the above equality, under the
null hypothesis of no QTL. Using the proposed values of l and u allows one to

Consider a given one-dimensional model Mi and a
eliminate Nm and Ne from the bound numerator and

corresponding value of our criterion
thus helps solve the multiple-comparisons problem.

For the sample size n � 200 and Nm and Ne used inS̃Mi
� log L(Y |�̂i) �

1
2
log n � (log(l � 1) or log(u � 1)).

our experiments the bound given by (A4) takes values
from the interval between 0.0574 (for Nm � 252 andThe model Mi will be preferred over the model with no
Ne � 31,626; 12 100-cM chromosomes with markersQTL if S̃Mi

� S̃0, or equivalently
spaced every 5 cM) and 0.0801 (for Nm � 11 and Ne �
55; one 100-cM chromosome with markers spaced every2 log

L(Y |�̂i)
L0(Y |�̂, 	̂)

� log n � 2(log(l � 1) or log(u � 1)).
10 cM), which gives a satisfactory approximation for the
empirical type I error obtained from simulations.(A2)




